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ABSTRACT

Fourier analysis has been extremely useful in many areas of
mathematics. In the last several decades, it has been used
extensively in theoretical computer science. Higher-order
Fourier analysis is an extension of the classical Fourier anal-
ysis, where one allows to generalize the “linear phases” to
higher degree polynomials. It has emerged from the semi-
nal proof of Gowers of Szemerédi’s theorem with improved
quantitative bounds, and has been developed since, chiefly
by the number theory community. In parallel, it has found
applications also in theoretical computer science, mostly in
algebraic property testing, coding theory and complexity
theory.

The purpose of this book is to lay the foundations of higher-
order Fourier analysis, aimed towards applications in theo-
retical computer science with a focus on algebraic property
testing.

Hamed Hatami, Pooya Hatami and Shachar Lovett (2019), “Higher-order Fourier 
Analysis and Applications”, Foundations and Trends©R in Theoretical Computer 
Science: Vol. 13, No. 4, pp 247–448. DOI: 10.1561/0400000064.
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1
Introduction

The purpose of this text is to provide an introduction to the field
of higher-order Fourier analysis with an emphasis on its applications
to theoretical computer science. Higher-order Fourier analysis is an
extension of the classical Fourier analysis. It was initiated by a seminal
paper of Gowers [37] on a new proof for Szemerédi’s theorem, and has
been developed by several mathematicians over the past few decades
in order to study problems in an area of mathematics called additive
combinatorics, which is primarily concerned with linear patterns such
as arithmetic progressions in subsets of integers. While most of the
developments in additive combinatorics were focused on the group Z,
it was quickly noticed that the analogous questions and results for the
group Fn2 are of great importance to theoretical computer scientists as
they are related to basic concepts in areas such as property testing and
coding theory.

Classical Fourier analysis is a powerful tool that studies functions
by expanding them in terms of the Fourier characters, which are “linear
phase functions” such as n 7→ e−

2πi
N
n for the group ZN , or (x1, . . . , xn) 7→

(−1)
∑

ajxj for the group Fn2 . Note that n and
∑
ajxj are both linear

functions. Fourier analysis has been extremely successful in the study

2
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3

of certain linear patterns such as three-term arithmetic progressions.
For example, if the number of three-term arithmetic progressions in
a subset A ⊆ ZN deviates from the expected number of them in a
random subset of ZN with the same cardinality as A, then A must have
significant correlation with a linear phase function. In other words, the
characteristic function of A must have a large non-principal Fourier
coefficient. Roth [66] used these ideas to show that every subset of
integers of positive upper density contains an arithmetic progression
of length 3. However, classical Fourier analysis seems to be inadequate
in detecting more complex linear patterns such as four-term or longer
arithmetic progressions. Indeed, one can easily construct dense sets
A ⊆ ZN that do not have significant correlation with any linear phase
function, and nevertheless do not contain the number of four-term
arithmetic progressions that one expects by considering random subsets
of the same cardinality. Hence in order to generalize Roth’s theorem to
arithmetic progressions of arbitrary length, Szemerédi [76, 77] departed
from the Fourier analytic approach and appealed to purely combinatorial
ideas. However, his proof of this major result, originally conjectured by
Erdös and Turán [27], provided poor quantitative bounds on the minimal
density that guarantees the existence of the arithmetic progressions of
the desired length. Later Furstenberg [31] developed an ergodic-theoretic
framework and gave a new proof for Szemerédi’s theorem, but his proof
was still qualitative. His theory is further developed by - to name a few
- Host, Kra, Ziegler, Bergelson, Tao (See e.g. [51], [88], and [10, 82]),
and there are important parallels between this theory and higher-order
Fourier analysis. Indeed some of the terms that are commonly used in
higher-order Fourier analysis such as “phase functions” or “factors” are
ergodic theoretic terms.

Generalizing Roth’s original proof and obtaining good quantitative
bounds for Szemerédi’s theorem remained a challenge until finally Gow-
ers [37] discovered that the essential idea to overcome the obstacles
described above is to consider higher-order phase functions. His proof
laid the foundation for the area of higher-order Fourier analysis, where
one studies a function by approximating it by a linear combination of
few higher-order phase functions. Although the idea of using higher-
order phase functions already appears in Gowers’s work [37], it was not

Full text available at: http://dx.doi.org/10.1561/0400000064



4 Introduction

until more than fifteen years later that some of the major technical diffi-
culties in achieving a satisfactory theory of higher-order Fourier analysis
have been resolved. By now, due to great contributions by prominent
mathematicians such as Gowers, Green, Tao, Szegedy, Host, Kra and
Ziegler (See [75] and [80] and the references there), there is a deep
understanding of qualitative aspects of this theory. However, despite
these major breakthroughs, still very little is known from a quantitative
perspective as many of the proofs are based on soft analytic techniques,
and obtaining efficient bounds is one of the major challenges in this
area.

This survey will emphasize the applications of the theory of higher-
order Fourier analysis to theoretical computer science, and to this end,
we will present the foundations of this theory through such applications,
in particular to the area of property testing. In the early nineties, it was
noticed by Blum et al. [20] and Babai et al. [6] that Fourier analysis
can be used to design a very efficient algorithm that distinguishes linear
functions f : Fn2 → F2 from functions that are far from being linear.
This initiated the area of property testing, the study of algorithms that
query their input a very small number of times and with high probability
decide correctly whether their input satisfies a given property or is “far”
from satisfying that property. It was soon noticed that generalizing
the linearity test of Blum et al. [20] and Babai et al. [6] to other
properties such as the property of being a quadratic polynomial requires
overcoming the same obstacles that one faces in an attempt to generalize
Fourier analytic study of three-term arithmetic progressions to four-term
arithmetic progressions. Hence in parallel to additive combinatorics,
theoretical computer scientists have also been working on developing
tools in higher-order Fourier analysis to tackle such problems. In fact
some of the most basic results, such as the inverse theorem for the
Gowers U3 norm for the group Fn2 , were first proved by Samorodnitsky
[70] in the context of property testing for quadratic polynomials.

In Part I we discuss the linearity test due to Blum et al. [20]
and its generalization to higher degree polynomials. We will see how
this naturally necessitates the development of a theory of higher-order
Fourier analysis. In Part II we present the fundamental results of the
theory of higher-order Fourier analysis. Since we are interested in the
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applications to theoretical computer science, we will only consider the
group Fnp where p is a fixed prime, and asymptotics are as n tends to
infinity. Higher-order Fourier analysis for the group ZN , which is of more
interest for number theoretic applications, shares the same basic ideas
but differs on some technical aspects. For this group, the higher order
phase functions, rather than being exponentials of polynomials, are the
so called nilsequences. We refer the interested reader to Tao [80] for
more details. In Part III we use the tools developed in Part II to prove
some general results about property testing for algebraic properties.

Throughout most of the text, we will consider fields of constant
prime order, namely F = Fp where p is a constant, and study functions
from Fnp to R, C, or Fp when n is growing. Our choice is mainly for
simplicity of exposition, as there have been recent research that extend
several of the tools from higher-order Fourier analysis to large or non-
prime fields. We refer the interested reader to a paper by Bhattacharyya
et al. [12] for treatment of non-prime fields. In Chapter 8 we will discuss
a paper by Bhowmick and Lovett [19] considering the case Fnp when p
is allowed to grow as a function of n.
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