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Abstract

Ever since the fundamental work of Cook from 1971, satisfiability has
been recognized as a central problem in computational complexity. It
is widely believed to be intractable, and yet till recently even a linear-
time, logarithmic-space algorithm for satisfiability was not ruled out.
In 1997 Fortnow, building on earlier work by Kannan, ruled out such an
algorithm. Since then there has been a significant amount of progress
giving non-trivial lower bounds on the computational complexity of
satisfiability. In this article, we survey the known lower bounds for the
time and space complexity of satisfiability and closely related prob-
lems on deterministic, randomized, and quantum models with random
access. We discuss the state-of-the-art results and present the underly-
ing arguments in a unified framework.
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1

Introduction

Satisfiability is the problem of deciding whether a given Boolean for-
mula has at least one satisfying assignment. It is the first problem that
was shown to be NP-complete, and is possibly the most commonly
studied NP-complete problem, both for its theoretical properties and
its applications in practice. Complexity theorists widely believe that
satisfiability takes exponential time in the worst case and requires an
exponent linear in the number of variables of the formula. On the other
hand, we currently do not know how to rule out the existence of even
a linear-time algorithm on a random-access machine. Obviously, linear
time is needed since we have to look at the entire formula in the worst
case. Similarly, we conjecture that the space complexity of satisfiability
is linear but we have yet to establish a space lower bound better than
the trivial logarithmic one.

Till the late 1990s it was even conceivable that there could be an
algorithm that would take linear time and logarithmic space to decide
satisfiability! Fortnow [19], building on earlier techniques by Kannan
[31], developed an elegant argument to rule out such algorithms. Since
then a wide body of work [3, 17, 18, 20, 22, 37, 56, 39, 41, 58, 59, 61]
have strengthened and generalized the results to lead to a rich variety

1
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2 Introduction

of lower bounds when one considers a nontrivial combination of time
and space complexity. These results form the topic of this survey.

We now give some details about the evolution of the lower bounds
for satisfiability. Fortnow’s result is somewhat stronger than what we
stated above — it shows that satisfiability cannot have both a linear-
time algorithm and a (possibly different) logarithmic-space algorithm.
In fact, his argument works for time bounds that are slightly super-
linear and space bounds that are close to linear, and even applies to
co-nondeterministic algorithms.

Theorem 1.1 (Fortnow [19]). For every positive real ε, satisfiability
cannot be solved by both

(i) a (co-non)deterministic random-access machine that runs in
time n1+o(1) and

(ii) a (co-non)deterministic random-access machine that runs in
polynomial time and space n1−ε.

In terms of time–space lower bounds, Fortnow’s result implies that
there is no (co-non)deterministic algorithm solving satisfiability in time
n1+o(1) and space n1−ε. Lipton and Viglas [20, 37] considered deter-
ministic algorithms with smaller space bounds, namely polylogarith-
mic ones, and managed to establish the first time–space lower bound
where the running time is a polynomial of degree larger than one. Their
argument actually works for subpolynomial space bounds, i.e., for space
no(1). It shows that satisfiability does not have a deterministic algorithm
that runs in n

√
2−o(1) steps and uses subpolynomial space.1 Fortnow and

van Melkebeek [20, 22] captured and improved both earlier results in
one statement, pushing the exponent in the Lipton–Viglas time–space
lower bound from

√
2 ≈ 1.414 to the golden ratio φ ≈ 1.618. Williams

[59, 61] further improved the latter exponent to the current record of
2cos(π/7) ≈ 1.801, although his argument no longer captures Fortnow’s
original result for deterministic machines.

1 The exact meaning of this statement reads as follows: For every function f : N → N that is

o(1), there exists a function g : N → N that is o(1) such that no algorithm for satisfiability

can run in time n
√

2−g(n) and space nf(n).
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3

Theorem 1.2 (Williams [61]). Satisfiability cannot be solved by a
deterministic random-access machine that runs in time n2cos(π/7)−o(1)

and space no(1).

The following — somewhat loaded — statement represents the
state-of-the-art on lower bounds for satisfiability on deterministic
machines with random access.

Theorem 1.3 (Master Theorem for deterministic algorithms).
For all reals c and d such that (c − 1)d < 1 or cd(d − 1) − 2d + 1 < 0,
there exists a positive real e such that satisfiability cannot be solved
by both

(i) a co-nondeterministic random-access machine that runs in
time nc and

(ii) a deterministic random-access machine that runs in time nd

and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

Note that a machine of type (ii) with d < 1 trivially fails to decide
satisfiability as it cannot access the entire input. A machine of type
(i) with c < 1 can access the entire input but nevertheless cannot
decide satisfiability. This follows from a simple diagonalization argu-
ment which we will review in Chapter 3 because it forms an ingredient
in the proof of Theorem 1.3. Note also that a machine of type (ii) is
a special case of a machine of type (i) for d ≤ c. Thus, the interesting
values of c and d in Theorem 1.3 satisfy d ≥ c ≥ 1.

Theorem 1.3 applies when c and d satisfy a disjunction of two con-
ditions. For values of d > 2 the condition (c − 1)d < 1 is less stringent
than cd(d − 1) − 2d + 1 < 0; for d < 2 the situation is the other way
around. See Figure 1.1 for a plot of the bounds involved in Theorem 1.3.
We can use the first condition to rule out larger and larger values of d for
values of c that get closer and closer to 1 from above. Thus, Fortnow’s

Full text available at: http://dx.doi.org/10.1561/0400000012



4 Introduction

Fig. 1.1 Bounds in the Master Theorem for deterministic algorithms: f(d) solves

(c − 1)d = 1 for c, g(d) solves cd(d − 1) − 2d + 1 = 0 for c, and h(d) is the identity.

result for deterministic machines is a corollary to Theorem 1.3. The
second condition does not hold for large values of d for any c ≥ 1, but
yields better time lower bounds for subpolynomial-space algorithms.
We can obtain time–space lower bounds from Theorem 1.3 by setting
c = d; in that case we can omit the part from the statement involving
the machine of type (i) as it is implied by the existence of a machine of
type (ii). The first condition thus yields a time lower bound of nd−o(1)

for subpolynomial space, where d > 1 satisfies d(d − 1) = 1, i.e., for d

equal to the golden ratio φ ≈ 1.618. The second condition leads to a
time lower bound of nd−o(1) for subpolynomial space, where d > 1 sat-
isfies d2(d − 1) − 2d + 1 = 0; the solution to the latter equation equals
the above mysterious constant of 2cos(π/7) ≈ 1.801, which is larger
than φ. Thus, the Master Theorem captures Theorem 1.2 as well.

The successive improvements of recent years beg the question how
far we can hope to push the time–space lower bounds for satisfiability
in the near future. On the end of the spectrum with small space bounds,
there is a natural bound of 2 on the exponent d for which the current
techniques allow us to prove a time lower bound of nd for algorithms
solving satisfiability in logarithmic space. We will discuss this bound
in Section 4.1 and its reachability in Chapter 9. On the end of the
spectrum with small time bounds, the quest is for the largest exponent e

Full text available at: http://dx.doi.org/10.1561/0400000012
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such that we can establish a space lower bound of ne for any algorithm
solving satisfiability in linear time. The techniques presented in this
survey critically rely on sublinear space bounds so we cannot hope
to reach e = 1 or more along those lines. Note that sublinear-space
algorithms for satisfiability are unable to store an assignment to the
Boolean formula.

All the known lower bounds for satisfiability on deterministic
random-access machines use strategies similar to one pioneered by
Kannan in his early investigations of the relationship between non-
deterministic and deterministic linear time [31]. The arguments really
give lower bounds for nondeterministic linear time; they translate to
lower bounds for satisfiability by virtue of the very efficient quasi-linear
reductions of nondeterministic computations to satisfiability. The same
type of reductions exist to many other NP-complete problems — in fact,
to the best of my knowledge, they exist for all of the standard NP-
complete problems. Thus, the lower bounds for satisfiability as stated
in Theorem 1.3 actually hold for all these problems. In Section 4.2,
we discuss how the underlying arguments can be adapted and applied
to other problems that are closely related to satisfiability, such as the
cousins of satisfiability in higher levels of the polynomial-time hierar-
chy and the problem of counting the number of satisfying assignments
to a given Boolean formula modulo a fixed number.

Lower bounds for satisfiability on deterministic machines relate
to the P-versus-NP problem. Similarly, in the context of the NP-
versus-coNP problem, one can establish lower bounds for satisfiabil-
ity on co-nondeterministic machines, or equivalently, for tautologies
on nondeterministic machines. The statement of Theorem 1.3 par-
tially realizes such lower bounds because the machine of type (i) is
co-nondeterministic; all that remains is to make the machine of type
(ii) co-nondeterministic, as well. In fact, Fortnow proved his result for
co-nondeterministic machines of type (ii). Similar to the determinis-
tic case, Fortnow and van Melkebeek [20, 22] improved the time lower
bound in this version of Fortnow’s result from slightly super-linear to a
polynomial of degree larger than 1. In terms of time–space lower bounds
on the large-time end of the spectrum, their result yields a time lower
bound of n

√
2−o(1) for subpolynomial space nondeterministic machines

Full text available at: http://dx.doi.org/10.1561/0400000012



6 Introduction

that decide tautologies. Diehl et al. [18] improved the exponent in the
latter result from

√
2 ≈ 1.414 to 3

√
4 ≈ 1.587 but their proof does not

yield nontrivial results at the end of the spectrum with space bounds
close to linear.

Theorem 1.4 (Diehl–van Melkebeek–Williams [18]). Tautolo-
gies cannot be solved by a nondeterministic random-access machine
that runs in time n

3√4−o(1) and space no(1).

The following counterpart to Theorem 1.3 captures all the known
lower bounds for tautologies on nondeterministic machines with ran-
dom access.

Theorem 1.5 (Master Theorem for nondeterministic algo-
rithms). For all reals c and d such that (c2 − 1)d < c or c2d < 4, there
exists a positive real e such that tautologies cannot be solved by both

(i) a nondeterministic random-access machine that runs in time
nc and

(ii) a nondeterministic random-access machine that runs in time
nd and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

Similar to the deterministic setting, the interesting values in
Theorem 1.5 satisfy d ≥ c ≥ 1. The hypothesis is the disjunction of two
conditions. See Figure 1.2 for a plot of the bounds involved. The first
condition is binding for larger values of d and allows us to derive Fort-
now’s result in full form. The second condition is binding for smaller
values of d, which includes the range in which the hypothesis holds for
c = d. The first condition yields a time lower bound of nd−o(1) for sub-
polynomial space, where d > 1 satisfies d(d2 − 1) = d, i.e., for d =

√
2.

The second condition leads to such a lower bound for d > 1 satisfying
d3 = 4, yielding Theorem 1.4.

Full text available at: http://dx.doi.org/10.1561/0400000012
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Fig. 1.2 Bounds in the Master Theorem for nondeterministic algorithms: f(d) solves

(c2 − 1)d = c for c, g(d) solves c2d = 4 for c, and h(d) is the identity.

Theorems 1.3 and 1.5 can be viewed as the first two in a sequence
where the machines of type (ii) can have more and more alternations.
We will not pursue this sequence any further in full generality but the
case of small values for c plays a role in the lower bounds for satisfia-
bility on “somewhat-nonuniform” models, which we discuss next.

Complexity theorists do not think that nonuniformity helps in
deciding satisfiability. In particular, we conjecture that satisfiability
requires circuits of linear-exponential size. At the same time, we can-
not rule out that satisfiability has linear-size circuits.

Time–space lower bounds for deterministic machines straightfor-
wardly translate into size-width lower bounds for sufficiently uni-
form circuits, and into depth-logarithm-of-the-size lower bounds
for sufficiently uniform branching programs. Lower bounds for
(co)nondeterministic machines similarly imply lower bounds for very
uniform (co)nondeterministic circuits. Logarithmic-time uniformity
trivially suffices for all of the above results to carry over without any
changes in the parameters. We currently do not know of any interesting
lower bounds for fully nonuniform general circuits. However, modulo
some deterioration of the parameters, we can relax or even eliminate
the uniformity conditions in some parts of Theorems 1.3 and 1.5. This

Full text available at: http://dx.doi.org/10.1561/0400000012



8 Introduction

leads to lower bounds with relatively weak uniformity conditions in a
few models of interest.

Fortnow showed how to apply his technique to logspace-uniform
NC1-circuits [19]. Allender et al. [3] extended this result to logspace-
uniform SAC1-circuits and their negations. van Melkebeek [39] derived
all these circuit results as instantiations of a general theorem, and
showed directly that in each case NTS(nO(1),n1−ε)-uniformity for a
positive constant ε suffices, where NTS(t,s) refers to nondeterministic
computations that run in time t and space s. We can further relax
the uniformity condition from nondeterministic to alternating compu-
tations of the same type with a constant number of alternations, i.e.,
to ΣkTS(nO(1),n1−ε)-uniformity for arbitrary constant k. See Section
2.2 for the precise definitions of the complexity classes and uniformity
conditions involved.

We discuss “somewhat-nonuniform” versions of Theorems 1.3 and
1.5 in Chapter 6. Here we suffice with the corresponding statement for
alternating machines when c ranges over values close to 1, since this
setting allows us to capture all the above results.

Theorem 1.6 (Somewhat-nonuniform algorithms). For every
nonnegative integer k, every real d, and every positive real ε, there
exists a real c > 1 such that satisfiability cannot both

(i) have ΣkTS(nd,n1−ε)-uniform co-nondeterministic circuits of
size nc and

(ii) be in ΣkTS(nd,n1−ε).

For certain types of circuits, part (i) implies a uniform algorithm
for satisfiability that is efficient enough so that we do not need to state
(ii). In particular, we obtain the following corollary to the proof of
Theorem 1.6.

Corollary 1.1. For every nonnegative integer k and positive real ε,
satisfiability cannot be solved by ΣkTS(nO(1),n1−ε)-uniform families

Full text available at: http://dx.doi.org/10.1561/0400000012
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of any of the following types: circuits of size n1+o(1) and width n1−ε,
SAC1-circuits of size n1+o(1), or negations of such circuits.

Recall that SAC1-circuits are circuits of logarithmic depth with
bounded fan-in ANDs, unbounded fan-in ORs, and negations only on
the inputs. NC1-circuits of size n1+o(1) are a special type of SAC1-
circuits of size n1+o(1). Negations of SAC1-circuits are equivalent to
circuits of logarithmic depth with bounded fan-in ORs, unbounded fan-
in ANDs, and negations only on the inputs.

There is another direction in which we can extend the lower bounds
to a nonuniform setting. Tourlakis [56] observed that the arguments
of Fortnow and of Lipton–Viglas carry through when the machines
involved receive subpolynomial advice. The same holds for almost all
the results stated in this survey. We refer to Section 3.1 and the end of
Chapter 6 for more details.

Other models of computation that capture important capabili-
ties of current or future computing devices include randomized and
quantum machines. To date we know of no nontrivial lower bounds
for satisfiability on such models with two-sided error but we do
have interesting results for problems that are somewhat harder than
satisfiability.

In the setting of randomized computations with two-sided error,
the simplest problem for which we can prove nontrivial lower bounds
is Σ2SAT, the language consisting of all valid Σ2-formulas. Σ2SAT
constitutes the equivalent of satisfiability in the second level of the
polynomial-time hierarchy.

At first glance, it might seem that results from space-bounded
derandomization let us derive time–space lower bounds for random-
ized algorithms as immediate corollaries to time–space lower bounds
for deterministic algorithms. In particular, assuming we have a ran-
domized algorithm that solves satisfiability in logarithmic space and
time nd, Nisan’s deterministic simulation [46] yields a deterministic
algorithm for satisfiability that runs in polynomial time and polylog-
arithmic space. However, even for d = 1, the degree of the polynomial
is far too large for this simulation to yield a contradiction with known
time–space lower bounds for deterministic algorithms.

Full text available at: http://dx.doi.org/10.1561/0400000012



10 Introduction

At the technical level, the arguments for satisfiability in the deter-
ministic setting do not carry over to the setting of randomized algo-
rithms with two-sided error. The difficulty is related to the fact that
we know efficient simulations of randomized computations with two-
sided error in the second level of the polynomial-time hierarchy but
not in the first level. Roughly speaking, this is why we have results for
Σ2SAT but not for satisfiability itself. Diehl and van Melkebeek [17]
proved the first lower bound for Σ2SAT in the randomized setting and
still hold the record, namely an almost-quadratic time lower bound for
subpolynomial space.

Theorem 1.7 (Diehl–van Melkebeek [17]). For every real d < 2
there exists a positive real e such that Σ2SAT cannot be solved by a
randomized random-access machine with two-sided error that runs in
time nd and space ne. Moreover, e approaches 1/2 from below as d

approaches 1 from above.

Note a few other differences with the deterministic setting. The
format of Theorem 1.7 is weaker than that of Theorem 1.3, which entails
machines of types (i) and (ii). In the randomized setting, we do not
know how to take advantage of the existence of an algorithm for Σ2SAT
that runs in time nc for small c but unrestricted space to derive better
time–space lower bounds for Σ2SAT. The parameters of Theorem 1.8
are also weaker than those of the corresponding result for Σ2SAT in
the deterministic setting, where the bound on d is larger than 2 and e

converges to 1 when d goes to 1. See Section 4.2 for the exact bounds
for Σ2SAT in the deterministic setting.

Theorem 1.7 also applies to Π2SAT, the complement of Σ2SAT, as
randomized computations with two-sided error can be trivially com-
plemented. For the equivalents of satisfiability, tautologies, Σ2SAT,
Π2SAT, etc. in higher levels of the polynomial-time hierarchy, stronger
results can be shown, including results in the model where the random-
ized machines have two-way sequential access to the random-bit tape.
Theorem 1.7 refers to the more natural but weaker coin flip model
of space-bounded randomized computation, which can be viewed as

Full text available at: http://dx.doi.org/10.1561/0400000012
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equipping a deterministic machine with one-way access to a random
bit tape. We refer to Section 7.2 for more details.

In the setting of one-sided error (with errors only allowed on the
membership side), we do have lower bounds for the first level of the
polynomial-time hierarchy, namely for tautologies. Such results trivially
follow from Theorem 1.5 since randomized machines with one-sided
error are special cases of nondeterministic machines. For example, we
can conclude from Theorem 1.5 that tautologies cannot have both a
randomized algorithm with one-sided error that runs in time n1+o(1)

and a randomized algorithm with one-sided error that runs in poly-
nomial time and subpolynomial space. Diehl and van Melkebeek [17]
observed that the (then) known lower bound proofs for satisfiability
on deterministic machines can be extended to lower bound proofs for
tautologies on randomized machines with one-sided error without any
loss in parameters. Their argument holds for all proofs to date, includ-
ing Theorem 1.3. In particular, we know that tautologies cannot be
solved by a randomized algorithm with one-sided error that runs in
time n2cos(π/7)−o(1) and subpolynomial space.

In the quantum setting, the simplest problem for which we cur-
rently know nontrivial lower bounds is MajMajSAT. MajSAT, short
for majority-satisfiability, denotes the problem of deciding whether the
majority of the assignments to a given Boolean formula satisfy the
formula. Similarly, an instance of MajMajSAT asks whether a given
Boolean formula depending on two sets of variables y and z has the
property that for at least half of the assignments to y, at least half of
the assignments to z satisfy the formula.

Allender et al. [3] showed a lower bound for MajMajSAT on ran-
domized machines with unbounded error. The parameters are similar
to those in Fortnow’s time–space lower bound for satisfiability. In par-
ticular, they prove that MajMajSAT does not have a randomized algo-
rithm with unbounded error that runs in time n1+o(1) and space n1−ε.
van Melkebeek and Watson [41], building on earlier work by Adleman
et al. [1], showed how to simulate quantum computations with bounded
error on randomized machines with unbounded error in a time- and
space-efficient way. As a result, they can translate the lower bound of
Allender et al. to the quantum setting.

Full text available at: http://dx.doi.org/10.1561/0400000012



12 Introduction

Theorem 1.8 (van Melkebeek–Watson [41], using Allender
et al. [3]). For every real d and positive real ε there exists a real
c > 1 such that at least one of the following fails:

(i) MajMajSAT has a quantum algorithm with two-sided error
that runs in time nc and

(ii) MajSAT has a quantum algorithm with two-sided error that
runs in time nd and space n1−ε.

Corollary 1.2. For every positive real ε there exists a real d > 1 such
that MajMajSAT does not have a quantum algorithm with two-sided
error that runs in time nd and space n1−ε.

There is a — very simple — reduction from satisfiability to MajSAT
but presumably not the other way around since MajSAT is hard for
the entire polynomial-time hierarchy [54]. The same statement holds for
MajMajSAT and Σ2SAT instead of MajSAT and satisfiability, respec-
tively. The reason why we have quantum lower bounds for MajMajSAT
but not for ΣkSAT for any integer k bears some similarity to why we
have randomized lower bounds for Σ2SAT but not for satisfiability.
MajSAT tightly captures randomized computations with unbounded
error in the same was as ΣkSAT captures Σk-computations. We can
efficiently simulate randomized computations with two-sided error on
Σ2-machines but we do not know how to do so on nondeterministic
machines. Similarly, we can efficiently simulate quantum computations
with bounded error on randomized machines with unbounded error but
we do not know how to do that on Σk-machines. This analogy actually
suggests that we ought to get quantum lower bounds for MajSAT rather
than only for MajMajSAT. We discuss that prospect in Chapter 9.

1.1 Scope

This paper surveys the known robust lower bounds for the time
and space complexity of satisfiability and closely related problems

Full text available at: http://dx.doi.org/10.1561/0400000012



1.1 Scope 13

on general-purpose models of computation. The bounds depend on
the fundamental capabilities of the model (deterministic, randomized,
quantum, etc.) but are robust, up to polylogarithmic factors, with
respect to the details of the model specification. For each of the basic
models, we focus on the simplest problem for which we can establish
nontrivial lower bounds. Except for the randomized and quantum mod-
els, that problem is satisfiability (or tautologies).

We do not cover lower bounds on restricted models of computation.
The latter includes general-purpose models without random access,
such as one-tape Turing machines with sequential access, off-line Turing
machines (which have random access to the input and sequential access
to a single work tape), and multi-tape Turing machines with sequen-
tial access via one or multiple tape heads. In those models, techniques
from communication complexity can be used to derive lower bounds
for simple problems like deciding palindromes or computing generalized
inner products. Time–space lower bounds for such problems immedi-
ately imply time–space lower bounds for satisfiability by virtue of the
very efficient reductions to satisfiability. However, in contrast to the
results we cover, these arguments do not rely on the inherent difficulty
of satisfiability. They rather exploit an artifact of the model of com-
putation, e.g., that a one-tape Turing machine with sequential access
deciding palindromes has to waste a lot of time in moving its tape head
between both ends of the tape. Note that on random-access machines
palindromes and generalized inner products can be computed simulta-
neously in quasi-linear time and logarithmic space. We point out that
some of the techniques in this survey lead to improved results on some
restricted models of computation, too, but we do not discuss them.

Except in Corollary 1.1, we also do not consider restricted circuit
models. In several of those models lower bounds have been established
for problems computable in polynomial time. Such results imply lower
bounds for satisfiability on the same model provided the problems
reduce to satisfiability in a simple way. As we will see in Section 2.3,
problems in nondeterministic quasi-linear time are precisely those that
have this property in a strong sense — they translate to satisfiability
in quasi-linear time and do so in an oblivious way. All of the clas-
sical lower bounds on restricted circuit models involve problems in
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nondeterministic quasi-linear time and therefore also hold for satisfi-
ability up to polylogarithmic factors. These results include the expo-
nential lower bounds for the size of constant-depth circuits (for parity
and its cousins), the quadratic lower bound for branching program size
(for a version of the element distinctness problem, whose complement
lies in nondeterministic quasi-linear time), and the cubic lower bound
for formula size (for Andreev’s addressing function). See [9] for a survey
that is still up to date in terms of the strengths of the bounds except
for the formula size lower bound [25]. We point out that some of the
more recent work in circuit complexity does not seem to have implica-
tions for satisfiability. In particular, the non-uniform time–space lower
bounds by Ajtai [2] and their improvements by Beame et al. [7] do not
yield time–space lower bounds for satisfiability. These authors consider
a problem in P based on a binary quadratic form, and showed that any
branching program for it that uses only n1−ε space for some positive
constant ε takes time

Ω(n ·
√

logn/ log logn). (1.1)

An extremely efficient reduction of the problem they considered to
satisfiability is needed in order to obtain nontrivial lower bounds
for satisfiability, since the bound (1.1) is only slightly super-linear.
The best known reductions (see Section 2.3.1) do not suffice. More-
over, their problem does not appear to be in nondeterministic
quasi-linear time.

1.2 Organization

Chapter 2 contains preliminaries. Although the details of the model of
computation do not matter, we describe a specific model for concrete-
ness. We also specify our notation for complexity classes and exhibit
complete problems which capture those classes very tightly such that
time–space lower bounds for those problems and for linear time on
the corresponding models are equivalent up to polylogarithmic factors.
Whereas in this section we have stated all results in terms of the com-
plete problems, in the rest of the paper we will think in terms of linear
time on the corresponding models.
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1.2 Organization 15

We present the known results in a unified way by distilling out what
they have in common. Chapter 3 introduces the proof techniques and
the tools involved in proving many of the lower bounds. It turns out
that all the proofs have a very similar high-level structure, which can
be characterized as indirect diagonalization. We describe how it works,
what the ingredients are, and illustrate how they can be combined.

We then develop the results for the various models within this unify-
ing framework: deterministic algorithms in Chapter 4, nondeterministic
algorithms in Chapter 5, somewhat-nonuniform algorithms in Chap-
ter 6, randomized algorithms in Chapter 7, and quantum algorithms in
Chapter 8. We mainly focus on space bounds of the form n1−ε and on
subpolynomial space bounds as they allow us to present the underlying
ideas without getting bogged down in notation and messy calculations.
Chapters 4 through 8 are largely independent of each other, although
some familiarity with the beginning of Chapter 4 can help to better
appreciate Chapters 5, 6, and 7.

Finally, in Chapter 9 we propose some directions for further
research.
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