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Abstract

Property testing algorithms are “ultra”-efficient algorithms that decide
whether a given object (e.g., a graph) has a certain property (e.g.,
bipartiteness), or is significantly different from any object that has the
property. To this end property testing algorithms are given the ability
to perform (local) queries to the input, though the decision they need to
make usually concerns properties with a global nature. In the last two
decades, property testing algorithms have been designed for many types
of objects and properties, amongst them, graph properties, algebraic
properties, geometric properties, and more.

In this monograph we survey results in property testing, where our
emphasis is on common analysis and algorithmic techniques. Among
the techniques surveyed are the following:

• The self-correcting approach, which was mainly applied in
the study of property testing of algebraic properties;

* This work was supported by the Israel Science Foundation (grant number 246/08).
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• The enforce-and-test approach, which was applied quite
extensively in the analysis of algorithms for testing graph
properties (in the dense-graphs model), as well as in other
contexts;
• Szemerédi’s Regularity Lemma, which plays a very important

role in the analysis of algorithms for testing graph properties
(in the dense-graphs model);
• The approach of Testing by implicit learning , which implies

efficient testability of membership in many functions classes;
and
• Algorithmic techniques for testing properties of sparse

graphs, which include local search and random walks.
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1

Introduction

Property testing algorithms are algorithms that perform a certain type
of approximate decision. Namely, standard (exact) decision algorithms
are required to determine whether a given input is a YES instance (has
a particular property) or is a NO instance (does not have the property).
In contrast, property testing algorithms are required to determine (with
high success probability) whether the input has the property (in which
case the algorithm should accept) or is far from having the property (in
which case the algorithm should reject). In saying that the input is far
from having the property we mean that the input should be modified
in a non-negligible manner so that it obtains the property.

To be precise, the algorithm is given a distance parameter,
denoted ε, and should reject inputs that are ε-far from having the prop-
erty (according to a prespecified distance measure). If the input neither
has the property nor is far from having the property, then the algorithm
can either accept or reject. In other words, if the algorithm accepts, then
we know (with high confidence) that the input is close to having the
property, and if it rejects, then we know (with high confidence) that
the input does not have the property.

1
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2 Introduction

Since a property testing algorithm should perform only an approx-
imate decision and not an exact one, we may expect it to be (much)
more efficient than any exact decision algorithm for the same prop-
erty. In particular, as opposed to exact decision algorithms, which are
considered efficient if they run in time that is polynomial in the size
of the input (and the best we can hope for is linear-time algorithms),
property testing algorithms may run in time that is sublinear in the
size of the input (and hence we view them as being “ultra”-efficient).
In such a case they cannot even read the entire input. Instead, they are
given query access to the input, where the form of the queries depends
on the type of input considered.

Since property testing algorithms access only a small part of the
input, they are naturally allowed to be randomized and to have a small
probability of error (failure). In some cases they have a non-zero error
probability only on inputs that are far from having the property (and
never reject inputs that have the property). In such a case, when they
reject an input, they always provide (small) evidence that the input
does not have the property.

By the foregoing discussion, when studying a specific property test-
ing problem, one should define a distance measure over inputs (which
determines what inputs should be rejected), and one should define the
queries that the algorithm is allowed. For example, when dealing with
functions and their properties (e.g., linearity), the distance measure is
usually defined to be the Hamming distance normalized by the size
of the domain, and queries are simply queries for values of the func-
tion at selected elements of the domain. In other cases, such as graph
properties, there are several different natural models for testing (see
Section 2.2 for details).

1.1 Settings in Which Property Testing is Beneficial

In addition to the intellectual interest in relating global properties to
local patterns, property testing algorithms are beneficial in numerous
situations. A number of such settings are discussed next.

1. Applications that deal with huge inputs. This is the case when
dealing with very large databases in applications related to
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1.1 Settings in Which Property Testing is Beneficial 3

computational biology, astronomy, study of the Internet, and
more. In such cases, reading the entire input is simply infea-
sible. Hence, some form of approximate decision, based on
accessing only a small part of the input, is crucial.

2. Applications in which the inputs are not huge, but the prop-
erty in question is NP-hard. Here too some form of approxi-
mation is necessary, and property testing algorithms provide
one such form. In fact, while “classical” approximation algo-
rithms are required to run in time polynomial in the size
of the input, here we require even more of the algorithm: It
should provide an approximately good answer, but is allowed
only sublinear time. For example, there is a property test-
ing algorithm that can be used to obtain a (1 ± ε)-factor
approximation of the size of the maximum cut in a dense
graph, whose running time depends only on ε, and does not
depend at all on the size of the graph. (In Section 1.3 we
further discuss the relation between the notion of approx-
imation provided by property testing and more “classical”
notions.)

3. Applications in which the inputs are not huge and the corre-
sponding decision problem has a polynomial-time algorithm,
but we are interested in ultra-efficient algorithms, and do not
mind sacrificing some accuracy. For example, we may not
mind accepting a graph that is not perfectly bipartite, but
is close to being bipartite (that is, it has a two-way par-
tition with relatively few “violating edges” within the two
parts).

4. Scenarios similar to the one described in the previous item
except that the final decision must be exact (though a small
probability of failure is allowed). In such a case we can first
run the testing algorithm, and only if it accepts do we run the
exact decision procedure. Thus, we save time whenever the
input is far from having the property, and this is useful when
typical (but not all) inputs are far from having the property.
A related scenario, discussed in Section 1.4, is the application
of property testing as a preliminary step to learning.

Full text available at: http://dx.doi.org/10.1561/0400000029



4 Introduction

Thus, employing a property testing algorithm yields a certain loss in
terms of accuracy, but our gain, in terms of efficiency, is in many cases
dramatic. Furthermore, in many cases the loss in accuracy is inevitable
either because the input is huge or the problem is hard.

1.2 A Brief Overview

Property testing first appeared (implicitly) in the work of Blum
et al. [35], who designed the well-known Linearity testing algorithm.
It was first explicitly defined in the work of Rubinfeld and Sudan [123],
who considered testing whether a function is a low-degree polynomial.
The focus of these works was on testing algebraic properties of func-
tions, and they, together with other works, had an important role in
the design of Probabilistically Checkable Proofs (PCP) systems (cf.
[19, 20, 21, 22, 57, 66, 67, 123]).

The study of property testing in a more general context was initiated
by Goldreich et al. [72]. They gave several general results, among them
results concerning the relation between testing and learning, and then
focused on testing properties of graphs (in what we refer to as the dense-
graphs model). Following this work, property testing has been applied
to many types of inputs and properties.1 In particular, the study of
algebraic properties of functions continued to play an important role,
partly because of the relation to the area of error correcting codes (for
a short explanation concerning this relation, see the beginning of Sec-
tion 3). The study of graph properties was significantly extended since
the work of Goldriech et al. [72]. This includes a large number of works
in the dense-graphs model, as well as the introduction of other models
(more suitable for graphs that are sparse or that are neither dense nor
sparse), and the design of algorithms that work within these models.
There has also been progress in the last few years on the design of test-
ing algorithms for properties of functions that can be viewed as logical
rather than algebraic (such as functions that have a small DNF repre-
sentation). The study of such properties is of interest from the point of
view of learning theory (see Section 1.4). Other families of properties to

1 In what follows in this subsection we do not give references to relevant works. These refer-
ences can be found in the body of this monograph when each specific result is mentioned.
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1.2 A Brief Overview 5

which the framework of property testing has been applied include Geo-
metric properties and “clusterability” of ensembles of points, properties
defined by restricted languages (e.g., regular languages), properties of
distributions, and more.

In some cases the algorithms designed are extremely efficient: The
number of operations they perform does not depend at all on the size
of the input, but only on the distance parameter ε. In other cases the
dependence is some sublinear function of the size of the input (e.g.,
polylog(n) or

√
n, for inputs of size n), where in many of the latter cases

there are matching (or almost matching) lower bounds that justify this
dependence on the size of the input.

While each algorithm has features that are specific to the prop-
erty it tests, there are several common algorithmic and analysis tech-
niques. Perhaps, the two better-known analysis techniques are the
self-correcting approach, which is applied in the analysis of many
testing algorithms of algebraic properties, and Szemerédi’s Regularity
Lemma [124], which is central to the analysis of testing graph properties
in the dense-graphs model. Other techniques include the enforce-and-
test approach (that is also applied in the analysis of testing algorithms
in the dense-graphs model, as well as in testing certain metric properties
and clustering properties), and the approach of testing by implicit learn-
ing whose application gives a variety of results (among them testing of
small DNF formula). Indeed, as the title of this monograph suggests, we
organize the results presented according to such common techniques.

In addition to the extension of the scope of property testing, there
have been several extensions and generalizations of the basic notion of
property testing. One extension (which was already introduced in [72]
but for which positive results appeared several years later) is allowing
the underlying distribution (with respect to which the distance mea-
sure is defined) to be different from the uniform distribution (and in
particular to be unknown — this is referred to as distribution-free test-
ing). Another natural extension is to tolerant testing . In tolerant testing
the algorithm is given two distance parameters: ε1 and ε2, and it must
distinguish between the case that the object is ε1-close to having the
property (rather than perfectly having the property as in the original
definition of property testing) and the case that the object is ε2-far from
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6 Introduction

having the property. A related notion is that of distance approximation
where the task is to obtain an estimate of the distance to having the
property.

1.3 Property Testing and “Classical” Approximation

Consider for example the problem of deciding whether a given graph
G = (V,E) has a clique of size at least k, for k = ρn where ρ is a fixed
constant and n = |V |. The “classical” notion of an approximation algo-
rithm for this problem requires the algorithm to distinguish between
the case that the max-clique in the graph has size at least ρn and, say,
the case in which the max-clique has size at most ρn/2.

On the other hand, when we talk of testing the “ρ-Clique” property,
the task is to distinguish between the case that the graph has a clique
of size ρn and the case in which it is ε-far from the any n-vertex graph
that has a clique of size ρn. Since this property is relevant only to
dense graphs (where |E| = Θ(n2)), our notion of ε-far in this context is
that more than εn2 edges should be added to the graph so that it has
a clique of size ρn. This is equivalent to the dual approximation task
(cf., [89, 90]) of distinguishing between the case that an n-vertex graph
has a clique of size ρn and the case that in any subset of ρn vertices,
the number of missing edges (between pairs of vertices in the subset)
is more than εn2.

The above two tasks are vastly different: Whereas the former task
is NP-hard, for ρ < 1/4 [30, 88], the latter task can be solved in
exp(O(1/ε2))-time, for any ρ,ε > 0 [72]. We believe that there is no
absolute sense in which one of these approximation tasks is better than
the other: Each of these tasks is relevant in some applications and irrele-
vant in others. We also mention that in some cases the two notions coin-
cide. For example, consider the problem of deciding whether a graph
has a cut of size at least k for k = ρn2 (where ρ is a fixed constant).
Then a testing algorithm for this problem will distinguish (with high
probability) between the case that the max-cut in the graph is of size
at least ρn2 and the case in which the max-cut is of size less than
(ρ − ε)n2 (which for ε = γρ gives a “classical” (1 − γ)-factor approxi-
mation to the size of the max-cut).

Full text available at: http://dx.doi.org/10.1561/0400000029



1.4 Property Testing and Learning 7

Finally, we note that while property testing algorithms are decision
algorithms, in many cases they can be transformed into optimization
algorithms that actually construct approximate solutions. To illustrate
this, consider the two aforementioned properties, which we refer to
as ρ-Clique and ρ-Cut. For the first property, suppose the graph has
a clique of size at least ρn. Then, building on the testing algorithm,
it is possible to obtain (with high probability (w.h.p.)), in time that
grows only linearly in n, a subset of ρn vertices that is close to being a
clique. (That is, the number of missing edges between pairs of vertices
in the subset is at most εn2.) Similarly, for the second property, if
the graph has a cut of size at least ρn2, then it is possible to obtain
(w.h.p.), in time linear in n, a cut of size at least (ρ − ε)n2. In both
cases the dependence on 1/ε in the running time is exponential (whereas
a polynomial dependence cannot be obtained unless P = NP).

For these problems and other partition problems (e.g.,
k-colorability), the testing algorithm (when it accepts the input)
actually defines an implicit partition. That is, after the execution
of the testing algorithm, it is possible to determine for each vertex
(separately) to which part it belongs in the approximately good
partition, in time poly(1/ε).

1.4 Property Testing and Learning

Following standard frameworks of learning theory, and in particular
the PAC learning model of Valiant [125] and its variants, when we say
learning we mean outputting a good estimate of a function to which
we have query access (or from which we can obtain random labeled
examples). Thus, another view of property testing is as a relaxation of
learning (with queries and under the uniform distribution).2 Namely,
instead of asking that the algorithm output a good estimate of the
(target) function (which is possibly assumed to belong to a particular
class of functions F), we only require that the algorithm decide whether
the function belongs to F or is far from any function in F . Given

2 Testing under non-uniform distributions and testing with random examples (only) have

been considered (and we discuss the former in this monograph), but most of the work in
property testing deals with testing under the uniform distributions and with queries.
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8 Introduction

this view, a natural motivation for property testing is to serve as a
preliminary step before learning: We can first run the testing algorithm
in order to decide whether to use a particular class of functions as our
hypothesis class.

In this context too we are interested in testing algorithms that are
more efficient than the corresponding learning algorithms. As observed
in [72], property testing is no harder than proper learning (where the
learning algorithm is required to output a hypothesis from the same
class of functions as the target function). Namely, if we have a proper
learning algorithm for a class of functions F , then we can use it as a
subroutine to test the property of membership in F .

We also note that property testing is related to hypothesis testing
(see e.g., [101, Chap. 8]). For a short discussion of this relation, see the
introduction of [121].

1.5 Organization of this Survey

In this monograph we have chosen to present results in property testing
with an emphasis on analysis techniques and algorithmic techniques.
Specifically:

• In Section 3 we discuss results whose analysis follows the
Self-correcting approach (e.g., testing linearity), and mention
several implications of this approach.
• In Section 4 we discuss results whose analysis follows the

enforce-and-test approach (e.g., testing bipartiteness in the
dense-graphs model). In many cases this approach implies
that the testing algorithm can be transformed into an effi-
cient approximate optimization algorithm (as discussed in
Section 1.3).
• The approach of Testing by Implicit Learning , whose appli-

cation leads to efficient testing of many function classes (e.g.,
DNF formula with a bounded number of terms), is described
in Section 5.
• The Regularity Lemma of Szemerédi [124], which is a very

important tool in the analysis of testing algorithms in the
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1.6 Related Surveys 9

dense-graphs model, is presented in Section 6, together with
its application to testing triangle-freeness (in this model).
• In Section 7 we discuss algorithms for testing properties of

sparse graphs that are based on local search.
• The use of random walks by testing algorithms for properties

of sparse graphs is considered in Section 8.
• In Section 9 we present two examples of lower bound proofs

for property testing algorithms, so as to give a flavor of the
type of arguments used in such proofs.
• A small selection of other families of results, which did not fit

naturally in the previous sections (e.g., testing monotonicity
of functions), is discussed in Section 10.
• We conclude the monograph in Section 11 with a discussion

of several extensions and generalizations of property testing
(e.g., tolerant testing).

1.6 Related Surveys

There are several surveys on property testing ([58, 69, 120], and the
more recent [121]), which have certain overlaps with the current sur-
vey. In particular, the recent survey [121] of the current author presents
property testing from a learning theory perspective. Thus, the empha-
sis in that survey is mainly on testing properties of functions (that is,
testing for membership in various function classes). Though the per-
spective taken in the current monograph is different, there are naturally
several results that appear in both articles, possibly with different levels
of detail.

For the broader context of sublinear-time approximation algorithms
see [104, 47]. For a survey on Streaming (where the constraint is sub-
linear space rather than time), see [107].
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