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Abstract

How complex is a given multivariate polynomial? The main point of
this survey is that one can learn a great deal about the structure and
complexity of polynomials by studying (some of) their partial deriva-
tives. The bulk of the survey shows that partial derivatives provide
essential ingredients in proving both upper and lower bounds for com-
puting polynomials by a variety of natural arithmetic models. We will
also see applications which go beyond computational complexity, where
partial derivatives provide a wealth of structural information about
polynomials (including their number of roots, reducibility and internal
symmetries), and help us solve various number theoretic, geometric,
and combinatorial problems.
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1

Introduction

1.1 Motivation

Polynomials are perhaps the most important family of functions in
mathematics. They feature in celebrated results from both antiquity
and modern times, like the unsolvability by radicals of polynomials
of degree ≥5 of Abel and Galois, and Wiles’ proof of Fermat’s “last
theorem.” In computer science they feature in, for example, error-
correcting codes and probabilistic proofs, among many applications.
The manipulation of polynomials is essential in numerous applications
of linear algebra and symbolic computation. This survey is devoted
mainly to the study of polynomials from a computational perspective.
The books [9, 10, 86] and the recent survey [74] provide wide coverage
of the area.

Given a polynomial over a field, a natural question to ask is how
complex it is? A natural way to compute polynomials is via a sequence
of arithmetic operations, for example, by an arithmetic circuit, as shown
in Figure 1.1 (formal definitions will be given in Section 1.2). One
definition of how complex a polynomial is can be the size of the smallest
arithmetic circuit computing it. A weaker model, often employed by
mathematicians, is that of a formula (in which the underlying circuit

1
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2 Introduction

structure must be a tree), and another definition of complexity may be
the formula size.

There are many ways to compute a given polynomial. For example,

f(x1,x2) = x1 × (x1 + x2) + x2 × (x1 + x2) = (x1 + x2) × (x1 + x2)

are two formulae for the same polynomial f , the first requiring 5 oper-
ations and the second only 3 operations. Finding the optimal circuit or
formula computing a given polynomial is a challenging task, and even
estimating that minimum size by giving upper and lower bounds is
very difficult. Of course, the same is also true for the study of Boolean
functions and their complexity (with respect to Boolean circuits and
formulae, or Turing machines), but in the Boolean case we have a bet-
ter understanding of that difficulty (via results on relativization by
Baker et al. [5], natural proofs due to Razborov and Rudich [64], and
algebrization due to Aaronson and Wigderson [1]). For the arithmetic
setting, which is anyway more structured, there seem to be more hope
for progress.

Proving lower bounds for the complexity of polynomials has been
one of the most challenging problems in theoretical computer science.
Although it has received much attention in the past few decades, the
progress of this field is slow. The best lower bound known in the gen-
eral arithmetic circuit setting is still the classical Ω(n logd) result by
Baur and Strassen [6] (for some natural degree-d polynomials over n
variables). Even for some very restricted models (e.g., constant-depth
arithmetic circuits or multilinear formulae), a lot of interesting prob-
lems remain widely open. In this survey, we focus on the use of partial
derivatives in this effort.

The study of upper bounds — constructing small circuits for com-
puting important polynomials — is of course important for practical
applications, and there are many nontrivial examples of such algorithms
(e.g., Strassen’s matrix multiplication algorithm [76], Berkowitz’s algo-
rithm for the determinant [7],1 and Kaltofen’s black-box polynomial
factorization algorithm [34]). As we focus here on the uses of partial

1 The first NC algorithm for the determinant, based on Leverier’s method, was given by

Csanky in 1976 [18]. However, Csanky’s algorithm used divisions and was unsuitable for
arbitrary fields. Around 1984, Berkowitz [7] and independently, Chistov [16] came up with
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1.1 Motivation 3

derivatives, we will see relatively few upper bounds, but we are cer-
tain that there is room for more, faster algorithms that use the partial
derivatives of a polynomial when computing it.

The task of understanding arithmetic circuits and formulae
naturally leads to the task of understanding the basic algebraic prop-
erties of the polynomials computed by such circuits and formulae. One
such question is the following: given an arithmetic circuit, determine
whether the polynomial computed by it is the identically zero polyno-
mial or not. It turns out that besides being a natural scientific question,
this question is also closely related to proving arithmetic circuit lower
bounds, as shown by Impagliazzo and Kabanets [33]. Other natural
structural questions relate to the symmetries of polynomials, the alge-
braic independence of systems of polynomials and more. Again, we will
demonstrate the power of partial derivatives to help understand such
structural questions.

1.1.1 Organization

The rest of this chapter is devoted to formal definitions of the compu-
tational models (arithmetic circuits and formulae, and their complexity
measures), and of partial derivatives.

In Part I, we demonstrate how partial derivatives can be used to
probe the structure of polynomials, via a list of very different examples.
In particular, we will see how to use them to prove that algebraic
independence has matroid structure, and to determine the symme-
tries of a given family of polynomials. Along the way we will see
that “most” polynomials have high arithmetic complexity. We will
use partial derivatives to derive simple linear algebraic proofs to some
important results on the number of solutions of polynomial equa-
tions whose initial proofs used algebraic geometry. (These will include
Wooley’s proof of Bezout’s theorem and Stepanov’s proof of Weil’s
theorem). We will also see the power of partial derivatives in resolving
a long-standing problem in combinatorial geometry [28, 35].

polylogarithmic depth arithmetic circuits for computing the determinant (and therefore
also an NC algorithm for the determinant over arbitrary fields.)

Full text available at: http://dx.doi.org/10.1561/0400000043



4 Introduction

In Part II, we will review some of the most elegant lower bound
proofs in the field, which use partial derivatives as a basic tool. Other
than the Ω(n logd) lower bound by Baur and Strassen for general arith-
metic circuits, we will also be looking at some very restricted models of
computation. The simplest one is based on the observation that every
polynomial of degree d can be expressed as the sum of dth powers
of affine linear forms. We will see that partial derivatives allow us to
prove pretty sharp lower bounds in this model. We will also use partial
derivatives to derive lower bounds for depth-3 arithmetic circuits and
multilinear formulae. Another model of computation is based on the
observation that every polynomial can be expressed as the determi-
nant of a square matrix whose entries are affine linear forms. We will
show how the second-order partial derivatives can be used to prove a
quadratic lower bound for the permanent polynomial in this model.

Finally, in Part III we will see how partial derivatives help in deriv-
ing upper bounds for various algebraic problems related to arithmetic
circuits, such as identity testing, irreducibility testing, and equivalence
testing.

Many of the chapters in these three parts can be read independently.
For the few which need background from previous chapters, we specify
it in the abstract.

1.2 Arithmetic Circuits

In this section, we define arithmetic circuits.
Let F be a field. Most of the time, it is safe to assume that F is of

characteristic 0 or has a very large characteristic, e.g., char(F) is much
larger than the degree of any relevant polynomial. We will point out
explicitly when the results also hold for fields of small characteristic.

The underlying structure of an arithmetic circuit C is a directed
acyclic graph G = (V,E). We use u,v, and w to denote vertices in V ,
and uv to denote a directed edge in E. The role of a vertex v ∈ V falls
into one of the following cases:

(1) If the in-degree of v is 0, then v is called an input of the
arithmetic circuit;

Full text available at: http://dx.doi.org/10.1561/0400000043



1.2 Arithmetic Circuits 5

Fig. 1.1 A depth-3 Arithmetic Circuit over F[x1,x2,x3].

(2) Otherwise, v is called a gate. In particular, if the out-degree
of v is 0, then v is called an output (gate) of the circuit.

For most of the time, we will only discuss arithmetic circuits that com-
pute one polynomial and have a single output gate. In this case, we
will denote it by outC ∈ V (or simply out ∈ V ).

Every input vertex in V is labeled with either one of the variables
x1, . . . ,xn or one of the elements in the field F. Every gate is labeled
with either “+” or “×,” which are called plus gates and product gates
respectively. Each edge uv ∈ E entering a plus gate is also labeled with
an element cuv in F (so plus gates perform “weighted addition” or in
other words linear combinations of their inputs with field coefficients).
See Figure 1.1 for an example.

Given an arithmetic circuit C, we associate with each vertex v ∈ V
a polynomial Cv, as the polynomial computed by C at v. Let N+(v)
denote the set of successors and N−(v) denote the set of predecessors
of v, then we define Cv inductively as follows: If v is an input, then Cv
is exactly the label of v. Otherwise (since G is acyclic, when defining
Cv, we may assume the Cu’s, u ∈ N−(v), have already been defined):

(1) If v is a plus gate, then

Cv =
∑

u∈N−(v)

cuv · Cu,

where cuv ∈ F is the label of uv ∈ E;

Full text available at: http://dx.doi.org/10.1561/0400000043



6 Introduction

(2) If v is a product gate, then

Cv =
∏

u∈N−(v)

Cu.

In particular, the polynomial Cout associated with the output gate
out is the polynomial computed by C. We sometimes use C(x1, . . . ,xn)
to denote the polynomial Cout for short. We also need the notion of
the formal degree of an arithmetic circuit, which is defined inductively
using the following two basic rules:

(1) If v ∈ V is a plus gate, then the formal degree of v is the
maximum of the formal degrees of the vertices u ∈ N−(v);

(2) If v ∈ V is a product gate, then the formal degree of v is the
sum of the formal degrees of the vertices u ∈ N−(v).

Definition 1.1. The size of an arithmetic circuit, denoted by S(C), is
the number of edges of its underlying graph.

Given a polynomial f , we let S(f) denote the size of the smallest
arithmetic circuit computing f , that is,

S(f) def= min
C: Cout=f

S(C).

The second way to define an arithmetic circuit (often referred to as
a “straight-line program”), which is more convenient in certain situa-
tions, is to view it as a sequence of “+” and “×” operations:

C =
(
g1, . . . ,gn, . . . ,gm

)
,

in which gi = xi for all i ∈ [n] = {1, . . . ,n}. For each k > n, either

gk =
∑
i∈S

ci · gi + c or gk =
∏
i∈S

gi,

where c,ci ∈ F and S is a subset of [k − 1]. Similarly, we can define a
polynomial Ci for each gi and the polynomial computed by C is Cm.

As a warm up, we take a brief look at the polynomials of the simplest
form: univariate polynomials.

Full text available at: http://dx.doi.org/10.1561/0400000043



1.2 Arithmetic Circuits 7

Example 1.2. S(xd) = Θ(logd). This is done via “repeated squaring.”
Note that in an arithmetic circuit, the out-degree of a gate could be
larger than 1 and there could be parallel edges.

Example 1.3. For every polynomial f ∈ F[x] of degree d, we have
S(f) = O(d). For example, we can write f = 3x4 + 4x3 + x2 + 2x + 5
as f = x(x(x(3x + 4) + 1) + 2) + 5.

Although the two bounds above (the lower bound in Example 1.2
and the upper bound in Example 1.3) hold for every univariate polyno-
mial, there is an exponential gap between them. It turns out that even
for univariate polynomials, we do not have strong enough techniques
for proving general size lower bounds.

Open Problem 1.4. Find an explicit family of polynomials{
fi
}
i∈Z+ ⊂ F[x], where fi has degree i,

such that S(fn) 6= (logn)O(1).

See Section 4 for some more discussion and clarification of what the
word “explicit” means in the open problem above. We also provide a
possible candidate for this open problem:

Conjecture 1.5. S((x + 1)(x + 2) · · ·(x + n)) 6= (logn)O(1).

This conjecture has a surprising connection to the (Boolean!) com-
plexity of factoring integers.

Exercise 1.6. If Conjecture 1.5 is false, then Factoring can be com-
puted by polynomial size Boolean circuits.

As we go from univariate polynomials to multivariate polynomi-
als, we encounter more algebraic structures, and the flavor of problems
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8 Introduction

also changes. As Example 1.3 shows, every univariate polynomial of
degree n can always be computed by an arithmetic circuit of size O(n).
In contrast, the smallest arithmetic circuit for an n-variate polyno-
mial of degree n can potentially be exponential in n. However, no such
explicit family of polynomials is known at present.

Let us say that a family of n-variate polynomials {fn}n∈Z+ has low
degree if the degree of fn is nO(1). A large part of this survey is devoted
to understanding families of low-degree polynomials. We will use partial
derivatives as a tool to probe the structure of low-degree polynomials,
and to prove lower bounds for them.

Open Problem 1.7. Find an explicit family of low-degree polynomi-
als {fn}n∈Z+ , fn ∈ F[x1, . . . ,xn], such that S(fn) 6= nO(1).

For multivariate polynomials, it even makes sense to study families
of constant-degree polynomials. The challenge is the following:

Open Problem 1.8. Find an explicit family of constant-degree poly-
nomials {fn}n∈Z+ , fn ∈ F[x1, . . . ,xn], such that S(fn) 6= O(n).

In other words, we want to find an explicit family of constant-degree
polynomials for which the arithmetic complexity is superlinear, in the
number of variables. Below we give a specific family of cubic (degree-3)
polynomials for which resolving the above question is of significant
practical importance. Let fn be the following polynomial in 3n2 vari-
ables (xij)1≤i,j≤n, (yij)1≤i,j≤n, and (zij)1≤i,j≤n:

fn
def=

∑
i,j∈[n]×[n]

zij

∑
k∈[n]

xik · ykj

 .
Exercise 1.9. For any ω ≥ 2, show that the product of two n × n
matrices can be computed by arithmetic circuits of size O(nω) if and
only if S(fn) = O(nω).
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1.3 Formal Derivatives and Their Properties 9

1.3 Formal Derivatives and Their Properties

1.3.1 Univariate Polynomials

Let F denote a field, e.g., the set of real numbers R. F could be finite but
we normally assume its characteristic is large enough, e.g., much larger
than the degree of any relevant polynomial. Let F[x] denote the set of
univariate polynomials in x over F. Every f ∈ F[x] can be expressed as

f = amx
m + am−1x

m−1 + · · · + a1x + a0,

where m ∈ Z≥0 and ai ∈ F for all 0 ≤ i ≤m. The formal derivative of f
with respect to x is defined as

∂f

∂x

def= (mam)xm−1 +
(
(m − 1)am−1

)
xm−2 + · · · + 2a2x + a1.

It is called the formal derivative of f because it does not depend on
the concept of limit.

1.3.2 Multivariate Polynomials

Let F[x1, . . . ,xn], abbreviated as F[X], denote the set of n-variate poly-
nomials over F, then every f ∈ F[X] is a finite sum of monomials with
coefficients in F. For example,

f = x2
1x

3
2x3 + 2x4

1x
2
3

is a polynomial in F[x1,x2,x3]. Similarly we can define the formal par-
tial derivative of f with respect to xi. To this end, we write f as

f(x1, . . . ,xn) = gmx
m
i + gm−1x

m−1
i + · · · + g1xi + g0,

where gi ∈ F[x1, . . . ,xi−1,xi+1, . . . ,xn] for all 0 ≤ i ≤m. Then

∂f

∂xi

def= (mgm)xm−1
i +

(
(m − 1)gm−1

)
xm−2
i + · · · + (2g2)xi + g1.

We use ∂xi(f) as a shorthand for ∂f
∂xi

. When the name of the variables
is clear from the context, we shorten this further to simply ∂i(f).

Furthermore, we can take higher-order derivatives of f . Let
xi1 ,xi2 , . . . ,xit be a sequence of t variables. Then we can take the tth

Full text available at: http://dx.doi.org/10.1561/0400000043



10 Introduction

order derivative of f :

∂

∂xit

(
. . .

(
∂

∂xi1

(
f
)))

∈ F[X],

which we write compactly as ∂it . . .∂i1(f). Just like in calculus, it can
be shown that the tth order derivatives do not depend on the sequence
but only depend on the multiset of variables {xi1 , . . . ,xit}.

Let f = (f1, . . . ,fk) be a sequence of k polynomials, where f1, . . . ,

fk ∈ F[X]. We define the Jacobian matrix of f as follows. For f ∈ F[X]
we use ∂(f) to denote the n-dimensional vector:

∂(f) def=

∂x1(f)
...

∂xn(f)

 .
Then the Jacobian matrix J(f) of f is the following n × k matrix:

J(f) def=
(
∂xi(fj)

)
i∈[n], j∈[k]

=
(
∂(f1) ∂(f2) · · · ∂(fk)

)
.

Exercise 1.10. Show that given an arithmetic circuit C of size s, one
can efficiently compute another arithmetic circuit of size O(s · n) with
n outputs, the outputs being the polynomials ∂xi(C(X)) for i ∈ [n].

In [6], Baur and Strassen showed that these first-order partial
derivatives of C(X) can actually be computed by an arithmetic circuit
of size O(s). We will see a proof in Section 9.

1.3.3 Substitution Maps

Consider now a univariate polynomial

f = amx
m + am−1x

m−1 + · · · + a1x + a0

and its derivative
∂f

∂x
= (mam)xm−1 +

(
(m − 1)am−1

)
xm−2 + · · · + 2a2x + a1.

Knowing ∂x(f) alone is not enough to determine f itself, but observe
that knowing ∂x(f) and the value f(α) of f at any point α ∈ F, we can
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1.3 Formal Derivatives and Their Properties 11

recover the polynomial f . More generally, for an n-variate polynomial f ,
we can determine f completely if we know all its first-order partial
derivatives and the value f(α) for any point α ∈ Fn. This means that
knowing the partial derivatives of f and a substitution of f is sufficient
to determine all the properties of f , including its complexity. In some
of the results presented in the survey, we will combine the use of partial
derivatives with carefully chosen substitutions in order to enhance our
understanding of a given polynomial f .

The substitution that is most natural and occurs frequently is the
one where we substitute some of the variables to zero. For a polynomial
f ∈ F[X], we denote by σi(f) the polynomial obtained by setting xi to
zero. For example, for f = x2

1x
3
2x3 + 2x4

1x
2
3, we have that σ1(f) = 0 and

σ2(f) = 2x4
1x

2
3.

Exercise 1.11. Let f ∈ F[x] be a univariate polynomial of degree at
most d. Show that f is the identically zero polynomial if and only if
σ(∂i(f)) = 0 for all 0 ≤ i ≤ d.

1.3.4 Properties

The following properties of derivatives and substitution maps are easy
to verify.

Property 1.12. For any f,g ∈ F[X], α,β ∈ F, and i ∈ [n]:

• Linearity of derivatives: ∂i(αf + βg) = α · ∂i(f) + β · ∂i(g).
• Derivative of product : ∂i(f · g) = ∂i(f) · g + f · ∂i(g).
• Linearity of substitution: σi(αf + βg) = α · σi(f) + β · σi(g).
• Substitution preserves multiplication: σi(f · g) = σi(f) · σi(g).

We also need the counterpart of the chain rule in calculus.
Let g ∈ F[z1, . . . ,zk] = F[Z], and f = (f1, . . . ,fk) be a tuple where

each fi is a polynomial in F[X]. The composition g ◦ f of g and f is a
polynomial in F[X] where

g ◦ f(X) = g
(
f1(X),f2(X), . . . ,fk(X)

)
.
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12 Introduction

Property 1.13 (The Chain Rule). For every i ∈ [n], we have

∂xi

(
g ◦ f

)
=

k∑
j=1

∂fj
(g) · ∂xi(fj),

where we use ∂fj
(g) to denote ∂zj (g) ◦ f ∈ F[X] for all j ∈ [k].

In the rest of this survey, unless mentioned otherwise, we will assume
the underlying field F to be C, the field of complex numbers. A notable
exception is Section 8, where we will work with finite fields. This is all
that we need for now. We will introduce some shorthand notation later
as needed.
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