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Abstract

We survey several techniques for proving lower bounds in Boolean,
algebraic, and communication complexity based on certain linear alge-
braic approaches. The common theme among these approaches is to
study robustness measures of matrix rank that capture the complex-
ity in a given model. Suitably strong lower bounds on such robustness
functions of explicit matrices lead to important consequences in the
corresponding circuit or communication models. Many of the linear
algebraic problems arising from these approaches are independently
interesting mathematical challenges.
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1

Introduction

1.1 Scope

Understanding the inherent computational complexity of problems
is of fundamental importance in mathematics and theoretical com-
puter science. While rapid progress has been made on upper bounds
(algorithms), progress on lower bounds on the complexity of explicit
problems has remained slow despite intense efforts over several decades.
As is natural with typical impossibility results, lower bound questions
are hard mathematical problems and hence are unlikely to be resolved
by ad hoc attacks. Instead, techniques based on mathematical notions
that capture computational complexity are necessary.

This paper surveys some approaches based on linear algebra to
proving lower bounds on computational complexity. Linear algebraic
methods are extensively used in the study of algorithms and complexity.
Our focus here is on their applications to lower bounds in various
models of circuits and communication complexity. We further consider
mainly classical — as opposed to quantum — models of computation.
Linear algebra plays an obviously pervasive role in the study of quan-
tum complexity. Indeed, some of the techniques studied in this paper

1
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2 Introduction

have natural extensions to quantum models. However, to keep the scope
of this survey narrow enough to limit its length, we restrict ourselves
to classical models. Even within classical complexity theory, we do not
touch upon several applications where linear algebra plays a critical
role, most notably techniques related to spectra of graphs and coding
theory. Our choice of topics is centered around the theme of deriving
complexity lower bounds from lower bounds on ranks of matrices or
dimensions of subspaces — often after the matrices or the subspaces
are altered in various ways. Such a theme occurs in several contexts in
complexity theory. The rough overall approach in this theme consists of
(i) distilling a rank robustness or a dimension criterion to solve a lower
bound problem in complexity, (ii) developing techniques to solve such
linear algebraic problems, and (iii) exploring the consequent implica-
tions to complexity lower bounds.

In the remaining sub-sections of this section, we give a brief intro-
duction and preview of the material to be presented in detail in the
later sections.

1.2 Matrix Rigidity

The most classical notion of rank robustness is matrix rigidity. The
rigidity of a matrix A for target rank r is the minimum Hamming
distance between A and a matrix of rank at most r. Valiant [98]
introduced this notion to define a criterion for proving superlinear size
lower bounds on linear circuits of logarithmic depth. Linear circuits are
algebraic circuits consisting only of gates that compute linear combi-
nations of their inputs. This is a natural model for computing linear
transformations. Given the ubiquitous role linear transformations play
in computing, understanding the inherent complexity of explicit linear
transformations is important. For example, a fascinating open ques-
tion is whether the Fourier transform requires a superlinear number of
arithmetic operations. Furthermore, no superlinear lower bounds are
known on the algebraic circuit complexity of any explicit function of
constant degree, even when the circuit depth is restricted to be loga-
rithmic. Thus, a superlinear lower bound on the size of a log-depth
linear circuit computing an explicit linear transformation would be
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1.3 Spectral Techniques 3

significant. Valiant showed that if the rigidity of an n × n matrix A

for target rank εn is at least n1+δ for positive constants ε and δ,
then a linear circuit of log-depth computing the linear transforma-
tion x 7→ Ax must have superlinear number of edges. Hence, proving
sufficiently strong lower bounds on the rigidity of explicit matrices
would yield important consequences in complexity theory. However,
the best known lower bound on the rigidity of an explicit matrix is
only Ω

(
n2

r log n
r

)
[31, 56, 93] for target rank r. This bound is known

for several explicit matrices, including the Fourier transform matrix of
a prime order. Using certain algebraic dimension arguments, rigidity
lower bounds of Ω(n2) (for target rank r = εn for a constant ε > 0) are
proved in [59] for the matrices whose entries are square roots of distinct
primes and for matrices whose entries are primitive roots of unity of
the first n2 prime orders. While these matrices are mathematically suc-
cinct enough to describe, they are not explicit enough since their entries
live in number fields of exponentially large dimensions. In Section 2,
we study the notion of rigidity and its application to lower bounds on
linear circuits. We will give several lower bound proofs on the rigidity
of various matrices and the implied circuit lower bounds. We will also
review two notions of a geometric flavor [70] that are similar to rigidity
and have applications to circuit lower bounds.

1.3 Spectral Techniques

Several rank robustness functions similar to rigidity have been defined
in the literature and applied to derive lower bounds in complexity the-
ory. In Section 3, we discuss several such variations. The simplest of
them considers the `2-norm of changes needed to reduce the rank of
a given matrix to a target rank (notions considered in Section 3 are
defined over R or C). This measure of rank robustness is effectively
related to the singular values of the matrix and hence lower bounds
are easily proved using spectral techniques [57]. Using spectral tech-
niques, we can also prove lower bounds on the rigidity (in the sense of
Valiant) of certain matrices. The most notable of these is an Hadamard
matrix [26, 42], for which a lower bound of Ω(n2/r) is known. Spectrum
of a matrix is also related to values of its sub-determinants (volumes).
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4 Introduction

Lower bounds on these measures imply lower bounds on linear circuits
(over C) with bounded coefficients, i.e., the coefficients in the linear
combinations computed by the gates in such a circuit are bounded by
a constant. Algebraic circuits over C with bounded coefficients is a
realistic restricted model of computation since real computers can only
use arithmetic operations with bounded precision in a given step. Sev-
eral lower bound results have been proved in the models of bounded
coefficients [22, 24, 57, 69, 75, 83]. Indeed, a classical result in [65]
gives an Ω(n log n) lower bound on the size of a linear circuit with
bounded coefficients (with no restriction on depth) computing the
Fourier transform. In a more recent development, Raz [83] proved a
remarkable lower bound of Ω(n2 log n) on n × n matrix multiplication
in the model of bilinear circuits with bounded coefficients. Raz defines
a geometric variant of `2-rigidity and uses spectral techniques to prove
lower bounds on the linear circuits obtained when one of the matrices
in the input to a bilinear circuit performing matrix multiplication is
fixed. Subsequently, Bürgisser and Lotz [22] proved lower bounds on
several bilinear transformations using spectral and volume techniques.
We will describe these results as well in Section 3.

1.4 Sign-Rank

In Section 4, we study a rank robustness notion called the sign-rank of
a matrix with ±1 entries. The sign-rank of a matrix A is the minimum
rank of a real matrix each of whose entries agrees in sign with the corre-
sponding entry of A. In other words, by making sign-preserving changes
to A (changes are allowed to all entries of A), its rank cannot be brought
down below its sign-rank. This notion was first introduced by Paturi
and Simon [71] in the context of unbounded error probabilistic com-
munication complexity. Proving nontrivial, i.e., superlogarithmic, lower
bounds on sign ranks of explicit matrices remained a long-standing open
question until Forster [28] achieved a breakthrough by proving that the
sign-rank of an n × n Hadamard matrix is at least

√
n. Interestingly,

Forster’s result and subsequent techniques for proving lower bounds
on sign-rank rely on spectral techniques. Forster also considers the
notion of margin complexity from learning theory and uses the same
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1.5 Communication Complexity 5

techniques to prove lower bounds on margin complexity. Recent results
in [53, 54, 55], give new insights into sign-rank, margin complexity, and
discrepancy of sign matrices by studying them all in the framework of
factorization norms of operators. This general approach reveals several
connections among the various complexity measures of sign matrices
and led to exciting new techniques to prove lower bounds on them. In
particular, they show that the discrepancy and the margin of a sign
matrix are within a constant factor of each other. Lower bounds on
sign-rank, margin complexity, and discrepancy are immensely useful in
proving lower bounds in a variety of models such as communication
complexity, circuit complexity, and learning theory. We will discuss
several such applications in Section 4. Very recently, Razborov and
Sherstov [88] proved a very interesting lower bound on the sign-rank
of a matrix constructed from a Boolean function in AC0. As an imme-
diate consequence, they show that Σcc

2 (the communication complexity
analog of the complexity class Σ2) is not contained in the communica-
tion complexity class UPP defined by [71]. This solves a long-standing
open question [5] in two-party communication complexity. The sign-
rank lower bound of [88] also has interesting consequences to lower
bounds on circuit complexity and learning theory. Their result combines
Forster’s main argument with a number of novel techniques including
the use of the pattern matrix method [90]. These techniques usher in
exciting new developments and are likely to find more applications.

1.5 Communication Complexity

Ever since Mehlhorn and Schmidt [63] proved the fundamental result
that the log-rank of a 0–1 matrix is a lower bound on the two-party
communication complexity of the associated Boolean function, the
relation between rank, and more generally rank robustness, and com-
munication complexity has been widely investigated and exploited. Yet,
the most basic question of whether log-rank and communication com-
plexity are polynomially related to each other is still open (this is also
known as the log-rank conjecture). In this conjecture, rank over R is
considered. We begin Section 5 by discussing what is known about this
conjecture. Nisan and Wigderson [68] exhibit a Boolean matrix with
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6 Introduction

communication complexity at least (log-rank)α, where α ≈ log3 6. They
also show that, to prove that the communication complexity of every
{0,1}-matrix is bounded above by some polynomial function of log-rank
of the matrix, it suffices to show that every {0,1}-matrix of rank r

contains a sufficiently large submatrix of rank at most, say r/4. On
the other hand, Nisan and Wigderson [68] succeed in showing that
low rank matrices have high discrepancy (under the uniform distribu-
tion) using spectral arguments. Proving upper bounds on discrepancy
is a common and very useful method to prove lower bounds on prob-
abilistic communication complexity. In the result mentioned earlier,
Linial et al. [53] show that discrepancy (under any distribution) is at
least Ω(r−1/2) for any rank-r {0,1}-matrix. The proof of this bound
uses connections among discrepancy, rank, and factorization norms
of matrices discussed in Section 4. Strengthening these connections,
Linial and Shraibman [54] prove general lower bounds on the bounded
error probabilistic and quantum communication complexity of a sign
matrix in terms of a factorization norm, called the γα2 -norm, of the
matrix. As we noted before, the log-sign-rank of a matrix is essentially
equal to the unbounded error communication complexity of the matrix.
We will also see that the communication complexity analog of PP is
characterized by margin complexity. Thus rank robustness measures
such as sign-rank and γ2-norm of sign matrices yield lower bounds,
sometimes even characterizations, of probabilistic communication com-
plexity. Babai et al. [5] defined two-party communication complexity
analogs of traditional complexity classes such as Σk, PH, PSPACE, etc.
While analogs of low complexity classes such as P, NP, Co–NP, and
BPP were all separated from each other in two-party communication
complexity, questions such as PH versus PSPACE, Σ2 vs. PH are still
open. In [84] and [57], it was shown that sufficiently strong lower bounds
on rigidity (over finite fields) and a variant of rigidity (over reals) with
bounds on changes would separate PH and PSPACE in communica-
tion complexity. As mentioned before, a recent result in [88] separates
Σcc

2 from UPP by proving a strong lower bound on the sign-rank of an
AC0-function. We conclude that lower bounds on rank and rank robust-
ness have significant consequences to various lower bound questions in
two-party communication complexity.
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1.6 Graph Complexity

Graph complexity was introduced by Pudlák et al. [79]. In this model,
a graph — typically bipartite — on a vertex set V is constructed by
starting from a family of basic graphs, e.g., complete bipartite graphs,
on V and using the elementary operations of union and intersection on
edge sets. The model of graph complexity is a common generalization
of Boolean circuit and two-party communication complexity. In par-
ticular, proving sufficiently strong lower bounds on the complexity of
explicit bipartite graphs would imply lower bounds on formula size com-
plexity, branching program size, and two-party communication com-
plexity of Boolean functions. Naturally, proving lower bounds in models
of graph complexity is even harder than proving lower bounds in cir-
cuit and communication complexity models. However, graph–theoretic
formulations of lower bound questions have the potential to lead to
new insights. In particular, such formulations involving linear algebraic
representations of graphs have led to new approaches to proving lower
bounds on branching program size, formula size, and separation ques-
tions in two-party communication complexity. In Section 6, we review
such approaches. A linear algebraic representation of a graph places
a vector, or more generally a subspace, at each vertex of the graph
such that the adjacency relations among vertices can be expressed,
or implied, in terms of orthogonality or intersection properties of the
associated subspaces. The lowest dimension in which such a represen-
tation can be realized for a given graph is the parameter of interest.
Such representations have been extensively studied, e.g., in the context
of the Shannon capacity of a graph [61], Colin de Verdière’s invari-
ant of graphs [45], etc. These and many similar combinatorial-linear
algebraic problems are not only of inherent mathematical interest, but
also have found numerous applications in algorithms and complexity. In
Section 6, we define the affine and projective representations of graphs
and pose questions about the lowest dimensions in which explicit graphs
can be realized by such representations. Unfortunately, only weak lower
bounds — Ω(logn) for n × n explicit bipartite graphs — are known
on these dimensions. Lower bounds exceeding Ω(log3n) on the affine
dimension of explicit graphs are needed to derive new lower bounds on
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8 Introduction

the formula size of explicit Boolean functions. Pudlák and Rödl [76]
showed that a lower bound on the projective dimension of a bipar-
tite graph implies a lower bound on the branching program size of
the associated Boolean function. In relating formula size of bipartite
graphs (thereby deriving lower bounds on the associated Boolean func-
tions) to affine dimension, Razborov [85] developed an elegant approach
based on rectangle covers of matrices closely related to communication
complexity. A rank robustness parameter (given a partially specified
matrix, what is the minimum rank of a full matrix that completes it)
plays a central role in establishing this connection. This same parameter
and the underlying techniques are also used in characterizing the size
of span programs in Section 7. Nontrivial lower bounds are known on
graph complexity when we restrict the model to be of depth-3 graph for-
mulas. In this case, building on polynomial approximations of the OR
function and Forster’s lower bound on the sign-rank of an Hadamard
matrix, we show [58] Ω̃(log3n) lower bounds on the depth-3 complexity
of explicit bipartite graphs.

1.7 Span Programs

Karchmer and Wigderson [41] introduced a linear algebraic model of
computation called span programs. A span program associates a sub-
space with each of the 2n literals of an n variable Boolean function.
The result of its computation on a given input x is 1 if and only a
fixed nonzero vector, e.g., the all 1’s vector, is in the span of the sub-
spaces “activated” by x. The sum of the dimensions of the subspaces is
the size of the span program. Proving lower bounds on span program
size of explicit Boolean functions is a challenging research direction
since such results imply lower bounds on Boolean formulas, symmet-
ric branching programs, algebraic proof systems, and secret sharing
schemes. The model of span programs realizes the fusion method for
proving circuit lower bounds [103]. Currently, superpolynomial lower
bounds are known only on monotone span programs. Monotone span
programs are more powerful than monotone Boolean circuits [6]. Hence,
proving lower bounds on monotone span programs is more challenging.
Early results in this area include a combinatorial criterion on certain

Full text available at: http://dx.doi.org/10.1561/0400000011
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bipartite graphs that led to Ω(n5/2) monotone size lower bounds [9].
Subsequently, Babai et al. [6] proved the first superpolynomial mono-
tone lower bound of nΩ(logn/ log logn) exploiting the criterion from [9]
but using Paley-type graphs. The most striking result to date on span
program size is by Gál [32] who proves a characterization of span pro-
gram size in terms of a rank robustness measure originally introduced
by Razborov [85] and referred to above in Section 1.6 and discussed
in Section 6. Specializing this characterization to the monotone situa-
tion and using previously known lower bounds on the rank robustness
measure of certain matrices derived from Paley-type bipartite graphs
[85], Gál proved the best known lower bound of nΩ(logn) on monotone
span programs. We discuss Gál’s characterization and her lower bound
in Section 7.
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