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Abstract

The communication complexity of a function f(x,y) measures the num-
ber of bits that two players, one who knows x and the other who
knows y, must exchange to determine the value f(x,y). Communication
complexity is a fundamental measure of complexity of functions. Lower
bounds on this measure lead to lower bounds on many other measures
of computational complexity. This monograph surveys lower bounds in
the field of communication complexity. Our focus is on lower bounds
that work by first representing the communication complexity measure
in Euclidean space. That is to say, the first step in these lower bound
techniques is to find a geometric complexity measure, such as rank or
trace norm, that serves as a lower bound to the underlying communica-
tion complexity measure. Lower bounds on this geometric complexity
measure are then found using algebraic and geometric tools.
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1

Introduction

Communication complexity studies how much communication is needed
in order to evaluate a function whose output depends on information
distributed amongst two or more parties. Yao [101] introduced an ele-
gant mathematical framework for the study of communication com-
plexity, applicable in numerous situations, from an e-mail conversation
between two people, to processors communicating on a chip. Indeed,
the applicability of communication complexity to other areas, includ-
ing circuit and formula complexity, VLSI design, proof complexity, and
streaming algorithms, is one reason why it has attracted so much study.
See the excellent book of Kushilevitz and Nisan [56] for more details
on these applications and communication complexity in general.

Another reason why communication complexity is a popular model
for study is simply that it is an interesting mathematical model. More-
over, it has that rare combination in complexity theory of a model
for which we can actually hope to show tight lower bounds, yet these
bounds often require the development of nontrivial techniques and
sometimes are only obtained after several years of sustained effort.

In the basic setting of communication complexity, two players Alice
and Bob wish to compute a function f :X × Y → {T,F} where X,Y
are arbitrary finite sets. Alice holds an input x ∈ X, Bob y ∈ Y , and

1
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2 Introduction

they wish to evaluate f(x,y) while minimizing the number of bits com-
municated. We let Alice and Bob have arbitrary computational power
as we are really interested in how much information must be exchanged
in order to compute the function, not issues of running time or space
complexity.

Formally, a communication protocol is a binary tree where each
internal node v is labeled either by a function av:X → {0,1} or a func-
tion bv:Y → {0,1}. Intuitively each node corresponds to a turn of either
Alice or Bob to speak. The function av indicates, for every possible
input x, how Alice will speak if the communication arrives at that node,
and similarly for bv. The leaves are labeled by an element from {T,F}.
On input x,y the computation traces a path through the tree as indi-
cated by the functions av, bv. The computation proceeds to the left child
of a node v if av(x) = 0 and the right child if av(x) = 1, and similarly
when the node is labeled by bv. The protocol correctly computes f if for
every input x,y, the computation arrives at a leaf ` labeled by f(x,y).

The cost of a protocol is the height of the protocol tree. The deter-
ministic communication complexity of a function f , denoted D(f), is
the minimum cost of a protocol correctly computing f . Notice that,
as we have defined things, the transcript of the communication defines
the output, thus both parties “know” the answer at the end of the pro-
tocol. One could alternatively define a correct protocol where only one
party needs to know the answer at the end, but this would only make
a difference of one bit in the communication complexity.

If we let n = min{dlog |X|e ,dlog |Y |e} then clearly D(f) ≤ n + 1 as
either Alice or Bob can simply send their entire input to the other, who
can then compute the function and send the answer back. We refer to
this as the trivial protocol. Thus the communication complexity of f
will be a natural number between 1 and n + 1, and our goal is to
determine this number. This can be done by showing a lower bound on
how much communication is needed, and giving a protocol of matching
complexity.

The main focus of this survey is on showing lower bounds on the
communication complexity of explicit functions. We treat different
variants of communication complexity, including randomized, quan-
tum, and multiparty models. Many tools have been developed for this
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purpose from a diverse set of fields including linear algebra, Fourier
analysis, and information theory. As is often the case in complexity
theory, demonstrating a lower bound is usually the more difficult task.

One of the most important lower bound techniques in commu-
nication complexity is based on matrix rank. In fact, it is not too
much of an exaggeration to say that a large part of communication
complexity is the study of different variants of matrix rank. To
explain the rank bound, we must first introduce the communication
matrix, a very useful and common way of representing a function
f :X × Y → {T,F}. We will consider both a Boolean and a sign version
of the communication matrix, the difference being in the particular
integer representation of {T,F}. A Boolean matrix has all entries from
{0,1}, whereas a sign matrix has entries from {−1,+1}. The Boolean
communication matrix for f , denoted Bf , is a |X|-by-|Y | matrix where
Bf [x,y] = 1 if f(x,y) = T and Bf [x,y] = 0 if f(x,y) = F . The sign
communication matrix for f , denoted Af , is a {−1,+1}-valued matrix
where Af [x,y] = −1 if f(x,y) = T and Af [x,y] = +1 if f(x,y) = F .
Depending on the particular situation, it can be more convenient to
reason about one representation or the other, and we will use both
versions throughout this survey. Fortunately, this choice is usually
simply a matter of convenience and not of great consequence — it
can be seen that they are related as Bf = (J − Af )/2, where J is the
all-ones matrix. Thus the matrix rank of the two versions, for example,
will differ by at most one.

Throughout this survey we identify a function f :X × Y → {T,F}
with its corresponding (sign or Boolean) communication matrix. The
representation of a function as a matrix immediately puts tools from lin-
ear algebra at our disposal. Indeed, Mehlhorn and Schmidt [69] showed
how matrix rank can be used to lower bound deterministic communica-
tion complexity. This lower bound follows quite simply from the prop-
erties of a deterministic protocol, but we delay a proof until Section 2.

Theorem 1.1 (Mehlhorn and Schmidt [69]). For every sign
matrix A,

logrank(A) ≤ D(A).
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4 Introduction

The rank bound has nearly everything one could hope for in a lower
bound technique. From a complexity point of view it can be efficiently
computed, i.e., computed in time polynomial in the size of the matrix.
Furthermore, it frees us from thinking about communication protocols
and lets us just consider the properties of A as a linear operator between
Euclidean spaces, with all the attendant tools of linear algebra to help
in doing this. Finally, it is even conjectured that one can always show
polynomially tight bounds via the rank method. This log-rank conjec-
ture is one of the greatest open problems in communication complexity.

Conjecture 1 (Lovász and Saks [67]). There is a constant c such
that for every sign matrix A

D(A) ≤ (logrank(A))c + 2.

The additive term is needed because a rank-one sign matrix can require
two bits of communication. Thus far the largest known separation
between log rank and deterministic communication, due to Nisan and
Wigderson [73], shows that in Conjecture 1 the constant c must be at
least 1.63.

The problems begin, however, when we start to study other models
of communication complexity such as randomized, quantum, or mul-
tiparty variants. Here one can still give a lower bound in terms of an
appropriate variation of rank, but the bounds now can become very
difficult to evaluate. In the case of multiparty complexity, for example,
the communication matrix becomes a communication tensor, and one
must study tensor rank. Unlike matrix rank, the problem of computing
tensor rank is NP-hard [41], and even basic questions like the largest
possible rank of an n-by-n-by-n real tensor remain open.

For randomized or quantum variants of communication complexity,
as shown by Krause [52] and Buhrman and de Wolf [24], respectively,
the relevant rank bound turns out to be approximate rank.

Definition 1.1. Let A be a sign matrix. The approximate rank of A
with approximation factor α, denoted rankα(A), is

rankα(A) = min
B:1≤A[i,j]B[i,j]≤α

rank(B).
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As we shall see in Sections 4 and 5, the logarithm of approximate
rank is a lower bound on randomized and quantum communication
complexity, where the approximation factor α relates to the success
probability of the protocol. In analogy with the log-rank conjecture, it is
also reasonable to conjecture here that this bound is polynomially tight.

Approximate rank, however, can be quite difficult to compute.
While we do not know if it is NP-hard, similar rank minimization
problems subject to linear constraints are NP-hard, see for example
Section 7.3 of [98]. Part of this difficulty stems from the fact that appro-
ximate rank is an optimization problem over a nonconvex function.

This brings us to the main theme of our survey. We focus on lower
bound techniques which are real-valued functions and ideally possess
some “nice” properties, such as being convex. The development and
application of these techniques follow a three-step approach which we
now describe. This approach can be applied in much the same way for
different models, be they randomized, quantum, or multiparty.

Say that we are interested in a complexity measure CC, a mapping
from functions to the natural numbers, which could represent any one
of the above models.

(1) Embed the problem in Rm×n. That is, find a function
G:Rm×n→ R such that

G(A) ≤ CC(A),

for every sign matrix A. As is the case with rank and approx-
imate rank, often G will itself be naturally phrased as a min-
imization problem.

(2) Find an equivalent formulation of G in terms of a maximiza-
tion problem. This will of course not always be possible, as
in the case of approximate rank. This can be done, however,
for rank and for a broad class of optimization problems over
convex functions.

(3) Prove lower bounds on G by exhibiting an element of the
feasible set for which the objective function is large. We call
such an element a witness as it witnesses that G is at least
as large as a certain value.
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6 Introduction

We will delay most of the technical details of this approach to the main
body of the survey, in particular to Section 6 where we discuss the use
of duality to perform the key Step 2 to go from a “min” formulation to a
“max” formulation. Here we limit ourselves to more general comments,
providing some intuition as to why and in what circumstances this
approach is useful.

Step 1 We are all familiar with the idea that it can be easier to find
the extrema of a smooth real-valued function than a discrete-valued
function. For example, for smooth functions the powerful tools of cal-
culus are available. To illustrate, think of integer programming versus
linear programming. The latter problem can be solved in polynomial
time, while even simple instances of integer programming are known to
be NP-hard.

The intuition behind the first step is the same. The complexity of a
protocol is a discrete-valued function, so in determining communication
complexity we are faced with an optimization problem over a discrete-
valued function. By working instead with a real-valued lower bound G
we will have more tools at our disposal to evaluate G. Moreover, if G
is “nice” — for example being an optimization problem over a convex
function — then the set of tools available to us is particularly rich. For
instance, we can use duality to enact Step 2.

We do potentially pay a price in performing Step 1 and working
with a “nicer” function G. It could be the case that G(A) is much
smaller than CC(A) for some sign matrices A. Just as in approximation
algorithms, we seek a bound that is not only easier to compute but also
approximates CC(A) well. We will say that a representation G(A) is
faithful if there is some constant k such that CC(A) ≤ G(A)k for all
sign matrices A.

Step 2 A communication complexity measure CC(A) is naturally
phrased as a minimization problem — looking for a protocol of mini-
mum cost. Often times, as with the case of approximate rank, our lower
bound G is also naturally phrased as a minimization problem.

The difficulty, of course, is that to lower bound a minimization
problem one has to deal with the universal quantifier ∀ — we have
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to show that every possible protocol requires a certain amount of
communication.

When our complexity measure G is of a nice form, however, such
as a minimization problem of a convex function, we can hope to find
an equivalent formulation of G in terms of a maximization problem.
A maximization problem is much easier to lower bound since we simply
have to demonstrate a particular feasible instance for which the target
function is large. In some sense this can be thought of as an “algorithmic
approach” to lower bounds. In Section 6 we will show how this can be
done for a large class of complexity measures known as approximate
norms.

This is an instance of a more general phenomena: showing a state-
ment about existence is often easier than proving a statement about
nonexistence. The former can be certified by a witness, which we do not
always expect for the latter. Take the example of graph planarity, i.e.,
the question of whether a graph can be drawn in the plane in such a way
that its edges intersect only at their endpoints. While it can be tricky
to find such a drawing, at least we know what form the answer will
take. To show that a graph is nonplanar, however, seems like a much
more daunting task unless one has heard of Kuratowski’s Theorem or
Wagner’s Theorem. These theorems reduce the problem of nonexis-
tence to that of existence: for example, Wagner’s Theorem states that
a graph is nonplanar if and only if it contains K5, the complete graph
on five vertices, or K3,3 the complete three-by-three bipartite graph,
as a minor. Not surprisingly, theorems of this flavor are key in efficient
algorithmic solutions to planarity and nonplanarity testing.

Step 3 Now that we have our complexity measure G phrased in terms
of a maximization problem, we are in much better shape. Any element
from the feasible set can be used to show a lower bound, albeit not
necessarily a good one. As a simple example, going back to the rank
lower bound, we observe that a natural way to prove a lower bound on
rank is to find a large set of columns (or rows) that are independent.

Finding a good witness to prove a lower bound for a certain com-
plexity measure G can still be a very difficult task. This is the subject
we take up in Section 7. There are still only a few situations where
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8 Introduction

we know how to choose a good witness, but this topic has recently
seen a lot of exciting progress and more is certainly still waiting to be
discovered.

Approximate norms The main example of the three-step approach
we study in this survey is for approximate norms. We now give a more
technical description of this case; the reader can skip this section at
first reading, or simply take it as an “impression” of what is to come.

Let Φ be any norm on Rm×n, and let α ≥ 1 be a real number. The
α-approximate norm of an m × n sign matrix A is

Φα(A) = min
B:1≤A[i,j]B[i,j]≤α

Φ(B).

The limit as α→∞ motivates the definition

Φ∞(A) = min
B:1≤A[i,j]B[i,j]

Φ(B).

In Step 1 of the framework described above we will usually take
G(A) = Φα(A) for an appropriate norm Φ. We will see that the familiar
matrix trace norm is very useful for showing communication complexity
lower bounds, and develop some more exotic norms as well. We discuss
this step in each of the model specific chapters, showing which norms
can be used to give lower bounds on deterministic (Section 2), nonde-
terministic (Section 3), randomized (Section 4), quantum (Section 5),
and multiparty (Section 8) models.

The nice thing about taking G to be an approximate norm is that we
can implement Step 2 of this framework in a general way. As described
in Section 6, duality can be applied to yield an equivalent formulation
for any approximate norm Φα in terms of a maximization. Namely, for
a sign matrix A

Φα(A) = max
W

(1 + α)〈A,W 〉 + (1 − α)‖W‖1
2Φ∗(W )

(1.1)

Here Φ∗ is the dual norm:

Φ∗(W ) = max
X

〈W,X〉
Φ(X)
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We have progressed to Step 3. We need to find a witness matrix
W that makes the bound from Equation (1.1) large. As any matrix W
at all gives a lower bound, we can start with an educated guess and
modify it according to the difficulties that arise. This is similar to the
case discussed earlier of trying to prove that a graph is planar — one
can simply start drawing and see how it goes. The first choice of a
witness that comes to mind is the target matrix A itself. This gives the
lower bound

Φα(A) ≥ (1 + α)〈A,A〉 + (1 − α)‖A‖1
2Φ∗(A)

=
mn

Φ∗(A)
. (1.2)

This is actually not such a bad guess; for many interesting norms this
lower bound is tight with high probability for a random matrix. But it
is not always a good witness, and there can be a very large gap between
the two sides of the inequality (Equation (1.2)). One reason that the
matrix A might be a bad witness, for example, is that it contains a
large submatrix S for which Φ∗(S) is relatively large.

A way to fix this deficiency is to take instead of A any matrix P ◦ A,
where P is a real matrix with nonnegative entries that sum up to 1.
Here ◦ denotes the entrywise product. This yields a better lower bound

Φα(A) ≥ max
P :P≥0
‖P‖1=1

1
Φ∗(P ◦ A)

. (1.3)

Now, by a clever choice of P , we can for example give more weight
to a good submatrix of A and less or zero weight to submatrices that
attain large values on the dual norm. Although this new lower bound is
indeed better, it is still possible to exhibit an exponential gap between
the two sides of Equation (1.3). This is nicely explained by the following
characterization given in Section 7.

Theorem 1.2. For every sign matrix A

Φ∞(A) = max
P :P≥0
‖P‖1=1

1
Φ∗(P ◦ A)

.

The best value a witness matrix W which has the same sign as A in
each entry can provide, therefore, is equal to Φ∞(A). It can be expected
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that there are matrices A for which Φ∞(A) is significantly smaller than
Φα(A) for say α = 2.1 This is indeed the case for some interesting com-
munication complexity problems such as the SET INTERSECTION
problem where f(x,y) =

∨
i(xi ∧ yi), which will be a running example

throughout the survey.
When Φ∞(A) is not a good lower bound on Φα(A) for bounded α,

there are only a few situations where we know how to choose a good
witness. One case is where A is the sign matrix of a so-called block
composed function, that is, a function of the form (f • gn)(x,y) =
f(g(x1,y1), . . . ,g(xn,yn)) where x = (x1, . . . ,xn) and y = (y1, . . . ,yn).
This case has recently seen exciting progress [92, 90, 94]. These works
showed a lower bound on the complexity of a block composed function
in terms of the approximate degree of f , subject to the inner function g
satisfying some technical conditions. The strength of this approach is
that the approximate degree of f :{0,1}n→ {−1,+1} is often easier to
understand than its communication complexity. In particular, in the
case where f is symmetric, i.e., only depends on the Hamming weight
of the input, the approximate polynomial degree has been completely
characterized [75]. These results are described in detail in Section 7.2.

Historical context The “three-step approach” to proving commu-
nication complexity lower bounds has already been used in the first
papers studying communication complexity. In 1983, Yao [102] gave
an equivalent “max” formulation of randomized communication com-
plexity using von Neumann’s minimax theorem. He showed that the
1/3-error randomized communication complexity is equal to the max-
imum over all probability distributions P , of the minimum cost of a
deterministic protocol which errs with probability at most 1/3 with
respect to P . Thus one can show lower bounds on randomized com-
munication complexity by exhibiting a probability distribution which
is hard for deterministic protocols. This principle is the starting point
for many lower bound results on randomized complexity.

A second notable result using the “three-step approach” is a charac-
terization by Karchmer, Kushilevitz, and Nisan [48] of nondeterministic

1 Notice that Φα(A) is a decreasing function of α.
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communication complexity. Using results from approximation theory,
they show that a certain linear program characterizes nondeterministic
communication complexity, up to small factors. By then looking at the
dual of this program, they obtain a “max” quantity which can always
show near optimal lower bounds on nondeterministic communication
complexity.

The study of quantum communication complexity has greatly con-
tributed to our understanding of the role of convexity in communication
complexity lower bounds, and these more recent developments occupy
a large portion of this survey. The above two examples are remarkable
in that they implement the “three-step approach” with an exact (near)
representation of the communication model. For quantum communica-
tion complexity, however, we do not yet have such a characterization
which is convenient for showing lower bounds. The search for good
representations to approximate quantum communication complexity
led in particular to the development of approximate norms [49, 83, 64].
Klauck (Lemma 3.1) introduced what we refer to in this survey as
the µα-approximate norm, also known as the generalized discrepancy
method. While implicit in Klauck and Razborov, the use of Steps 2 and
3 of the three-step approach becomes explicit in later works [64, 90, 94].

What is not covered In the 30 years since its inception, commu-
nication complexity has become a vital area of theoretical computer
science, and there are many topics which we will not have the oppor-
tunity to address in this survey. We mention some of these here.

Much work has been done on protocols of a restricted form, for
example one-way communication complexity where information only
flows from Alice to Bob, or simultaneous message passing where Alice
and Bob send a message to a referee who then outputs the function
value. A nice introduction to some of these results can be found in [56].
In this survey we focus only on general protocols.

For the most part, we stick to lower bound methods that fit into
the general framework described earlier. As we shall see, these methods
do encompass many techniques proposed in the literature, but not all.
In particular, a very nice approach which we do not discuss are lower
bounds based on information theory. These methods, for example, can

Full text available at: http://dx.doi.org/10.1561/0400000040



12 Introduction

give an elegant proof of the optimal Ω(n) lower bound on the SET
INTERSECTION problem. We refer the reader to [14] for more details.

We also restrict ourselves to the case where Alice and Bob want to
compute a Boolean function. The study of the communication complex-
ity of relations is very interesting and has nice connections to circuit
depth and formula size lower bounds. More details on this topic can be
found in Kushilevitz and Nisan [56].

Finally, there are some models of communication complexity which
we do not discuss. Perhaps the most notable of these is the model
of unbounded-error communication complexity. This is a randomized
model where Alice and Bob only have to succeed on every input with
probability strictly greater than 1/2. We refer the reader to [37, 91, 84]
for interesting recent developments on this model.
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of pseudorandomness for finite sequences: Minimal values,” Combinatorics,
Probability, and Computing, vol. 15, pp. 1–29, 2006.

[8] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating
the frequency moments,” Journal of Computer and System Sciences, vol. 58,
no. 1, pp. 137–147, 1999.

[9] N. Alon and A. Naor, “Approximating the cut-norm via Grothendieck’s
inequality,” SIAM Journal on Computing, vol. 35, pp. 787–803, 2006.

[10] N. Alon and P. Seymour, “A counterexample to the rank-coloring conjecture,”
Journal of Graph Theory, vol. 13, no. 4, pp. 523–525, 1989.

135

Full text available at: http://dx.doi.org/10.1561/0400000040



136 References

[11] L. Babai, P. Frankl, and J. Simon, “Complexity classes in communication com-
plexity theory,” in Proceedings of the 27th IEEE Symposium on Foundations
of Computer Science, IEEE, 1986.

[12] L. Babai, A. Gál, P. Kimmel, and S. Lokam, “Simultaneous messages vs.
communication,” SIAM Journal on Computing, vol. 33, no. 1, pp. 137–166,
2003.

[13] L. Babai, N. Nisan, and M. Szegedy, “Multiparty protocols and Logspace-hard
pseudorandom sequences,” in Proceedings of the 21st ACM Symposium on the
Theory of Computing, pp. 1–11, ACM, 1989.

[14] Z. Bar-Yossef, T. Jayram, R. Kumar, and D. Sivakumar, “Information statis-
tics approach to data stream and communication complexity,” Journal of
Computer and System Sciences, vol. 68, no. 4, pp. 702–732, 2004.

[15] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. Wolf, “Quantum Lower
Bounds by Polynomials,” Journal of the ACM, vol. 48, no. 4, pp. 778–797,
2001.

[16] P. Beame, M. David, T. Pitassi, and P. Woelfel, “Separating deterministic
from randomized NOF multiparty communication complexity,” in Proceedings
of the 34th International Colloquium On Automata, Languages and Program-
ming, Lecture Notes in Computer Science. Springer-Verlag, 2007.

[17] P. Beame and D. Huynh-Ngoc, “Multiparty communication complexity of
AC0,” Technical Report TR-08-082, ECCC, 2008.

[18] P. Beame, T. Pitassi, and N. Segerlind, “Lower bounds for Lovász-Schrijver
systems and beyond follow from multiparty communication complexity,”
SIAM Journal on Computing, vol. 37, no. 3, pp. 845–869, 2006.

[19] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson, “A strong direct
product lemma for corruption and the NOF complexity of disjointness,” Com-
putational Complexity, vol. 15, no. 4, pp. 391–432, 2006.

[20] R. Beigel and J. Tarui, “On ACC,” Computational Complexity, vol. 4,
pp. 350–366, 1994.

[21] S. Ben-David, N. Eiron, and H. Simon, “Limitations of learning via embed-
dings in Euclidean half spaces,” Journal of Machine Learning Research, vol. 3,
pp. 441–461, 2002.

[22] H. Buhrman, Personal communication, December 2007.
[23] H. Buhrman, R. Cleve, and A. Wigderson, “Quantum vs. classical communi-

cation and computation,” in Proceedings of the 30th ACM Symposium on the
Theory of Computing, pp. 63–68, ACM, 1998.

[24] H. Buhrman and R. de Wolf, “Communication complexity lower bounds by
polynomials,” in Proceedings of the 16th IEEE Conference on Computational
Complexity, pp. 120–130, 2001.

[25] H. Buhrman and R. de Wolf, “Complexity Measures and Decision Tree Com-
plexity: A Survey,” Theoretical Computer Science, vol. 288, pp. 21–43, 2002.

[26] H. Buhrman, N. Vereshchagin, and R. de Wolf, “On computation and com-
munication with small bias,” in Proceedings of the 22nd IEEE Conference on
Computational Complexity, pp. 24–32, IEEE, 2007.

[27] A. Chakrabarti, S. Khot, and X. Sun, “Near-optimal lower bounds on the
multi-party communication complexity of set-disjointness,” in Proceedings of
the 18th IEEE Conference on Computational Complexity, IEEE, 2003.

Full text available at: http://dx.doi.org/10.1561/0400000040



References 137

[28] A. Chattopadhyay, “Discrepancy and the power of bottom fan-in depth-three
circuits,” in Proceedings of the 48th IEEE Symposium on Foundations of Com-
puter Science, pp. 449–458, IEEE, 2007.

[29] A. Chattopadhyay, PhD thesis, McGill University, 2008.
[30] A. Chattopadhyay and A. Ada, “Multiparty communication complexity of

disjointness,” Technical Report TR-08-002, ECCC, 2008.
[31] F. Chung, “Quasi-random classes of hypergraphs,” Random Structures and

Algorithms, vol. 1, pp. 363–382, 1990.
[32] J. Clauser, M. Horne, A. Shimony, and R. Holt, “Proposed experiment to

test local hidden-variable theories,” Physical Review Letters, vol. 23, no. 15,
pp. 880–884, 1969.

[33] M. David, T. Pitassi, and E. Viola, “Improved Separations between Non-
deterministic and Randomized Multiparty Communication,” in APPROX-
RANDOM, volume 5171 of Lecture Notes in Computer Science, pp. 371–384,
Springer, 2008.

[34] J. Degorre, M. Kaplan, S. Laplante, and J. Roland, “The communication
complexity of non-signaling distributions,” Technical Report 0804.4859, arXiv,
2008.

[35] S. Fajtlowicz, “On conjectures of graffiti,” Discrete Mathematics, vol. 72,
pp. 113–118, 1988.

[36] J. Ford and A. Gál, “Hadamard tensors and lower bounds on multiparty com-
munication complexity,” in Proceedings of the 32th International Colloquium
On Automata, Languages and Programming, pp. 1163–1175, 2005.

[37] J. Forster, “A linear lower bound on the unbounded error probabilistic com-
munication complexity,” Journal of Computer and System Sciences, vol. 65,
pp. 612–625, 2002.

[38] A. Frieze and R. Kannan, “Quick approximation to matrices and applica-
tions,” Combinatorica, vol. 19, pp. 175–220, 1999.

[39] M. Goemans and D. Williamson, “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming,”
Journal of the ACM, vol. 42, pp. 1115–1145, 1995.

[40] V. Grolmusz, “The BNS lower bound for multi-party protocols is nearly opti-
mal,” Information and Computation, vol. 112, no. 1, pp. 51–54, 1994.

[41] J. H̊astad, “Tensorrank is NP-complete,” Journal of Algorithms, vol. 11,
pp. 644–654, 1990.

[42] J. H̊astad and M. Goldmann, “On the power of small-depth threshold cir-
cuits,” Computational Complexity, vol. 1, pp. 113–129, 1991.

[43] G. J. O. Jameson, Summing and Nuclear Norms in Banach Space Theory.
Cambridge University Press, 1987.

[44] T. Jayram, R. Kumar, and D. Sivakumar, “Two applications of information
complexity,” in Proceedings of the 35th ACM Symposium on the Theory of
Computing, pp. 673–682, ACM, 2003.

[45] T. Jiang and B. Ravikumar, “Minimal NFA problems are hard,” SIAM Journal
on Computing, vol. 22, pp. 1117–1141, 1993.

[46] W. Johnson and J. Lindenstrauss, “Basic concepts in the geometry of Banach
spaces,” in Handbook of the Geometry of Banach Spaces, Vol. I, pp. 1–84,
Amsterdam: North-Holland, 2001.

Full text available at: http://dx.doi.org/10.1561/0400000040



138 References

[47] B. Kalyanasundaram and G. Schnitger, “The probabilistic communication
complexity of set intersection,” in Proceedings of the 2nd Annual Conference
on Structure in Complexity Theory, pp. 41–49, 1987.

[48] M. Karchmer, E. Kushilevitz, and N. Nisan, “Fractional Covers and Commu-
nication Complexity,” SIAM Journal on Discrete Mathematics, vol. 8, no. 1,
pp. 76–92, 1995.

[49] H. Klauck, “Lower bounds for quantum communication complexity,” in Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer Science,
IEEE, 2001.

[50] H. Klauck, “Rectangle size bounds and threshold covers in communication
complexity,” in Proceedings of the 18th IEEE Conference on Computational
Complexity, IEEE, 2003.

[51] A. Klivans and A. Sherstov, “A lower bound for agnostically learning disjunc-
tions,” in Proceedings of the 20th Conference on Learning Theory, 2007.

[52] M. Krause, “Geometric arguments yield better bounds for threshold cir-
cuits and distributed computing,” Theoretical Computer Science, vol. 156,
pp. 99–117, 1996.

[53] I. Kremer, “Quantum communication,” Technical Report, Hebrew University
of Jerusalem, 1995.

[54] J. Krivine, “Constantes de Grothendieck et fonctions de type positif sur les
sphères,” Advances in Mathematics, vol. 31, pp. 16–30, 1979.

[55] E. Kushilevitz, N. Linial, and R. Ostrovsky, “The linear array conjecture
of communication complexity is false,” in Proceedings of the 28th ACM
Symposium on the Theory of Computing, ACM, 1996.

[56] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge Univer-
sity Press, 1997.

[57] T. Lee, G. Schechtman, and A. Shraibman, “Lower bounds on quantum multi-
party communication complexity,” in Proceedings of the 24th IEEE Conference
on Computational Complexity, IEEE, 2009.

[58] T. Lee and A. Shraibman, “An approximation algorithm for approxima-
tion rank,” in Proceedings of the 24th IEEE Conference on Computational
Complexity, IEEE, 2008. arXiv:0809.2093 [cs.CC].

[59] T. Lee and A. Shraibman, “Disjointness is hard in the multiparty number-on-
the-forehead model,” Computational Complexity, vol. 18, no. 2, pp. 309–336,
2009.
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