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Abstract

Constraint satisfaction problems are a central pillar of modern com-
putational complexity theory. This survey provides an introduction to
the rapidly growing field of Quantum Hamiltonian Complexity, which
includes the study of quantum constraint satisfaction problems. Over
the past decade and a half, this field has witnessed fundamental break-
throughs, ranging from the establishment of a “Quantum Cook-Levin
Theorem” to deep insights into the structure of 1D low-temperature
quantum systems via so-called area laws. Our aim here is to provide a
computer science-oriented introduction to the subject in order to help
bridge the language barrier between computer scientists and physicists
in the field. As such, we include the following in this survey: (1) The
motivations and history of the field, (2) a glossary of condensed mat-
ter physics terms explained in computer-science friendly language, (3)
overviews of central ideas from condensed matter physics, such as in-
distinguishable particles, mean field theory, tensor networks, and area
laws, and (4) brief expositions of selected computer science-based re-
sults in the area. For example, as part of the latter, we provide a novel
information theoretic presentation of Bravyi’s polynomial time algo-
rithm for Quantum 2-SAT.

S. Gharibian, Y. Huang, Z. Landau and S. W. Shin. Quantum Hamiltonian
Complexity. Foundations and TrendsR© in Theoretical Computer Science, vol. 10,
no. 3, pp. 159–282, 2014.
DOI: 10.1561/0400000066.
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1
Introduction

“Computers are physical objects, and computations are
physical processes. What computers can or cannot compute
is determined by the laws of physics alone. . . ”
— David Deutsch [125]

The Cook-Levin Theorem [53, 111], which states that the SATIS-
FIABILITY problem is NP-complete, is one of the cornerstones of
modern computational complexity theory [22]. One of its implications
is the following simple, yet powerful, statement: Computation is,
in a well-defined sense, local. Yet, as David Deutsch’s quote above
perhaps foreshadows, this is not the end of the story, but rather
its beginning. Indeed, just as a sequence of computational steps on
a Turing machine can be encoded into local classical constraints
(as in the Cook-Levin theorem), the quantum world around us
also evolves “locally”, and this quantum evolution can be encoded
into an analogous notion of local quantum constraints. The study
of such quantum constraint systems underpins an emerging field
at the intersection of condensed matter physics, computer science,
and mathematics, known as Quantum Hamiltonian Complexity (QHC).

2
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3

At the heart of QHC lies a central object of study: The notion of a
local Hamiltonian H, which can intuitively be thought of as a quantum
constraint system (in this introduction, we will keep our discussion in-
formal in order to convey high-level ideas; all formal definitions, includ-
ing an introduction to quantum information, are given in Chapter 2).
To introduce local Hamiltonians, we begin with the fact that the state
of a quantum system S on n qudits is described by some dn-dimensional
complex unit vector |ψ〉 ∈ (Cd)⊗n. How can we describe the evolution
of the state |ψ〉 of S as time elapses? This is given by the Schrödinger
equation, which says that after time t, the new state of our system is
e−iHt|ψ〉, where H is a dn × dn-dimensional complex (more precisely,
Hermitian) operator called a Hamiltonian. Here, the precise definition
of the matrix exponential eiHt is irrelevant; what is important is the
dependence of the Schrödinger equation onH. In other words, Hamilto-
nians are intricately tied to the evolution of quantum systems. We thus
arrive at a natural question: Which classes of Hamiltonians correspond
to actual quantum evolutions for systems occurring in nature? It turns
out that typically, only a special class of Hamiltonians is physically
relevant: These are known as local Hamiltonians.

Roughly, a k-local Hamiltonian is a Hermitian matrix which has a
succinct representation of the form

H =
∑
i

Hi,

where each Hi acts “non-trivially” only on some subset of k qudits.
Here, each Hi should be thought of as a “quantum constraint” or
“clause”, analogous to the notion of a k-local clause in classical con-
straint satisfaction problems. For example, just as a classical clause
such as (xi ∨ xj ∨ xk) for xi, xj , xk ∈ {0, 1} forces its bits to lie in
set xixjxk ∈ {001, 010, 011, 100, 101, 110, 111} (where ∨ denotes logical
OR), a quantum clause Hi restricts the state of the k qudits it acts on
to lie in a certain subspace of (Cd)⊗n. Moreover, each clause Hi requires
O(k) bits express (assuming all matrix entries are specified to constant
precision). This is because each Hi is given as a dk×dk complex matrix
(this is made formal in Section 2.2). As a result, although H itself is a
matrix of dimension dn×dn, i.e. H has dimension exponential in n the
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4 Introduction

number of qudits, the description of H in terms of local clauses {Hi}
has size polynomial in n.

Since local Hamiltonians are intricately tied to the time evolution of
quantum systems in nature, the goal of QHC is to study properties of
local Hamiltonians H. Common computational tasks include estimat-
ing the ground state energy (smallest eigenvalue) of H, or computing
features of H’s ground state (eigenvector corresponding to the small-
est eigenvalue). Intuitively, the ground state can be thought of as the
vector |ψ〉 which “maximally satisfies” the constraints {Hi} (i.e. the
“optimal solution” to the quantum constraint system), and is of par-
ticular interest as it encodes the state of the corresponding quantum
system when cooled to low temperature. In fact, any classical Con-
straint Satisfaction Problem (CSP) of arity k can be embedded into
a k-local Hamiltonian, such that determining the ground state of the
Hamiltonian yields the optimal solution to the CSP. (This connection
is made explicit in §2.2.) Thus, ground states are interesting from a
complexity theoretic perspective.

Let us also motivate ground states from a physics perspective. Con-
sider the case of helium-4: When cooled to near absolute zero, helium-4
relaxes to a state |ψ〉 which is the ground state of some local Hamilto-
nian H (the precise form of H is beyond the scope of this introduction).
This ground state exhibits an exotic phase of matter known as super-
fluidity — it acts like a fluid with zero viscosity. (See [1] for a video
demonstrating this remarkable phenomenon.) Ideally, we would like to
understand the properties of the superfluid phase demonstrated by |ψ〉,
so that, for example, we can in turn use this knowledge to design new,
advanced materials. In this direction, QHC might ask questions such
as: Which quantum systems in nature have a ground state with a suc-
cinct classical representation? Can we run efficient classical simulations
to predict when a quantum system will exhibit interesting phenomena,
such as a phase transition? Can we quantify the hardness of determin-
ing certain properties of local Hamiltonians by establishing connections
to computational complexity theory? In the context of helium-4, for
example, the first of these questions is particularly relevant — to the
best of our knowledge, a closed form for the ground state energy or
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5

the ground state of helium-4 remain elusive. (Heuristic approximations
based on variational methods, however, have long been known; see,
e.g. [139].)

This state of affairs illustrates the formidable challenge facing QHC:
Namely, we are interested in computing properties of k-local Hamil-
tonians H, which are matrices of dimension dn × dn, whereas an ef-
ficient algorithm must run in time polynomial in n, the number of
qudits H acts on. Despite this challenge, QHC has proven a very fruit-
ful area of research. For example, in 1999 Kitaev established [106] a
quantum version of the celebrated Cook-Levin theorem [53, 111] for
local Hamiltonian systems. In 2006, Bravyi gave a polynomial time
algorithm for solving the quantum analogue of 2-SATISFIABILITY,
known as Quantum 2-SAT [38]. And though the heuristic approach of
White [168, 169] (known as “Density Matrix Renormalization Group”)
was known to solve 1-dimensional (gapped) Hamiltonians in practice
efficiently, Hastings’ 1D area law in 2007 [88] helped explain the efficacy
of this heuristic by strongly characterizing the entanglement structure
of such 1-dimensional systems. This survey aims to review a select sub-
set of such fundamental results in QHC.

To help make this survey accessible to computer scientists with
little or no background in quantum information, we begin in §2.1 with
a review of basic quantum information. We next establish some of the
fundamental definitions of QHC in §2.2, including an explicit sketch
of how an instance of 3-CSP can be encoded into a local Hamiltonian.
With this basic background in place, we finally proceed in Chapter 3
to give a roadmap for the remainder of this survey.
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