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Abstract

A large class of problems in symbolic computation can be expressed as
the task of computing some polynomials; and arithmetic circuits form
the most standard model for studying the complexity of such computa-
tions. This algebraic model of computation attracted a large amount of
research in the last five decades, partially due to its simplicity and ele-
gance. Being a more structured model than Boolean circuits, one could
hope that the fundamental problems of theoretical computer science,
such as separating P from NP, will be easier to solve for arithmetic
circuits. However, in spite of the appearing simplicity and the vast
amount of mathematical tools available, no major breakthrough has
been seen. In fact, all the fundamental questions are still open for this
model as well. Nevertheless, there has been a lot of progress in the area
and beautiful results have been found, some in the last few years. As
examples we mention the connection between polynomial identity test-
ing and lower bounds of Kabanets and Impagliazzo, the lower bounds
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of Raz for multilinear formulas, and two new approaches for proving
lower bounds: Geometric Complexity Theory and Elusive Functions.

The goal of this monograph is to survey the field of arithmetic circuit
complexity, focusing mainly on what we find to be the most interesting
and accessible research directions. We aim to cover the main results and
techniques, with an emphasis on works from the last two decades. In
particular, we discuss the recent lower bounds for multilinear circuits
and formulas, the advances in the question of deterministically checking
polynomial identities, and the results regarding reconstruction of arith-
metic circuits. We do, however, also cover part of the classical works
on arithmetic circuits. In order to keep this monograph at a reasonable
length, we do not give full proofs of most theorems, but rather try to
convey the main ideas behind each proof and demonstrate it, where
possible, by proving some special cases.
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1

Introduction

Arithmetic circuits are the most natural and standard model for com-
puting polynomials. In this model the inputs are variables x1, . . . ,xn,
and the computation is performed using the arithmetic operations +,×
and may involve constants from a field F. The output of an arithmetic
circuit is thus a polynomial (or a set of polynomials) in the input vari-
ables. The complexity measures associated with such circuits are size
and depth which capture the number of operations and the maximal
distance between an input and an output, respectively.

The most fundamental problems in algebraic complexity are related
to the complexity of arithmetic circuits: providing efficient algorithms
for algebraic problems (e.g., matrix multiplication), proving lower
bounds on the size and depth of arithmetic circuits, giving efficient
deterministic algorithms for polynomial identity testing, and finding
efficient reconstruction algorithms for polynomials computed by arith-
metic circuits (the latter problem is sometimes referred to as learning
arithmetic circuits or interpolating arithmetic circuits).

In the past 50 years, we have seen a flurry of beautiful and efficient
algorithms for algebraic problems. For example, Cooley and Tukey’s
algorithm for the Discrete Fourier Transform [38], Strassen’s algorithm

1

Full text available at: http://dx.doi.org/10.1561/0400000039



2 Introduction

and those following it for Matrix Multiplication [39, 131] (see [30] for
a detailed survey of algorithms for matrix multiplication), algorithms
for factoring polynomials (see [72, 146, 147] for surveys of results in
this area), and Csanky’s algorithm for parallel computation of deter-
minant as well as all other linear algebra problems [40]. In this survey
we shall not give details of these algorithms, but rather focus on com-
plexity questions related to arithmetic circuits, mainly on the problem
of proving lower bounds for arithmetic circuits and the question of
deterministically deciding polynomial identities.

Arithmetic circuits are a highly structured model of computation
compared to Boolean circuits. For example, when studying arithmetic
circuits we are interested in syntactic computation of polynomials,
whereas in the study of Boolean circuits we are interested in the seman-
tics of the computation. In other words, in the Boolean case we are not
interested in any specific polynomial representation of the function but
rather we just want to compute some representation of it, while in the
arithmetic world we focus on a specific representation of the function.
As such, one may hope that the P vs. NP question will be easier to solve
in this model. However, in spite of many efforts, we are still far from
understanding this fundamental problem. In fact, our understanding
of most problems is far from being complete. In particular, we do not
have strong lower bounds for arithmetic circuits; We do not know how
to deterministically and efficiently determine whether a given arith-
metic circuit computes the zero polynomial; and we do not know how
to efficiently reconstruct a circuit using only queries to the polyno-
mial it computes. Although seemingly different, these three problems
are strongly related to each other, and it is usually the case that a
new understanding of one problem sheds light on the other problems
as well.

In recent years there has been some progress on these important
problems for several interesting classes of arithmetic circuits. In this
monograph we aim to describe this recent progress. In particular, we
shall cover the new lower bounds on the size of multilinear circuits, the
new identity testing algorithms for several restricted classes of circuits
and their connection to circuit lower bounds, and the recent reconstruc-
tion algorithms for depth-3 arithmetic circuits. We also present many
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1.1 Basic Definitions 3

open questions that we view as natural “next step” questions, given
our current state of knowledge.

1.1 Basic Definitions

Before any further discussion, we give the basic definitions related to
arithmetic circuits.

Definition 1.1(Arithmetic circuits). An arithmetic circuit Φ over
the field F and the set of variables X (usually, X = {x1, . . . ,xn}) is a
directed acyclic graph as follows. The vertices of Φ are called gates.
Every gate in Φ of in-degree 0 is labeled by either a variable from X

or a field element from F. Every other gate in Φ is labeled by either ×
or + and has in-degree 2. An arithmetic circuit is called a formula if it
is a directed tree whose edges are directed from the leaves to the root.

Every gate of in-degree 0 is called an input gate (even when the gate
is labeled by a field element). Every gate of out-degree 0 is called an
output gate. Every gate labeled by × is called a product gate and every
gate labeled by + is called a sum gate. The size of Φ, denoted |Φ|, is the
number of edges in Φ. The depth of a gate v in Φ, denoted depth (v),
is the length of the longest directed path reaching v. The depth of Φ
is the maximal depth of a gate in Φ. When speaking of bounded depth
circuits — circuits whose depth is bounded by a constant independent
of |X| — we do not have a restriction on the fan-in. For two gates u
and v in Φ, if (u,v) is an edge in Φ, then u is called a child of v, and v
is called a parent of u.

An arithmetic circuit computes a polynomial in a natural way: An
input gate labeled by α ∈ F ∪ X computes the polynomial α. A product
gate computes the product of the polynomials computed by its children.
A sum gate computes the sum of the polynomials computed by its
children.

For a gate v in Φ, define Φv to be the sub-circuit of Φ rooted at v.
Denote by Xv the set of variables that occur in the circuit Φv. We
usually denote by fv the polynomial in F[Xv] computed by the gate v
in Φ. We sometimes abuse notation and denote by Φv the polynomial
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4 Introduction

computed by v as well. Define the degree of a gate v, denoted deg(v),
to be the total degree of the polynomial fv (e.g., the total degree of
x2

1x2 + x1 + 1 is three, whereas the individual degrees are at most two).
The degree of Φ is the maximal degree of a gate in Φ.

It is clear that every polynomial f ∈ F[X] can be computed by an
arithmetic circuit and by an arithmetic formula. The main question is
how many gates are needed for the computation.

The definition above shows an evident difference between arithmetic
circuits and Boolean circuits. While Boolean circuits can perform oper-
ations on the “bit representation” of the input field elements, that are
not necessarily the arithmetic operations, arithmetic circuits cannot.
Nevertheless, most algorithms for algebraic problems fit naturally into
the framework of arithmetic circuits.

One last thing to note is that we always regard an arithmetic circuit
as computing a polynomial in F[X] and not a function from F|X| to F.
In general, every polynomial defines a unique function, but a function
can usually be expressed as a polynomial in many ways. For example,
the polynomial x2 − x is not the zero polynomial as it has nonzero
coefficients. However, over the field with two elements, F2, it computes
the zero function. This distinction is especially important when study-
ing the identity testing problem. This is another difference between the
Boolean world and the arithmetic world.

Remark 1.1. For the rest of the survey, unless otherwise stated, the
results hold for arbitrary fields. In most cases, for simplicity of discus-
sion and notation, we do not explicitly state the dependence on the field.
In general, the question of which field we are working over is important
and can make a difference, both from a theoretical point of view and
from a practical point of view. The main examples of fields that the
reader should bear in mind are prime fields and the real numbers.

1.2 Arithmetic Complexity

Arithmetic complexity classes were first defined in the seminal works
of Valiant [138, 141]. Valiant gave analogous definitions for the classes
P and NP in the algebraic world, and showed complete problems for
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1.2 Arithmetic Complexity 5

these classes. We now give a very brief overview of these classes and
state the main known results. As this material was covered in many
places, we do not give any proofs here. For a more detailed treatment
and proofs, we refer the interested reader to Refs. [29, 30, 61].

We begin by defining the class VP, the algebraic analog of the class
P. Originally, Valiant called this class the class of p-bounded polyno-
mials (computed by “polynomially bounded” circuits), but nowadays
the notation VP is used (where V is an acronym for Valiant).

Definition 1.2. A family of polynomials {fn} over F is p-bounded if
there exists some polynomial t : N→ N such that for every n, both the
number of variables in fn and the degree of fn are at most t(n), and
there is an arithmetic circuit of size at most t(n) computing fn. The
class VPF consists of all p-bounded families over F.

The polynomial fn(x) = x2n , for example, can be computed by size
O(n) circuits, but it is not in VP as its degree is not polynomial. One
motivation for this degree restriction comes from computation over,
say, the rational numbers: if the degree is too high then we cannot
efficiently represent the value of the polynomial on a given input by a
“standard” Boolean circuit. Also note that in the definition we do not
require the circuit computing fn to have a polynomial degree, but, as
we shall later see, this property holds without loss of generality (see
Theorem 2.2 below).

An interesting family in VP is the family of determinants,

DETn(X) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xi,σ(i),

where X = (xi,j) is an n × n matrix, Sn is the set of permutations of
n elements and sgn(σ) is the signature of the permutation σ. It is a
nice exercise to find a polynomial size arithmetic circuit for DETn that
does not use divisions.

Remark 1.2. For the rest of the survey we sometimes say polyno-
mial and mean a family of polynomials, e.g., when we talk of the
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6 Introduction

determinant polynomial we actually talk about the family of deter-
minant polynomials.

We now define VNP, the algebraic analog of the class NP.

Definition 1.3. A family of polynomials {fn} over F is p-definable
if there exist two polynomially bounded functions t,k : N→ N and a
family {gn} in VPF such that for every n,

fn(x1, . . . ,xk(n)) =
∑

w∈{0,1}t(n)

gt(n)(x1, . . . ,xk(n),w1, . . . ,wt(n)).

The class VNPF consists of all p-definable families over F.

Roughly speaking, VNP is the class of polynomials f so that given a
monomial, one can efficiently compute the coefficient of this monomial
in f (this does not follow immediately from the definition, for more
details see, e.g., Refs. [61, 141]). To better understand the connection to
NP, one can think of the variables w = (w1, . . . ,wt(n)) as the “witness,”
and so summing over all witnesses is the arithmetic analog of searching
for a witness in NP. The existential quantifier in the definition of NP

is translated to the algebraic operation of addition. In some sense, this
makes VNP a version of #P as well. The canonical example for a family
in VNP is the family of permanents of n × n matrices

PERMn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i). (1.1)

One way to see that permanent is in VNP is by Ryser’s formula that
also gives the smallest known circuit computing permanent (which is
also a depth-3 circuit).

Fact 1.1 ([114]). For every n ∈ N, PERMn(X) =
∑

T⊆[n](−1)n−|T |∏n
i=1

∑
j∈T xi,j .

It follows by definition that VP ⊆ VNP. Valiant’s hypothesis says
that VP is a strict subclass of VNP.
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1.2 Arithmetic Complexity 7

Valiant’s hypothesis I: VP 6= VNP.

As arithmetic circuits are more structured than Boolean circuits,
one could hope that proving Valiant’s hypothesis should be easier than
its Boolean counterpart. A very weak version of this statement was
proved in Ref. [61], where it was shown that in a non-associative world,
where variables are not assumed to satisfy the identity (xy)z = x(yz),
Valiant’s hypothesis I holds. This non-associative statement is an
evidence for the obvious: the more structured the world is, the easier
it is to prove lower bounds. Specifically, in a non-associative world
algorithms cannot exploit “symmetries” that follow from associativity.
Indeed, in such a world it is more difficult to design algorithms and
lower bounds are easier to prove.

Besides defining the classes VP and VNP, Valiant also gave complete
problems for these classes. He described a reduction between families
of polynomials and gave complete families with respect to it.

Definition 1.4. A polynomial f(x1, . . . ,xn) over F is called a projec-
tion of a polynomial g(y1, . . . ,ym) over F if there exists an assignment
ρ ∈ ({x1, . . . ,xn} ∪ F)m such that f(x1, . . . ,xn) ≡ g(ρ1, . . . ,ρm). In other
words, f can be derived from g by a simple substitution. This definition
can be extended to projections between families of polynomials. The
family {fn} is a p-projection of the family {gn} if there exists a poly-
nomially bounded t : N→ N such that for every n, fn is a projection of
gt(n).

Both VP and VNP are closed under projections, e.g., if f is in VP

then any projection of f is also in VP. Valiant showed that permanent
is complete for the class VNP.

Theorem 1.1 ([138]). For any field F such that char(F) 6= 2, the
family {PERMn} is VNP-complete. Namely, any family in VNP is a
p-projection of it.

Valiant’s hypothesis I is thus equivalent to proving a super-
polynomial lower bound on the size of circuits computing the perma-
nent. We note that a stronger version of Theorem 1.1 was proved in

Full text available at: http://dx.doi.org/10.1561/0400000039



8 Introduction

Ref. [61], where it was shown that permanent is VNP-complete even in
a very weak computational world where the variables are not assumed
to be commutative nor associative.

Valiant also showed that determinant is VP-complete with respect
to quasi-polynomial projections.

Theorem 1.2 ([138]). The family {DETn} is VP-complete with
respect to quasi-polynomial projections. That is, for any family {fn}
in VP there exists a function t : N→ N satisfying1 t(n) = nO(logn) such
that fn is a projection of DETt(n). In fact, if we change the defini-
tion of VP to VQP by replacing polynomial by quasi-polynomial (i.e.,
2polylog(n)), then determinant is VQP-complete.

This theorem follows immediately from the next two theorems that
show that arithmetic circuits are “shallow,” and that determinant can
“simulate” small formulas.

Theorem 1.3 ([143]). Let f be a degree r polynomial computed by
a size s circuit. Then f can be computed by a circuit of size poly(r,s)
and depth O(logr(logr + logs)).

Theorem 1.3 was proved in a seminal work of Valiant et al. [143].
It is commonly rephrased as VP = VNC2, where VNCk denotes polyno-
mial size and polynomial degree arithmetic circuits of depth O(logkn).
Clearly, VNC1 ⊆ VNC2 ⊆ . . . ⊆ VP, and Theorem 1.3 shows that in fact
the chain halts after two steps. Since determinant is in VP, Theorem 1.3
implies that determinant has a formula of quasi-polynomial size (more
generally, every polynomial in VNC2 has a formula of quasi-polynomial
size).

Theorem 1.4([138]). For any polynomial f in F[X] that can be com-
puted by a formula of size s over F, there is a matrix A of dimensions
(s + 1) × (s + 1) whose entries are in X ∪ F such that DET(A) = f .

1 Unless stated otherwise, logarithms are in base two.
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1.3 Arithmetic Circuit Classes 9

As determinant is complete for VQP, an algebraic analog of the P vs.
NP question is the question of “embedding” permanent in determinant.

Valiant’s hypothesis II: VNP 6⊂ VQP.

This hypothesis is also known as Valiant’s extended hypothesis.
Stated differently, the hypothesis is that the permanent does not belong
to VQP. Thus, in order to prove Valiant’s extended hypothesis it suf-
fices to prove that one cannot represent PERMn as the determinant of
a matrix of dimension quasi-polynomial in n. Currently, the best lower
bounds on the dimension of such a matrix are given by the following
theorem of [31, 92].

Theorem 1.5 ([31, 92]). Let F be a field of characteristic different
than two and let X = (xi,j)i,j∈[n] be a matrix of variables. Then, any
matrix A whose entries are linear functions in {xi,j}i,j∈[n] over F such
that DET(A) = PERMn(X) must be of dimension at least n2/2.

Here is a rough sketch of the idea behind Mignon and Ressayre’s
proof of Theorem 1.5. Compute the rank of the Hessian matrix, i.e., the
matrix of second partial derivatives, of both PERMn(X) and DET(A).
This rank for PERMn(X) is at least (roughly) n2, whereas for DET(A)
this rank is of order D, where D is the dimension of A.

Valiant’s extended hypothesis gives a way for reformulating a ques-
tion about circuits as a purely algebraic question: the VQP vs. VNP

problem is equivalent to the problem of embedding the permanent
inside the determinant. One advantage of this formulation is that the
combinatorial structure of circuits does not appear in it.

Open Problem 1. Improve the lower bound on the dimension of a
matrix A with entries that are linear functions in {xi,j}i,j∈[n] such that
DET(A) = PERMn(X).

1.3 Arithmetic Circuit Classes

In addition to the general model of arithmetic circuits, introduced
in Section 1.1, we will be considering several other, more restricted,
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10 Introduction

classes of arithmetic circuits. In particular, we will be interested
in bounded depth arithmetic circuits, and even more specifically in
depth-3 and depth-4 circuits, in multilinear circuits, noncommutative
circuits and more. We shall now define some of these classes and
discuss their importance.

The model of bounded depth circuits was already defined in
Section 1.1. Two important subclasses of bounded depth circuits that
we shall focus on in this monograph are depth-3 circuits, also known
as ΣΠΣ circuits and depth-4 circuits known as ΣΠΣΠ circuits. A ΣΠΣ
circuit is a depth-3 circuit with an addition gate at the top, a middle
layer of multiplication gates, and then a level of addition gates at the
bottom. A ΣΠΣ circuit with s multiplication gates compute polyno-
mials of the form

∑s
i=1

∏di
j=1 `i,j(x1, . . . ,xn), where the `i,j ’s are linear

functions. Although a very restricted model this is the first class for
which we do not have any strong lower bounds, over fields of charac-
teristic zero (see Section 3.5). Moreover, in Section 3.8.2 we discuss a
result of Raz [105] showing that strong lower bounds for (a restricted
subclass of) ΣΠΣ circuits imply super-polynomial lower bound on the
formula complexity of permanent.

Similar to depth-3 circuits, a ΣΠΣΠ circuit is composed of
four alternating layers of addition and multiplication gates. Thus,
a size s ΣΠΣΠ circuit computes a polynomial of the form∑s

i=1

∏di
j=1 fi,j(x1, . . . ,xn), where the fi,j ’s are polynomials of degree

at most s having at most s monomials (i.e., they are s-sparse polyno-
mials). The importance of ΣΠΣΠ circuits stems for two main reasons.
Depth-4 is the first depth for which we do not have strong lower bounds
for any field of characteristic different than 2 (over F2 lower bounds
follow from the results of Razborov and Smolensky [112, 130]). The
best known lower bounds, due to Raz [103], are smaller than n2 (see
Section 3.5). Another important reason is that, with respect to proving
exponential lower bounds, ΣΠΣΠ circuits are as interesting as general
arithmetic circuits. Namely, an n-variate degree n polynomial can be
computed by a sub-exponential arithmetic circuit if and only if it can
be computed by a sub-exponential ΣΠΣΠ circuit. This result, due to
Agrawal and Vinay [5], is discussed in Section 2.4. Furthermore, deran-
domizing the polynomial identity testing problem for such circuits is
almost equivalent to derandomizing it for general arithmetic circuits.
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1.4 Road Map 11

Thus, in order to understand the main open problems in arithmetic
circuit complexity, one can focus on depth-4 circuits, instead of general
arithmetic circuits, without loss of generality.

Another important model that we discuss in this monograph is mul-
tilinear circuits. A polynomial f ∈ F[X] is called multilinear if the indi-
vidual degree of each variable in f is at most one. An arithmetic cir-
cuit Φ is called multilinear if every gate in Φ computes a multilinear
polynomial. An arithmetic circuit Φ is called syntactically multilinear
if for every product gate v = v1 × v2 in Φ, the two sets Xv1 and Xv2 are
disjoint (recall that Xu is the set of variables that occur in the circuit
Φu). Syntactically multilinear circuits are clearly multilinear but the
other direction is not true in general.

While being a very restricted model of computation, multilinear
circuits and formulas form a very interesting class as for many multi-
linear polynomials, e.g., permanent and iterated matrix multiplication,
the currently best arithmetic circuits computing them are multilinear.
Indeed, computing a multilinear polynomial with a circuit that is not
multilinear requires some “non-intuitive” cancellations of monomials.
We do not however, that such “clever” cancellations occur, e.g., in small
arithmetic circuits computing the determinant. In particular, we do not
know today of polynomial size multilinear circuits computing the deter-
minant. Being a natural model for computing multilinear polynomials,
multilinear circuits are an interesting and an important class of circuits
and we discuss the best results known for them.

In addition to bounded depth circuits and multilinear circuits we
shall also study monotone circuits, noncommutative circuits, circuits
with bounded coefficients and read-once formulas. We shall give the
relevant definitions when we first discuss each of these classes.

1.4 Road Map

Here is a short overview of the content of this survey.

1.4.1 Structural Results

Due to its algebraic nature, the model of arithmetic circuits is more
structured than the model of Boolean circuits. As such, we are able
to prove results in the arithmetic world that in the Boolean case are
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still open. In Section 2 we discuss some of the works on the structure
of arithmetic circuits. These structural properties of arithmetic circuits
are also used as starting points to proving lower bounds. We now discuss
three examples of such structural results and their connection to lower
bounds.

A striking result due to [143] is that in the arithmetic world VP =
VNC2 (see Theorem 1.3). This is in contrast to the Boolean world, where
it is conjectured that P 6= NC. Subsequently, Agrawal and Vinay [5]
proved a depth-4 version of this statement, showing that in order to
prove exponential lower bounds on the size of general arithmetic circuits
one just needs to prove exponential lower bounds on the size of depth-4
circuits.

A surprising result due to Baur and Strassen [16], that strongly relies
on the underlying algebraic structure, states that computing a polyno-
mial f(x1, . . . ,xn) is essentially equivalent to simultaneously comput-
ing f and all of its n partial derivatives ∂f

∂x1
, . . . , ∂f∂xn . Thus, proving a

lower bound on the size of a circuit computing a set of polynomials is
as difficult as proving a lower bound for a single polynomial. Alterna-
tively, perhaps more optimistically, proving lower bounds should not
be so difficult, as instead of proving a lower bound on the computation
of a single polynomial we can try and prove a lower bound for circuits
computing many polynomials. This principle actually turned out to be
useful in at least two cases: showing that divisions are not necessary in
computing polynomials by general arithmetic circuits [133] and proving
lower bounds for multilinear circuits [107].

An interesting fact is that arithmetic circuits computing homoge-
neous polynomials can be transformed to be homogeneous, with only a
small overhead. Recently, Raz [105] proved that for formulas, this trans-
formation can be done at a smaller cost than what was known before.
In particular, Raz showed that if one can prove (very) strong lower
bounds on tensor rank then one obtains super-polynomial lower bounds
on formula-size. Since tensor rank is no other than the size of the small-
est set-multilinear depth-3 circuit computing the “tensor,” Raz’s result
says that a very strong lower bound for the (very restricted) model
of set-multilinear depth-3 circuits implies a lower bound for general
formulas.
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1.4.2 Lower Bounds for Arithmetic Circuits

One of the biggest challenges of algebraic complexity is proving lower
bounds on circuit-size. Unlike the case of Boolean circuits, super-
linear lower bounds on the size of general arithmetic circuits are
known [16, 133]. Contrarily, no strong lower bounds are known for
bounded depth arithmetic circuits. In particular, no super-quadratic
lower bound is known even for circuits of depth 4, when char(F) 6= 2.

In Section 3 we survey the known lower bounds and discuss some
proofs in more detail. In particular, we explain Strassen’s degree bound
that gives a super-linear lower bound for general circuits [133] and
Kalorkoti’s quadratic lower bound on the size of general formulas [70].
We discuss the lower bounds for the size of bounded depth circuits [122,
103]. We then consider in detail depth-3 circuits, which is the “first”
model for which proving lower bounds seems to be a difficult task.

In this section we also explain the following two-step “technique”
for proving lower bound for arithmetic circuits. The first step is based
on the fact that polynomials computed by small arithmetic circuits
can be presented as a sum of a small number of products of “simpler”
polynomials (this is one of the structural theorems that we prove). The
second step is using the so-called partial derivative method to bound the
complexity of such polynomials. By applying these two steps, we derive
lower bounds for various classes of arithmetic circuits, such as monotone
arithmetic circuits [68, 109, 121, 135] and multilinear formulas [102,
104, 108].

Finally, we present several approaches for proving lower bounds
on circuit-size, and discuss the possibility of generalizing the Natural
Proofs approach of Razborov and Rudich [111] to the algebraic setting.

1.4.3 Polynomial Identity Testing

Polynomial identity testing (PIT) is the problem of deciding whether
a given arithmetic circuit computes the identically zero polynomial.
Many randomized algorithms are known for this problem yet its deter-
ministic complexity is still far from understood. Recently, it was dis-
covered that this problem is strongly related to the question of proving
lower bounds [69].
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In Section 4 we first survey and sketch the proofs of randomized
algorithms for PIT. We then discuss the relation between lower bounds
and derandomization of PIT algorithms. One of the surprising results
in this context is that a deterministic (black-box) polynomial-time
algorithms for PIT of depth-4 arithmetic circuits implies a (quasi-
polynomial time) derandomization of the problem for general arith-
metic circuits.

We then present several deterministic algorithms for restricted
classes of arithmetic circuits. We do not cover all known algorithms
but rather present what we view as the most notable techniques in the
area. Specifically, we give one of the many algorithms for sparse poly-
nomials [86]. We show a polynomial-time algorithm for PIT of noncom-
mutative formulas that is based on the partial derivative method [106].
We then describe two algorithms for depth-3 circuits with a bounded
top fan-in. The first is the local ring algorithm of [81] that works in the
non-black-box model (which we refer to as the white-box model) and
the second is the algorithm of [43, 76] that is based on the rank method
(with the strengthening of [80, 117, 118]). After that, we present two
results for depth-4 circuits. The first is by [116] that gave a polynomial
time PIT for the so-called diagonal circuits, based on the ideas of [106].
The second result is by [75] that gave a PIT algorithm for depth-4 mul-
tilinear circuits with bounded top fan-in, based on ideas from [76] and
[127]. Finally, we present the algorithm of [126, 127] for identity testing
of sums of read-once formulas that strengthen some of the results for
depth-3 circuits and that influenced [75].

1.4.4 Reconstruction of Arithmetic Circuits

In Section 5 we consider the problem of reconstructing arithmetic cir-
cuits, which is the algebraic analog of the learning problem of Boolean
circuits. This problem is clearly related to PIT, as an identity testing
algorithm for a circuit class gives a way of distinguishing between dif-
ferent circuits from that class and can thus be helpful in designing a
learning algorithm.

We discuss the similarities and differences between the reconstruc-
tion problem and analogous problems in the Boolean world. We then
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give some hardness results on the reconstruction problem. After that
we discuss several known reconstruction algorithms. First, we explain
how to reconstruct sparse polynomials. Then we discuss the multiplicity
automata technique of [17] and its extension for arithmetic circuits [85].
Basically, this technique can be thought of as learning via partial deriva-
tives. At the end, we move to depth-3 circuits with a bounded top fan-in
and sketch the algorithms of [77, 125] that are based on ideas from the
identity testing algorithm of [43, 77].

1.5 Additional Reading

We decided to focus this survey on recent results in arithmetic circuit
complexity, mainly on lower bounds and identity testing algorithms,
and so many beautiful results in algebraic complexity, both new and
old, were left out. We now mention some of the topics that are not
discussed in this monograph and give references to relevant papers.
Most of these topics are discussed in the comprehensive book [30] and
the (unfortunately, still relevant) survey of Strassen [134].

One important area that we do not cover is algorithms for algebraic
problems, an area that has been yielding many beautiful works. A par-
tial list of algorithms include Cooley and Tukey’s FFT algorithm [38],
fast matrix multiplication [39] (and the new algorithmic approach of
[36, 37]), efficient polynomial factorization (see the surveys [72, 146]
and the recent [84]) and the deterministic primality testing algorithm
of [4].

Another topic that we do not really discuss is that of linear and
bilinear complexity. Here, one is interested in the complexity of com-
puting linear transformations and bilinear forms using linear or bilinear
circuits, respectively. The complexity of computing univariate polyno-
mials is another topic that we decided not to include. The interested
reader is referred to the aforementioned book [30] and survey [134].

Several other models of algebraic computations also received a lot
of attention. Among them we mention the Blum–Shub–Smale model of
computing over the reals and algebraic decision trees, more information
can be found in [9, 21, 30].
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[61] P. Hrubeš, A. Wigderson, and A. Yehudayoff, “Relationless completeness
and separations,” in Proceedings of the 25th Conference on Computational
Complexity, pp. 280–290, 2010.
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