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Preface

Beginning with the paper A Topological Approach to Evasiveness by

Kahn, Saks, and Sturtevant [18], there have been a number of interest-

ing research papers that use topological methods to prove lower bounds

on the complexity of graph properties. This is a fascinating topic that

lies at the interface between mathematics and theoretical computer

science. The goal of this text is to offer an integrated version of the

underlying proofs in this body of research. While there are a number

of very good expositions available on topological methods in decision-

tree complexity, all those that I have seen refer to other sources for

the proofs of some topological results (including the key fixed-point

theorem of R. Oliver [32]). In this text I have attempted to give a com-

pletely self-contained account.

I have not assumed that the reader has any prior background in

algebraic topology—all constructions from that subject are developed

from scratch. The only prerequisite is a high level of comfort with dis-

crete mathematics and linear algebra. Indeed, though I will sometimes

refer to subsets of Rn for intuition, all the results in this text finally

rest on manipulations of finite sets.

While I was preparing this work for publication, I learned about

the new book A Course in Topological Combinatorics by Mark de

Longueville [27]. This book gives a similar treatment of topological

methods for proofs of complexity of graph properties, including a

proof of Oliver’s theorem. Whereas my text is more economical and

is intended to offer as direct a route as possible to [18] and its related

results, de Longueville’s book is broader in scope and encompasses

topological methods for other combinatorial problems. I hope that the

community will find both works beneficial.

The general flow of the text is to begin with foundational material

and then to build up more complex results at a steady pace. The cap-

stone results, which consist of three lower bounds on the complexity of

graph properties, appear in the final part of the text. My undergradu-

ate advisor Richard Hain once said that the final goal of mathematics

is “to tell a good story.” That is what I have attempted to do here, and

I hope the reader will enjoy the result.
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Abstract

Many graph properties (e.g., connectedness, containing a complete

subgraph) are known to be difficult to check. In a decision-tree model,

the cost of an algorithm is measured by the number of edges in the

graph that it queries. R. Karp conjectured in the early 1970s that all

monotone graph properties are evasive—that is, any algorithm which

computes a monotone graph property must check all edges in the worst

case. This conjecture is unproven, but a lot of progress has been made.

Starting with the work of Kahn, Saks, and Sturtevant in 1984, topo-

logical methods have been applied to prove partial results on the Karp

conjecture. This text is a tutorial on these topological methods. I give

a fully self-contained account of the central proofs from the paper

of Kahn, Saks, and Sturtevant, with no prior knowledge of topol-

ogy assumed. I also briefly survey some of the more recent results on

evasiveness.
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1

Introduction

Let V be a finite set of size n, and let G(V ) denote the set of undirected

graphs on V . For our purposes, a graph property is simply a function

f : G(V )→ {0,1} (1.1)

which is such that whenever two graphs Z and Z ′ are isomorphic,

f(Z) = f(Z ′). A graph Z “has property f” if f(Z) = 1.

We can measure the cost of an algorithm for computing f by count-

ing the number of edge-queries that it makes. We assume that these

edge-queries are adaptive (i.e., the choice of query may depend on the

outcomes of previous queries). An algorithm for f can thus be repre-

sented by a binary decision-tree (see Figure 1.1). The decision-tree

complexity of f , which we denote by D(f), is the least possible depth

for a decision-tree that computes f . In other words, D(f) is the num-

ber of edge-queries that an optimal algorithm for f has to make in the

worst case.

Some graph properties are difficult to compute. For example, let

h(Z) = 1 if and only if Z contains a cycle. Suppose that an algorithm

for h makes queries to an adversary whose goal is to maximize cost. The

adversary can adaptively construct a graph Y to foil the algorithm: each

1
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2 Introduction

Fig. 1.1 A binary decision tree.

time a pair (i, j) ∈ V × V is queried, the adversary answers “yes,”

unless the inclusion of that edge would necessarily make the graph Y

have a cycle, in which case he answers “no.” After
(
n
2

)
− 1 edge-queries

by the algorithm have been made, the known edges will form a tree on

the elements of V . The algorithm at this point will have no choice but

to query the last unknown edge to determine whether or not a cycle

exists. We conclude from this argument that h is a graph property

that has the maximal decision-tree complexity
(
n
2

)
. Such properties are

called evasive.

A graph property is monotone if it is either always preserved by

the addition of edges (monotone-increasing) or always preserved by the

deletion of edges (monotone-decreasing). In 1973 the following conjec-

ture was made [34].

Conjecture 1.1 (The Karp Conjecture). All nontrivial monotone

graph properties are evasive.

To date, this conjecture is unproven and no counterexamples are known.

However in 1984, a seminal paper was published by Kahn et al. [18]

which proved the conjecture in some cases. This paper showed that

evasiveness can be established through the use of topological fixed-point

theorems. It has been followed by many more papers which exploited

its method to prove better results.
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1.1 Background 3

This text is a tutorial on the topological method of [18]. My goal is

to provide background on the problem and to take the reader through

all of the necessary proofs. Let us begin with some history.

1.1 Background

Research on the decision-tree complexity of graph properties—

including properties for both directed and undirected graphs—dates

back at least to the early 1970s [4, 5, 15, 16, 21, 29, 34]. Proofs were

given in early papers that certain specific graph properties are eva-

sive (e.g., connectedness, containment of a complete subgraph of fixed

size), and that other properties at least have decision-tree complexity

Ω(n2). Although it was known that there are graph properties whose

decision-tree complexity is not Ω(n2) (see Example 18 in [4]), Aan-

deraa and Rosenberg conjectured that all monotone graph properties

have decision-tree complexity Ω(n2) [34]. This conjecture was proved

by Rivest and Vuillemin [33] who showed that all monotone graph prop-

erties satisfy D(f) ≥ n2/16. Kleitman and Kwiatkowski [22] improved

this bound to D(f) ≥ n2/9.

Underlying some of these proofs is the insight that if a graph prop-

erty f has nonmaximal decision-tree complexity, then the collection of

graphs that satisfy f have some special structure. For example, if f

is not evasive, then in the set of graphs satisfying f there must be an

equal number of graphs having an odd number of edges and an even

number of edges. Rivest and Vuillemin [33] used the fact that if f has

decision-tree complexity
(
n
2

)
− k, then the weight enumerator of f (i.e.,

the polynomial
∑

j cjt
j , where cj is the number of f -graphs containing j

edges) must be divisible by (1 + t)k.

A topological method for the evasiveness problem was introduced

in [18]. Suppose that h is a monotone-increasing graph property on a

vertex set {0,1, . . . ,n − 1}. Let T be the collection of all graphs that

do not satisfy h. The set T has the property that if G is in T , then all

of its subgraphs are in T . This is a close analogy to the property which

defines simplicial complexes in topology. Let {xab | 0 ≤ i < j < n} be a

labeled collection of linearly independent vectors in some vector space

RN . Each graph in T determines a simplex in RN : one takes the convex

Full text available at: http://dx.doi.org/10.1561/0400000055



4 Introduction

Fig. 1.2 The simplicial complex for “connectedness” on four vertices.

hull of the vectors xab corresponding to the edges {a,b} that are in

the graph. The union of these hulls forms a simplicial complex, Γh.

The complex for “connectedness” on four vertices (represented in three

dimensions) is shown in Figure 1.2.

A fundamental insight of [18] is that nonevasiveness can be trans-

lated to a topological condition. If h is not evasive, then Γh has a cer-

tain topological property called collapsibility. This property, which

we will define formally later in this text, essentially means that Γh can

be folded into itself and contracted to a single point. This property

implies the even–odd weight-balance condition mentioned above, but

it is stronger. In particular, it allows for the application of topological

fixed-point theorems.

The following theorem is attributed to R. Oliver.

Theorem 1.2 (Oliver [32]). Let Γ be a collapsible simplicial com-

plex. Let G be a finite group which satisfies the following condition:

(*) There is a normal subgroup G′ ⊆ G, whose size is a power of

a prime, such that G/G′ is cyclic.

Then, any action of G on Γ has a fixed point.

Full text available at: http://dx.doi.org/10.1561/0400000055



1.2 Outline of Text 5

When Γ = Γh, the fixed points of G correspond to graphs, and this

theorem essentially forces the existence of certain graphs that do not

satisfy h. This theorem is the basis for the following result of [18]:

Theorem 1.3(Kahn et al. [18]). Let f be a monotone graph prop-

erty on graphs of size pk, where p is prime. If f is not evasive, then it

must be trivial.

The proof of this theorem essentially proceeds by demonstrating an

appropriate group action G on the set of graphs of order pk such that

the only G-invariant graphs are the empty graph and the complete

graph.

Thus evasiveness is known for all values of n that are prime powers.

What about other values of n? One could hope that if the decision-

tree complexity is always
(
p
2

)
when the vertex set is size p, then the

quantity
(
p
2

)
is a lower bound for the cases p + 1, p + 2, and so forth.

Unfortunately there is no known way to show this. However, all is not

lost. The following general theorem is also proved in [18].

Theorem 1.4 (Kahn et al. [18]). Let f be a nontrivial monotone

graph property of order n. Then,

D(f) ≥ n2

4
− o(n2). (1.2)

The paper [18] was then followed by several other papers on evasive-

ness by other authors who used the topological approach to prove new

results on evasiveness [3, 8, 19, 23, 37, 38, 40]. Some of these papers

found new group actions G 	 ∆h to exploit in the nonprime cases.

The target results of this exposition are Theorems 1.3 and 1.4, and

a theorem by Yao on evasiveness of bipartite graphs [40]. Now let us

summarize what we need to do in order to get there.

1.2 Outline of Text

My goal in this exposition is to give a reader who does not know

algebraic topology a complete tutorial on topological proofs of eva-

siveness. Therefore, a fair amount of space will be devoted to building

Full text available at: http://dx.doi.org/10.1561/0400000055



6 Introduction

up concepts from algebraic topology. I have tended be economical in my

discussions and to develop concepts only on an as-needed basis. Read-

ers who wish to learn more algebraic topology after this exposition may

want to consult good references such as [14, 30].

We begin, in Basic Concepts, by formalizing the class of simplicial

complexes and its relation to the class of graph properties. While we

have presented a simplicial complex in this introduction as a subset of

Rn, it can also be defined simply as a collection of finite sets. (This is the

notion of an abstract simplicial complex.) Although the definition

in terms of subsets of Rn is helpful for intuition, the definition in terms

of finite sets is the one we will use in all proofs.

A critical construction in this monograph is the set of homology

groups of a simplicial complex. These groups are algebraic objects

which measure the shape of the complex, and also — crucially for our

purposes — help us understand the behavior of the complex under

automorphisms. Chain Complexes defines homology groups and pro-

vides some of the standard theory for them.

In Fixed-Point Theorems we prove some topological results. The

first is the Lefschetz fixed-point theorem. One way to state this theorem

is to say that any automorphism of a collapsible simplicial complex has

a fixed point. However we instead prove a theorem which applies to the

more general class of Fp-acyclic complexes. A simplicial complex is Fp-
acyclic if its homology groups (over Fp) are trivial. When a simplicial

complex is Fp-acyclic it behaves much like a collapsible complex (and

in particular, any automorphism has a fixed point). Finally, we prove a

version of Theorem 1.2. The proof of the theorem depends on finding

a tower of subgroups

{0} = G0 ⊂ G1 ⊂ G2 ⊂ ·· · ⊂ Gn = G, (1.3)

where each quotient Gi/Gi−1 is cyclic, and performing an inductive

argument.

Results on Decision-Tree Complexity proves Theorem 1.3, a

bipartite result of Yao [40], and Theorem 1.4. We conclude with an

informal discussion of a few of the more recent results on decision-tree

complexity of graph properties [3, 8, 19, 23, 37, 38].

Full text available at: http://dx.doi.org/10.1561/0400000055



1.3 Related Topics 7

My primary sources for this exposition were [10, 18, 30, 35, 40]. A

particular debt is owed to Du and Ko [10], which was my first intro-

duction to the subject.

1.3 Related Topics

I will briefly mention two alternative lines of research that are related

to the one I cover here. One can change the measure of complexity that

one is using to measure graph properties, and this leads to new prob-

lems requiring different methods. A natural variant is the randomized

decision-tree complexity. Suppose that in our decision-tree model,

our algorithm is permitted to make random choices at each step about

which edges to check. We define the cost of the algorithm on a particu-

lar input graph to be the expected number of edge queries, and the cost

of the algorithm as a whole to be the maximum of this quantity over

all input graphs. The minimum of this quantity over all algorithms is

the randomized decision-tree complexity, R(f).

There is a line of research studying the randomized decision tree

complexity of monotone graph properties [7, 11, 12, 13, 20, 31, 41].

While it is easy to see that R(f) can be less than
(
n
2

)
, there are graph

properties for which R(f) is provably Ω(n2) (such as the “emptiness

property”—the property that the graph contains no edges). It is con-

jectured that R(f) is always Ω(n2) for monotone graph properties, just

as in the deterministic model. The best proved lower bound [7, 13] is

Ω(n4/3 (logn)1/3).

Another variant of decision-tree complexity is bounded-error

quantum query complexity. A quantum query algorithm for a

graph property uses a quantum “oracle” in its computation. The oracle

accepts a quantum state which is a superposition of edge-queries to a

graph, and it returns a quantum state which encodes the answers to

those queries. The algorithm is permitted to use this oracle along with

arbitrary quantum operations to determine its result. The algorithm is

permitted to make errors, but the likelihood of an error must be below

a fixed bound on all inputs. (See [6].)

In the quantum case it is clear that a lower bound of Ω(n2) does

not hold: Grover’s algorithm [1] can search a space of size N in time

Full text available at: http://dx.doi.org/10.1561/0400000055



8 Introduction

Θ(
√
N) using an oracle model. With a modified version of Grover’s

algorithm, one can compute the emptiness property in time Θ(n). There

are a number of other monotone properties for which the quantum

query complexity is known to be o(n2) (see [9] for a good summary

on this topic). It is conjectured that all monotone graph properties

have quantum query complexity Ω(n). The best proved lower bound

is Ω(n2/3), from an unpublished result attributed to Santha and Yao

(see [36]).

1.4 Further Reading

Other expositions about topological proofs of evasiveness can be found

in [10] (in the context of computational complexity theory) and [24] (in

the context of algebraic topology), and also in Lovasz’s lecture notes

[26]. A reader who wishes to learn more about algebraic topology can

consult [30], or, for a more advanced treatment, [14]. For the partic-

ular subject of the topology of complexes arising from graphs, there

is an extensive treatment [17], which builds further on many of the

concepts that I will discuss here. And finally, for readers who generally

enjoy reading about applications of topology to problems in discrete

mathematics, the excellent book [28] contains more material of the

same flavor. It involves applications of a different topological result (the

Borsuk–Ulam theorem) to some problems in elementary mathematics.
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