
Online Matching and

Ad Allocation

Full text available at: http://dx.doi.org/10.1561/0400000057



Online Matching and
Ad Allocation

Aranyak Mehta

Google Research

Mountain View, CA 94043

USA
aranyak@google.com

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/0400000057



Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is A. Mehta, Online Matching and

Ad Allocation, Foundations and Trends R© in Theoretical Computer Science, vol 8,
no 4, pp 265–368, 2012

ISBN: 978-1-60198-718-1
c© 2013 A. Mehta

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc. for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000057



Foundations and Trends R© in
Theoretical Computer Science

Volume 8 Issue 4, 2012

Editorial Board

Editor-in-Chief:

Madhu Sudan

Microsoft Research New England

One Memorial Drive

Cambridge, Massachusetts 02142

USA

Editors

Bernard Chazelle (Princeton)

Oded Goldreich (Weizmann Inst.)

Shafi Goldwasser (MIT and Weizmann Inst.)

Sanjeev Khanna (University of Pennsylvania)

Jon Kleinberg (Cornell University)
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Abstract

Matching is a classic problem with a rich history and a significant

impact, both on the theory of algorithms and in practice. Recently there

has been a surge of interest in the online version of matching and its gen-

eralizations, due to the important new application domain of Internet

advertising. The theory of online matching and allocation has played a

critical role in designing algorithms for ad allocation. This monograph

surveys the key problems, models and algorithms from online match-

ings, as well as their implication in the practice of ad allocation. The

goal is to provide a classification of the problems in this area, an intro-

duction into the techniques used, a glimpse into the practical impact,

and to provide direction in terms of open questions. Matching continues

to find core applications in diverse domains, and the advent of massive

online and streaming data emphasizes the future applicability of the

algorithms and techniques surveyed here.
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1

Introduction

A matching in a graph G(V,E) is a set of edges M ⊆ E such that for

every v ∈ V , there is at most one edge in M incident on v. A maximum

matching is a matching with the largest size. The problem of finding

a maximum matching in a graph is a classic one, rich in history and

central to algorithms and complexity. The elegance and complexity

of the theory of matching is equally complemented by a rich set of

important applications; indeed this problem arises whenever we need

to connect any pairs of entities, for example, applicants to jobs, spouses

to each other, goods to buyers, or organ donors to recipients.

In this monograph we will focus on the online version of the

problem, in bipartite graphs. There has been considerable interest

recently in online bipartite matching and its generalizations, driven

by the important new applications of Ad Allocation in Internet Adver-

tising, corresponding to matching ad impressions to ad slots. We will

describe this motivating application first, before giving a brief overview

of the history and foundations of matching.

1
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2 Introduction

1.1 Ad Allocation

Internet advertising constitutes perhaps the largest matching problem

in the world, both in terms of dollars and number of items. Ads are

sold either by auction or through contracts, and the resulting supply

and demand constraints lead directly to the question of finding an opti-

mal matching between the ad slots and the advertisers. The problem is

inherently online, since we have to show an ad as soon as the request

for an ad slot arrives, and we do not have complete information about

the arriving ad slots in advance. Furthermore, offline optimization tech-

niques are not even feasible due to the size of the problems, especially

given the fact that dealing effectively with the long tail of ad requests

is of critical business importance.

The problem of online matching and allocation has generated a

lot of interest in the algorithms community, with the introduction of

a large number of new problems, models and algorithmic techniques.

This is not only due to the importance of the motivation but also due

to the new and elegant questions and techniques that emerge. The first

objective of this monograph is to provide a systematic survey of this

literature.

This theoretical work has had an influential effect on the algorith-

mic framework used by virtually all of the companies which are in the

Internet advertising space. The major contribution has been the intro-

duction of the technique of bid-scaling. In this technique we scale the

relevant parameter, for example, the bid, by a scaling function, and

then choose that edge to match which has the highest scaled bid. This

is to be compared to the greedy strategy which simply chooses the edge

with the highest bid. The design of optimal algorithms in the online

model has also led to the formulation of bid-scaling heuristics. Section 9

provides a brief survey of applications of these algorithms and heuris-

tics, including the domain specific details. Let us quickly note that in

the practical problem, there are typically three players in the market:

the users of the service, the platform (for example, the search engine),

and the advertisers. Thus there are three objective functions to con-

sider: the quality of the ads shown, the revenue to the platform and the

return on investment to the advertisers. We will consider these in more

Full text available at: http://dx.doi.org/10.1561/0400000057



1.2 Background on Matching: Applications, History and Offline Algorithms 3

detail later, but for most of the survey we will focus on maximizing

the efficiency (the total size or weight) of the matching, which can be a

good proxy for all relevant objective functions. A second point to note

is that different advertising platforms have their own specific settings,

for example, second-price auctions vs first-price, single slot vs position

auctions, contracts vs auctions, etc. We will abstract these details out

for the most part, and mention how they can be modeled, in Section 9.

1.2 Background on Matching: Applications, History and
Offline Algorithms

The problem of matching is relevant to a wide variety of important

application domains, besides our motivating application of ad alloca-

tion. In Economics, matching is relevant whenever there is a two-sided

market (see, for example, [86]). One important formulation is the prob-

lem of finding a stable matching or a Pareto efficient matching in a

graph [48]. This has found several important applications in the real

world: it is used in matching of residents to hospitals (starting with

[85]), students to high schools [1], and even kidney donors to recipi-

ents (see Kidney Exchanges [84]); Roth and Shapley were awarded the

2012 Nobel Prize in Economics for their influential and impactful work

on this topic. Matching, with its generalizations, pervades Computer

Science as a core algorithmic problem. For example, in Networking, an

important problem is that of finding a good switch scheduling algorithm

in input queued (IQ) switch architectures (see [76], among others). This

reduces to that of finding a maximum matching to match input ports

of a switch to its output ports at every time step. As another exam-

ple, matching is core to resource allocation problems of various types

from the scheduling and Operations Research literature, for example,

allocating jobs to machines in cloud computing. Recently, the online

matching algorithms from this survey have found applications [54] in

crowdsourcing markets.

Besides its high applicability, matching is a central problem in the

development of the field of algorithms, and indeed of Theoretical CS.

We briefly overview this history next; the rest of this section can be

skipped by readers with a strong background in classic matching theory.

Full text available at: http://dx.doi.org/10.1561/0400000057



4 Introduction

The basic algorithms rely on the definition of augmenting paths:

given a matching M in the graph, an augmenting path is an odd-

length (simple) path with its edges alternating between being in M

and not, and with the two end edges not in M . Berge’s Theorem [17]

states that:

Theorem 1.1 (Berge). A matching M is maximum iff it does not

admit an augmenting path.

If a matching M admits an augmenting path P , then M can be aug-

mented by flipping the membership of the edges of P in and not in M .

This transforms M into a matching M ′ whose size is one more than that

of M . An algorithm can proceed in this manner, by starting with any

matching, and iteratively finding an augmenting path, and augmenting

the matching.

This approach relies on being able to find augmenting paths effi-

ciently. This is possible in bipartite graphs: one can find augmenting

paths in bipartite graphs in time O(|E|), by constructing breadth-

first search trees (with alternating levels) from unmatched vertices.

On bipartite graphs, the problem also has a close relationship with the

maximum flow problem; one can reduce unweighted bipartite match-

ing to a max-flow problem by adding a source and a sink to the graph

appropriately. The fastest algorithms for this problem [39, 55] run in

O(
√
|V ||E|) time.

The question of finding a maximum matching in general (non-

bipartite) graphs is a lot more difficult. Edmonds [42] presented the

Blossom algorithm to compute a maximum matching in a general graph

in polynomial time. The difficulty in general graphs comes precisely

due to the presence of odd cycles. The algorithm proceeds by identi-

fying structures, called blossoms, with respect to the current match-

ing. A blossom consists of an odd cycle of, say, 2k + 1 edges, of which

exactly k edges belong to the matching, such that there further exists an

even length alternating path, called the stem, starting with a matched

edge at a vertex of the cycle. The algorithm starts with any matching

and searches for an augmenting path, which can immediately augment

the matching. If it finds a blossom instead, it contracts the blossom into

Full text available at: http://dx.doi.org/10.1561/0400000057



1.2 Background on Matching: Applications, History and Offline Algorithms 5

a single vertex and proceeds recursively. If it finds an augmenting path

with vertices corresponding to contracted blossoms, then it expands

the blossoms (recursively) finding a real augmenting path in the orig-

inal graph. The running time of this algorithm, with appropriate data

structures, is O(|V |2|E|). The fastest algorithm for matching in general

graphs, due to Micali and Vazirani [91], runs in O(
√
|V ||E|) time.

Let us also quickly note a property of maximal matchings, defined

as those which cannot be improved upon by only adding more edges.

Theorem 1.2. If M is a maximal matching, and M∗ a maximum

matching, then |M | ≥ 1
2 |M

∗|.

This is fairly easy to see: since M is maximal, none of the edges in M∗

can be added to it while keeping it a matching. Hence, every edge in

M∗ uniquely shares an end-point with an edge in M . Thus the number

of vertices in M is at least the number of edges in M∗, giving the result.

We will generalize this theorem later, to give a bound for greedy online

algorithms for all the generalizations of matching that we will study.

In the problem of edge-weighted matching, the edges of G have

weights, and the goal is to find a matching with the highest sum of

weights of the edges in the matching (in the bipartite case, this is known

as the Assignment Problem). The algorithm for the edge-weighted

bipartite version is more complex than the unweighted problem. It

works by updating the matching solution simultaneously with a set of

weights on the vertices. This is known as the Hungarian Algorithm [68]

(due to Kuhn, based on the work of König and Egerváry), and it

is possibly the first example of a primal–dual update algorithm for

Linear Programming (here the LP is to maximize the total weight

of the matching over the polytope of all fractional matchings, and

the weights on the vertices that the algorithm uses correspond to the

dual variables of the LP). One observation to make is that all these

algorithms are highly offline, that is, not easily adapted to the online

setting, a point we will return to in the next section.

As is well-known, there was no fixed formulation of an efficient

algorithm at the time that the Blossom algorithm was invented. The

Blossom algorithm directly led to the formalization of polynomial time

Full text available at: http://dx.doi.org/10.1561/0400000057



6 Introduction

as the correct definition. The impact of this definition is obviously

immense to the fields of algorithms, complexity and Computer Science

in general, essentially giving us the definition of the complexity class P .

Furthermore, the definition of the class #P is also closely related to

matching theory, as Valiant [90] proved that finding the number of per-

fect matchings in a graph (equivalently, the Permanent of a matrix)

is NP -hard, and in fact complete for #P . Matching is also a canon-

ical problem for the study of randomized parallel algorithms and the

class RNC; Karp et al. [62], and Mulmuley et al. [82] gave RNC algo-

rithms for finding a maximum matching. The history and algorithms

for offline matching have been excellently documented, for example, in

the book [71] by Lovász and Plummer.

We will also study the online versions of several generalizations

of the basic bipartite matching problem. Most of these are special

cases of the Linear Programming problem, which has a vast literature

of its own (see, for example, [30]). The classification of these prob-

lems and the LP formulations for the offline versions are described in

Section 2.

1.3 Online Input

In this monograph we will focus on the online version of the bipartite

matching problem and its generalizations. The area of online algorithms

and competitive analysis has been very useful in abstracting and study-

ing problems in which the input is not known in advance but is revealed

incrementally, even as the algorithm makes its own decisions (see the

book by Borodin and El-Yaniv [19]). This is precisely the situation in

our motivating applications in which ad slots arrive online, and have to

be allocated ads upon arrival, with zero, partial, or stochastic knowl-

edge of the ad slots yet to arrive. We will model our applications via

different problems and online input models. In the simplest version

of the problem (online bipartite matching), there is a bipartite graph

G(U,V,E), in which U is known to the algorithm, vertices in V are

unknown, but arrive one at a time, revealing the edges incident on

them as they arrive. The algorithm has to match (or forgo) a vertex

as soon as it arrives. Furthermore, all matches made are irrevocable;

Full text available at: http://dx.doi.org/10.1561/0400000057



1.3 Online Input 7

this is to capture the fact that the arriving vertex v corresponds to an

ad-slot on a web page viewed by a user.

Note that all the offline algorithms described in Section 1.2 are

“highly offline”. They typically involve initialization with some arbi-

trary matching and subsequent iterative improvements, via augmenting

paths or guidance from dual variables. Thus they are not applicable to

the online problem where the matches have to be made incrementally

as vertices arrive, and are irrevocable. As we will see, the online algo-

rithms work very differently, and often can provide only an approximate

solution, that is, with a competitive ratio less than 1.

While our motivation for the online problem comes from ad allo-

cation, large matching questions are becoming more prevalent. Often,

the problem is online in nature, for example, the matching of arriving

tasks to workers in crowdsourcing applications. Even in applications

which are not strictly online, we often face problems with massive data,

for example, in a streaming setting. Again, the offline algorithms are

not applicable, and we need fast, simple, possibly approximate solu-

tions, for example, in a streaming setting, rather than complex optimal

algorithms. We expect that the algorithms surveyed here, or further

variants, will be found to be useful in future applications.

Section 2 provides a classification of the different problems and

models. Sections 3–8 treats the different problems in detail, giving the

different algorithmic techniques. Section 9 describes the application set-

ting and the algorithms and heuristics based on the theoretical results.

We will provide open questions throughout the survey, and conclude in

Section 10 with a list of additional open problems and future directions.

Full text available at: http://dx.doi.org/10.1561/0400000057
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