
Hashing, Load Balancing
and Multiple Choice

Udi Wieder
VMware Research

udi.wieder@gmail.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0400000070



Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

U. Wieder. Hashing, Load Balancing and Multiple Choice. Foundations and
TrendsR© in Theoretical Computer Science, vol. 12, no. 3-4, pp. 275–379, 2016.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-282-2
c© 2017 U. Wieder

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000070



Foundations and Trends R© in
Theoretical Computer Science

Volume 12, Issue 3-4, 2016
Editorial Board

Editor-in-Chief

Madhu Sudan
Harvard University
United States

Editors

Bernard Chazelle
Princeton University
Oded Goldreich
Weizmann Institute
Shafi Goldwasser
MIT & Weizmann Institute
Sanjeev Khanna
University of Pennsylvania
Jon Kleinberg
Cornell University

László Lovász
Microsoft Research
Christos Papadimitriou
University of California, Berkeley
Peter Shor
MIT
Éva Tardos
Cornell University
Avi Wigderson
Princeton University

Full text available at: http://dx.doi.org/10.1561/0400000070



Editorial Scope

Topics

Foundations and Trends R© in Theoretical Computer Science publishes
surveys and tutorials on the foundations of computer science. The scope
of the series is broad. Articles in this series focus on mathematical ap-
proaches to topics revolving around the theme of efficiency in comput-
ing. The list of topics below is meant to illustrate some of the coverage,
and is not intended to be an exhaustive list.

• Algorithmic game theory
• Computational algebra
• Computational aspects of

combinatorics and graph
theory

• Computational aspects of
communication

• Computational biology
• Computational complexity
• Computational geometry
• Computational learning
• Computational Models and

Complexity
• Computational Number

Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of
algorithms

• Distributed computing

• Information retrieval

• Operations research

• Parallel algorithms

• Quantum computation

• Randomness in computation

Information for Librarians

Foundations and Trends R© in Theoretical Computer Science, 2016, Volume 12,
4 issues. ISSN paper version 1551-305X. ISSN online version 1551-3068. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0400000070



Foundations and TrendsR© in
Theoretical Computer Science
Vol. 12, No. 3-4 (2016) 275–379
c© 2017 U. Wieder
DOI: 10.1561/0400000070

Hashing, Load Balancing and Multiple Choice

Udi Wieder
VMware Research

udi.wieder@gmail.com

Full text available at: http://dx.doi.org/10.1561/0400000070



Contents

1 Introduction 2
1.1 The balls-into-bins model . . . . . . . . . . . . . . . . . . 4
1.2 The Dictionary Data Structure . . . . . . . . . . . . . . . 5

2 Simple Hashing - the One Choice Scheme 6

3 Multiple Choice Schemes 11
3.1 The Lightly Loaded Greedy[d] process . . . . . . . . . . . 12
3.2 The Left[d] Process . . . . . . . . . . . . . . . . . . . . . 17
3.3 Alternative proof techniques . . . . . . . . . . . . . . . . 20

4 The Heavily Loaded Case 24
4.1 General Placement Processes . . . . . . . . . . . . . . . . 25
4.2 Back to Greedy[d] . . . . . . . . . . . . . . . . . . . . . 40
4.3 The Power of Majorization . . . . . . . . . . . . . . . . . 52
4.4 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Adaptive Schemes . . . . . . . . . . . . . . . . . . . . . . 61

5 Dictionaries 62
5.1 Cuckoo Hashing . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Some Interesting Variations . . . . . . . . . . . . . . . . . 73
5.3 Generalized Cuckoo Hashing and k-Orientability . . . . . . 78

2

Full text available at: http://dx.doi.org/10.1561/0400000070



3

5.4 Linear Probing . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Explicit hash functions . . . . . . . . . . . . . . . . . . . 89

Acknowledgments 94

References 95

Full text available at: http://dx.doi.org/10.1561/0400000070



Abstract

Many tasks in computer systems could be abstracted as distributing
items into buckets, so that the allocation of items across buckets is as
balanced as possible, and furthermore, given an item’s identifier it is
possible to determine quickly to which bucket it was assigned. A canon-
ical example is a dictionary data structure, where ‘items’ stands for
key-value pairs and ‘buckets’ for memory locations. Another example
is a distributed key-value store, where the buckets represent locations
in disk or even whole servers. A third example may be a distributed
execution engine where items represent processes and buckets compute
devices, and so on. A common technique in this domain is the use of
a hash-function that maps an item into a relatively short fixed length
string. The hash function is then used in some way to associate the
item to its bucket. The use of a hash function is typically the first step
in the solution and additional algorithmic ideas are required to deal
with collisions and the imbalance of hash values. In this monograph we
survey some of these techniques. We focus on multiple choice schemes
where items are placed into buckets via the use of several indepen-
dent hash functions, and typically an item is placed at the least loaded
bucket at the time of placement. We analyze the distributions obtained
in detail, and show how these ideas could be used to design basic data
structures. With respect to data structures we focus on dictionaries,
presenting linear probing, cuckoo hashing and many of their variants.

U. Wieder. Hashing, Load Balancing and Multiple Choice. Foundations and
TrendsR© in Theoretical Computer Science, vol. 12, no. 3, pp. 275–378, 2016.
DOI: 10.1561/0400000070.
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1
Introduction

‘Load Balancing’ is a generic name given to a variety of algorithmic
problems where a set of items need to be partitioned across buckets, so
that the load of each bucket, however defined, is approximately evenly
distributed. Phrased in such general terms, the task of load balancing
is one of the most fundamental and commonly addressed algorithmic
challenges. Typical applications include storage systems where buckets
are disks and items files or blocks, data structures where buckets are
memory locations and items are keys or distributed execution engines
where buckets are servers and items are processes, etc..

This monograph presents some of the basic algorithmic ideas that
underpin many of the practical and theoretically interesting approaches
for this problem. The most basic building block is a hash function which
maps the domain of items into the set of buckets. The hash function
is sampled from some family and thus in effect is assumed to be ‘ran-
dom’ in some precise way. For instance, if the hash function is sampled
uniformly from the set of all possible mappings of items to buckets,
then each item is mapped in effect to a uniformly sampled bucket, and
the mapping of each item is independent of all other items. In this
case the number of items mapped to a given item has the Binomial

2
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3

distribution and bounds on the maximum load could be understood by
a fairly standard analysis of the tail of the Binomial distribution (see
Section 2).

The first half of this monograph focuses on an algorithmic schema
called the multiple-choice scheme, named this way because it employs
the use of multiple hash functions. On a high level, when there are
multiple hash functions each item is mapped to multiple buckets and
therefore the algorithm designer has freedom to choose in which of
those the item would reside. It turns out that this freedom allows for
algorithms which obtain allocations that are much more balanced then
that obtained by a single hash function. We will present the main al-
gorithmic ideas and the main mathematical tools that are used for
proving bounds on the allocations these algorithms produce. We will
see that the analysis is robust to variations in the basic model which in
our view explains the effectiveness of these algorithms in practical ap-
plications. Our starting point is the simple balls-into-bins model which
was essentially presented above but is put forth more formally in Sec-
tion 1.1. Throughout Sections 2, 3, 4 we examine in detail multiple
choice techniques.

The key takeaways a reader should obtain are a familiarity with
two powerful proof techniques - the layered induction approach (Sec-
tion 3) and the potential function based argument (Section 4). These
two proof techniques are quite robust and are typically used also for
variations over the basic model. A prime example is the Left[d] process,
see Section 3.2.

In the second half of the monograph we focus on the dictionary data
structure. A dictionary is a fundamental and widely used abstract data
structure that supports insertions, deletions and lookups of items. It
turns out that efficient implementations of dictionaries borrow substan-
tially from the theory of load balancing algorithms, most notably in a
scheme called cuckoo-hashing which we present along with many of its
variants in Section 5. Finally we discuss the linear probing dictionary,
which while not a part of the multiple-choice schema is commonly used
and fast in practice.

Full text available at: http://dx.doi.org/10.1561/0400000070



4 Introduction

1.1 The balls-into-bins model

A common framework for reasoning about load balancing processes
is that of ‘balls’ and ‘bins’ where balls represent the demand (keys,
processes, files etc..) and ‘bins’ represent the supply of resources (table
slots, servers, storage units etc..). Throughout this monograph we use
the terms buckets and bins as well as items and balls interchangeably.

In this setting we have m balls that are thrown into n bins, typ-
ically sequentially according to some allocation rule. The goal is to
understand the allocation of balls into bins at the end of the process,
usually bounding the load (=number of balls) in the most loaded bin.
In this model balls are assigned to bins via one or more hash functions.
These are functions that map a ball’s unique i.d. (typically implicit in
the model) to the set of bins, typically numbered 1...n. Using a hash
function to map a bin to a ball, as opposed to simply drawing a bin at
random, is useful in the common case where at some subsequent time,
a ball’s location needs to be recovered from its i.d..

The Random Hashing Assumption Throughout most of the mono-
graph we make the assumption that the hash functions we use are fully
random. That is, h(ball.id) is a uniformly sampled bin, independent
of h(·) for all other balls. Another way of saying it is that the family
of functions H from which h is uniformly sampled is the family of all
functions from the universe of bin i.d’s to the set of bins. Further, we
ignore the time it takes to compute h and the space it takes to store it.
This assumption allows us to focus on the probabilistic properties of
the allocation while ignoring the details of specifying and evaluating an
explicit function. In fact, under this assumption, when describing an al-
gorithm, it is sometimes convenient to suppress the existence of a hash
function altogether, and just assume that each item ‘samples’ a bin in
a uniform and independent manner. In practice however a specific and
explicit hash function has to be implemented, and one has to take into
account not only the probabilistic properties of the hash function but
also the space required to store it and the time required to compute
it. One can quickly observe that a fully random hash function is too
expensive to implement in realistic scenarios, as its complexity would
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1.2. The Dictionary Data Structure 5

dominate the algorithm it serves. A vast body of work is dedicated to
removing this assumption and exploring time/space/randomness trade-
offs, often for specific applications. The starting point of this line of
research is the seminal work of Carter and Wegman [24] on universal
hashing. In this monograph we typically stick with the random hashing
assumptions, but for further reading see Section 5.5.

1.2 The Dictionary Data Structure

A dictionary is a data structure that stores key,value pairs and sup-
ports the operations of insert(key,value), delete(key) and lookup(key).
It is one of the oldest and most widely used data structures, already
implemented in the 50’s c.f [46, 92]. Numerous implementations exist
in essentially all standard libraries. There are many possible ways to
implement dictionaries with different algorithmic ideas, and we review
some of them in depth in Section 5, but as a primer consider the
most basic design called a simple chained hash table. The idea is to
use a hash function h, that maps the domain of keys to the set [n].
An array A of length n is allocated. Ideally we would like the insertion
procedure of a key-value pair (k, v) to simply place (k, v) in A[h(k)].
This is not attainable since more than one key may be mapped to the
same index in the array, a phenomena known as hash collisions. In the
simple chaining hash table the issue is resolved by having each element
of the array be a head pointer of a linked list which connects all the
items mapped to that index of the array. Now the insertion procedure
places the pair (k, v) in the linked list starting at A[h(k)]. Similarly,
the procedure lookup(k) searches for the key k in the same linked list.

There may be different ways to perform the actual insertion to the
list, but either way the running time of the lookup operation may be
as large as the number of items mapped to each index of the array; i.e.,
to the maximal length of the linked lists. Bounding the length of the
lists falls neatly within the balls-into-bins model and is the topic of the
next section.
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