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Abstract

The ability to solve a system of linear equations lies at the heart of areas

such as optimization, scientific computing, and computer science, and

has traditionally been a central topic of research in the area of numer-

ical linear algebra. An important class of instances that arise in prac-

tice has the form Lx = b, where L is the Laplacian of an undirected

graph. After decades of sustained research and combining tools from

disparate areas, we now have Laplacian solvers that run in time nearly-

linear in the sparsity (that is, the number of edges in the associated

graph) of the system, which is a distant goal for general systems. Sur-

prisingly, and perhaps not the original motivation behind this line of

research, Laplacian solvers are impacting the theory of fast algorithms

for fundamental graph problems. In this monograph, the emerging

paradigm of employing Laplacian solvers to design novel fast algorithms

for graph problems is illustrated through a small but carefully chosen

set of examples. A part of this monograph is also dedicated to develop-

ing the ideas that go into the construction of near-linear-time Laplacian

solvers. An understanding of these methods, which marry techniques

from linear algebra and graph theory, will not only enrich the tool-set

of an algorithm designer but will also provide the ability to adapt these

methods to design fast algorithms for other fundamental problems.
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Preface

The ability to solve a system of linear equations lies at the heart of areas

such as optimization, scientific computing, and computer science and,

traditionally, has been a central topic of research in numerical linear

algebra. Consider a system Ax = b with n equations in n variables.

Broadly, solvers for such a system of equations fall into two categories.

The first is Gaussian elimination-based methods which, essentially, can

be made to run in the time it takes to multiply two n × n matrices,

(currently O(n2.3...) time). The second consists of iterative methods,

such as the conjugate gradient method. These reduce the problem

to computing n matrix–vector products, and thus make the running

time proportional to mn where m is the number of nonzero entries, or

sparsity, of A.1 While this bound of n in the number of iterations is

tight in the worst case, it can often be improved if A has additional

structure, thus, making iterative methods popular in practice.

An important class of such instances has the form Lx = b, where L

is the Laplacian of an undirected graph G with n vertices and m edges

1Strictly speaking, this bound on the running time assumes that the numbers have bounded

precision.

1
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2 Preface

with m (typically) much smaller than n2. Perhaps the simplest setting

in which such Laplacian systems arise is when one tries to compute cur-

rents and voltages in a resistive electrical network. Laplacian systems

are also important in practice, e.g., in areas such as scientific computing

and computer vision. The fact that the system of equations comes from

an underlying undirected graph made the problem of designing solvers

especially attractive to theoretical computer scientists who entered the

fray with tools developed in the context of graph algorithms and with

the goal of bringing the running time down to O(m). This effort gained

serious momentum in the last 15 years, perhaps in light of an explosive

growth in instance sizes which means an algorithm that does not scale

near-linearly is likely to be impractical.

After decades of sustained research, we now have a solver for Lapla-

cian systems that runs in O(m logn) time. While many researchers have

contributed to this line of work, Spielman and Teng spearheaded this

endeavor and were the first to bring the running time down to Õ(m)

by combining tools from graph partitioning, random walks, and low-

stretch spanning trees with numerical methods based on Gaussian elim-

ination and the conjugate gradient. Surprisingly, and not the original

motivation behind this line of research, Laplacian solvers are impacting

the theory of fast algorithms for fundamental graph problems; giving

back to an area that empowered this work in the first place.

That is the story this monograph aims to tell in a comprehensive

manner to researchers and aspiring students who work in algorithms

or numerical linear algebra. The emerging paradigm of employing

Laplacian solvers to design novel fast algorithms for graph problems

is illustrated through a small but carefully chosen set of problems

such as graph partitioning, computing the matrix exponential, simulat-

ing random walks, graph sparsification, and single-commodity flows. A

significant part of this monograph is also dedicated to developing the

algorithms and ideas that go into the proof of the Spielman–Teng Lapla-

cian solver. It is a belief of the author that an understanding of these

methods, which marry techniques from linear algebra and graph theory,

will not only enrich the tool-set of an algorithm designer, but will also

provide the ability to adapt these methods to design fast algorithms

for other fundamental problems.
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Preface 3

How to use this monograph. This monograph can be used as the

text for a graduate-level course or act as a supplement to a course on

spectral graph theory or algorithms. The writing style, which deliber-

ately emphasizes the presentation of key ideas over rigor, should even

be accessible to advanced undergraduates. If one desires to teach a

course based on this monograph, then the best order is to go through

the sections linearly. Essential are Sections 1 and 2 that contain the

basic linear algebra material necessary to follow this monograph and

Section 3 which contains the statement and a discussion of the main

theorem regarding Laplacian solvers. Parts of this monograph can also

be read independently. For instance, Sections 5–7 contain the Cheeger

inequality based spectral algorithm for graph partitioning. Sections 15

and 16 can be read in isolation to understand the conjugate gradient

method. Section 19 looks ahead into computing more general functions

than the inverse and presents the Lanczos method. A dependency dia-

gram between sections appears in Figure 1. For someone solely inter-

ested in a near-linear-time algorithm for solving Laplacian systems, the

quick path to Section 14, where the approach of a short and new proof

is presented, should suffice. However, the author recommends going all

Fig. 1 The dependency diagram among the sections in this monograph. A dotted line from

i to j means that the results of Section j use some results of Section i in a black-box manner
and a full understanding is not required.
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4 Preface

the way to Section 18 where multiple techniques developed earlier in

the monograph come together to give an Õ(m) Laplacian solver.
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Notation

• The set of real numbers is denoted by R, and R≥0 denotes

the set of nonnegative reals. We only consider real numbers

in this monograph.
• The set of integers is denoted by Z, and Z≥0 denotes the set

of nonnegative integers.
• Vectors are denoted by boldface, e.g., u,v. A vector v ∈ Rn

is a column vector but often written as v = (v1, . . . ,vn). The

transpose of a vector v is denoted by v>.
• For vectors u,v, their inner product is denoted by 〈u,v〉 or

u>v.
• For a vector v, ‖v‖ denotes its `2 or Euclidean norm where

‖v‖ def
=
√
〈v,v〉. We sometimes also refer to the `1 or Man-

hattan distance norm ‖v‖1
def
=
∑n

i=1 |vi|.
• The outer product of a vector v with itself is denoted by

vv>.
• Matrices are denoted by capitals, e.g., A,L. The transpose

of A is denoted by A>.
• We use tA to denote the time it takes to multiply the matrix

A with a vector.

5
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6 Notation

• The A-norm of a vector v is denoted by ‖v‖A
def
=
√

v>Av.
• For a real symmetric matrix A, its real eigenvalues

are ordered λ1(A) ≤ λ2(A) ≤ ·· · ≤ λn(A). We let Λ(A)
def
=

[λ1(A),λn(A)].
• A positive-semidefinite (PSD) matrix is denoted by A � 0

and a positive-definite matrix A � 0.

• The norm of a symmetric matrix A is denoted by ‖A‖ def
=

max{|λ1(A)|, |λn(A)|}. For a symmetric PSD matrix A,

‖A‖ = λn(A).
• Thinking of a matrix A as a linear operator, we denote the

image of A by Im(A) and the rank of A by rank(A).
• A graph G has a vertex set V and an edge set E. All graphs

are assumed to be undirected unless stated otherwise. If the

graph is weighted, there is a weight function w : E 7→ R≥0.

Typically, n is reserved for the number of vertices |V |, and

m for the number of edges |E|.
• EF [·] denotes the expectation and PF [·] denotes the proba-

bility over a distribution F . The subscript is dropped when

clear from context.
• The following acronyms are used liberally, with respect to

(w.r.t.), without loss of generality (w.l.o.g.), with high prob-

ability (w.h.p.), if and only if (iff), right-hand side (r.h.s.),

left-hand side (l.h.s.), and such that (s.t.).
• Standard big-o notation is used to describe the limiting

behavior of a function. Õ denotes potential logarithmic

factors which are ignored, i.e., f = Õ(g) is equivalent to

f = O(g logk(g)) for some constant k.
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Basics
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1

Basic Linear Algebra

This section reviews basics from linear algebra, such as eigenvalues and

eigenvectors, that are relevant to this monograph. The spectral theorem

for symmetric matrices and min–max characterizations of eigenvalues

are derived.

1.1 Spectral Decomposition of Symmetric Matrices

One way to think of an m × n matrix A with real entries is as a linear

operator from Rn to Rm which maps a vector v ∈ Rn to Av ∈ Rm.
Let dim(S) be dimension of S, i.e., the maximum number of linearly

independent vectors in S. The rank of A is defined to be the dimension

of the image of this linear transformation. Formally, the image of A

is defined to be Im(A)
def
= {u ∈ Rm : u = Av for some v ∈ Rn}, and the

rank is defined to be rank(A)
def
= dim(Im(A)) and is at most min{m,n}.

We are primarily interested in the case when A is square, i.e., m =

n, and symmetric, i.e., A> = A. Of interest are vectors v such that

Av = λv for some λ. Such a vector is called an eigenvector of A with

respect to (w.r.t.) the eigenvalue λ. It is a basic result in linear algebra

that every real matrix has n eigenvalues, though some of them could

9
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10 Basic Linear Algebra

be complex. If A is symmetric, then one can show that the eigenvalues

are real. For a complex number z = a + ib with a,b ∈ R, its conjugate

is defined as z̄ = a − ib. For a vector v, its conjugate transpose v? is

the transpose of the vector whose entries are conjugates of those in v.

Thus, v?v = ‖v‖2.

Lemma 1.1. If A is a real symmetric n × n matrix, then all of its

eigenvalues are real.

Proof. Let λ be an eigenvalue of A, possibly complex, and v be the

corresponding eigenvector. Then, Av = λv. Conjugating both sides we

obtain that v?A> = λv?, where v? is the conjugate transpose of v.

Hence, v?Av = λv?v, since A is symmetric. Thus, λ‖v‖2 = λ‖v‖2
which implies that λ = λ. Thus, λ ∈ R.

Let λ1 ≤ λ2 ≤ ·· · ≤ λn be the n real eigenvalues, or the spectrum, of A

with corresponding eigenvectors u1, . . . ,un. For a symmetric matrix, its

norm is

‖A‖ def
= max{|λ1(A)|, |λn(A)|}.

We now study eigenvectors that correspond to distinct eigenvalues.

Lemma 1.2. Let λi and λj be two eigenvalues of a symmetric matrix

A, and ui, uj be the corresponding eigenvectors. If λi 6= λj , then

〈ui,uj〉 = 0.

Proof. Given Aui = λiui and Auj = λjuj , we have the following

sequence of equalities. Since A is symmetric, u>i A
> = u>i A. Thus,

u>i Auj = λiu
>
i uj on the one hand, and u>i Auj = λju

>
i uj on the

other. Therefore, λju
>
i uj = λiu

>
i uj . This implies that u>i uj = 0 since

λi 6= λj .

Hence, the eigenvectors corresponding to different eigenvalues are

orthogonal. Moreover, if ui and uj correspond to the same eigen-

value λ, and are linearly independent, then any linear combination

Full text available at: http://dx.doi.org/10.1561/0400000054



1.1 Spectral Decomposition of Symmetric Matrices 11

is also an eigenvector corresponding to the same eigenvalue. The maxi-

mal eigenspace of an eigenvalue is the space spanned by all eigenvectors

corresponding to that eigenvalue. Hence, the above lemma implies that

one can decompose Rn into maximal eigenspaces Ui, each of which cor-

responds to an eigenvalue of A, and the eigenspaces corresponding to

distinct eigenvalues are orthogonal. Thus, if λ1 < λ2 < · · · < λk are the

set of distinct eigenvalues of a real symmetric matrix A, and Ui is the

eigenspace associated with λi, then, from the discussion above,

k∑
i=1

dim(Ui) = n.

Hence, given that we can pick an orthonormal basis for each Ui, we may

assume that the eigenvectors of A form an orthonormal basis for Rn.
Thus, we have the following spectral decomposition theorem.

Theorem 1.3. Let λ1 ≤ ·· · ≤ λn be the spectrum of A with corre-

sponding eigenvalues u1, . . . ,un. Then, A =
∑n

i=1λiuiu
>
i .

Proof. Let B
def
=
∑n

i=1λiuiu
>
i . Then,

Buj =
n∑
i=1

λiuiu
>
i uj

= λjuj

= Auj .

The above is true for all j. Since ujs are orthonormal basis of Rn, we

have for all v ∈ Rn, Av = Bv. This implies A = B.

Thus, when A is a real and symmetric matrix, Im(A) is spanned by the

eigenvectors with nonzero eigenvalues. From a computational perspec-

tive, such a decomposition can be computed in time polynomial in the

bits needed to represent the entries of A.1

1To be very precise, one can only compute eigenvalues and eigenvectors to a high enough

precision in polynomial time. We will ignore this distinction for this monograph as we do
not need to know the exact values.
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12 Basic Linear Algebra

1.2 Min–Max Characterizations of Eigenvalues

Now we present a variational characterization of eigenvalues which is

very useful.

Lemma 1.4. If A is an n × n real symmetric matrix, then the largest

eigenvalue of A is

λn(A) = max
v∈Rn\{0}

v>Av

v>v
.

Proof. Let λ1 ≤ λ2 ≤ ·· · ≤ λn be the eigenvalues of A, and let

u1,u2, . . . ,un be the corresponding orthonormal eigenvectors which

span Rn. Hence, for all v ∈ Rn, there exist c1, . . . , cn ∈ R such that

v =
∑

i ciui. Thus,

〈v,v〉 =

〈∑
i

ciui,
∑
i

ciui

〉

=
∑
i

c2
i .

Moreover,

v>Av =

(∑
i

ciui

)>∑
j

λjuju
>
j

(∑
k

ckuk

)

=
∑
i,j,k

cickλj(u
>
i uj) · (u>j uk)

=
∑
i

c2
iλi

≤ λn
∑
i

c2
i = λn 〈v,v〉 .

Hence, ∀ v 6= 0, v>Av
v>v

≤ λn. This implies,

max
v∈Rn\{0}

v>Av

v>v
≤ λn.
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1.2 Min–Max Characterizations of Eigenvalues 13

Now note that setting v = un achieves this maximum. Hence, the

lemma follows.

If one inspects the proof above, one can deduce the following lemma

just as easily.

Lemma 1.5. If A is an n × n real symmetric matrix, then the smallest

eigenvalue of A is

λ1(A) = min
v∈Rn\{0}

v>Av

v>v
.

More generally, one can extend the proof of the lemma above to the

following. We leave it as a simple exercise.

Theorem 1.6. If A is an n × n real symmetric matrix, then for all

1 ≤ k ≤ n, we have

λk(A) = min
v∈Rn\{0},v>ui=0,∀i∈{1,...,k−1}

v>Av

v>v
,

and

λk(A) = max
v∈Rn\{0},v>ui=0,∀i∈{k+1,...,n}

v>Av

v>v
.

Notes

Some good texts to review basic linear algebra are [35, 82, 85]. Theo-

rem 1.6 is also called the Courant–Fischer–Weyl min–max principle.
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[16] A. A. Benczúr and D. R. Karger, “Approximating s–t minimum cuts in Õ(n2)
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