
Hashing, Load Balancing
and Multiple Choice

Udi Wieder
VMware Research

udi.wieder@gmail.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0400000070

Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

U. Wieder. Hashing, Load Balancing and Multiple Choice. Foundations and
TrendsR© in Theoretical Computer Science, vol. 12, no. 3-4, pp. 275–379, 2016.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-282-2
c© 2017 U. Wieder

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000070

Foundations and Trends R© in
Theoretical Computer Science

Volume 12, Issue 3-4, 2016
Editorial Board

Editor-in-Chief

Madhu Sudan
Harvard University
United States

Editors

Bernard Chazelle
Princeton University
Oded Goldreich
Weizmann Institute
Shafi Goldwasser
MIT & Weizmann Institute
Sanjeev Khanna
University of Pennsylvania
Jon Kleinberg
Cornell University

László Lovász
Microsoft Research
Christos Papadimitriou
University of California, Berkeley
Peter Shor
MIT
Éva Tardos
Cornell University
Avi Wigderson
Princeton University

Full text available at: http://dx.doi.org/10.1561/0400000070

Editorial Scope

Topics

Foundations and Trends R© in Theoretical Computer Science publishes
surveys and tutorials on the foundations of computer science. The scope
of the series is broad. Articles in this series focus on mathematical ap-
proaches to topics revolving around the theme of efficiency in comput-
ing. The list of topics below is meant to illustrate some of the coverage,
and is not intended to be an exhaustive list.

• Algorithmic game theory
• Computational algebra
• Computational aspects of

combinatorics and graph
theory

• Computational aspects of
communication

• Computational biology
• Computational complexity
• Computational geometry
• Computational learning
• Computational Models and

Complexity
• Computational Number

Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of
algorithms

• Distributed computing

• Information retrieval

• Operations research

• Parallel algorithms

• Quantum computation

• Randomness in computation

Information for Librarians

Foundations and Trends R© in Theoretical Computer Science, 2016, Volume 12,
4 issues. ISSN paper version 1551-305X. ISSN online version 1551-3068. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0400000070

Foundations and TrendsR© in
Theoretical Computer Science
Vol. 12, No. 3-4 (2016) 275–379
c© 2017 U. Wieder
DOI: 10.1561/0400000070

Hashing, Load Balancing and Multiple Choice

Udi Wieder
VMware Research

udi.wieder@gmail.com

Full text available at: http://dx.doi.org/10.1561/0400000070

Contents

1 Introduction 2
1.1 The balls-into-bins model 4
1.2 The Dictionary Data Structure 5

2 Simple Hashing - the One Choice Scheme 6

3 Multiple Choice Schemes 11
3.1 The Lightly Loaded Greedy[d] process 12
3.2 The Left[d] Process . 17
3.3 Alternative proof techniques 20

4 The Heavily Loaded Case 24
4.1 General Placement Processes 25
4.2 Back to Greedy[d] . 40
4.3 The Power of Majorization 52
4.4 A Lower Bound . 60
4.5 Adaptive Schemes . 61

5 Dictionaries 62
5.1 Cuckoo Hashing . 63
5.2 Some Interesting Variations 73
5.3 Generalized Cuckoo Hashing and k-Orientability 78

2

Full text available at: http://dx.doi.org/10.1561/0400000070

3

5.4 Linear Probing . 84
5.5 Explicit hash functions 89

Acknowledgments 94

References 95

Full text available at: http://dx.doi.org/10.1561/0400000070

Abstract

Many tasks in computer systems could be abstracted as distributing
items into buckets, so that the allocation of items across buckets is as
balanced as possible, and furthermore, given an item’s identifier it is
possible to determine quickly to which bucket it was assigned. A canon-
ical example is a dictionary data structure, where ‘items’ stands for
key-value pairs and ‘buckets’ for memory locations. Another example
is a distributed key-value store, where the buckets represent locations
in disk or even whole servers. A third example may be a distributed
execution engine where items represent processes and buckets compute
devices, and so on. A common technique in this domain is the use of
a hash-function that maps an item into a relatively short fixed length
string. The hash function is then used in some way to associate the
item to its bucket. The use of a hash function is typically the first step
in the solution and additional algorithmic ideas are required to deal
with collisions and the imbalance of hash values. In this monograph we
survey some of these techniques. We focus on multiple choice schemes
where items are placed into buckets via the use of several indepen-
dent hash functions, and typically an item is placed at the least loaded
bucket at the time of placement. We analyze the distributions obtained
in detail, and show how these ideas could be used to design basic data
structures. With respect to data structures we focus on dictionaries,
presenting linear probing, cuckoo hashing and many of their variants.

U. Wieder. Hashing, Load Balancing and Multiple Choice. Foundations and
TrendsR© in Theoretical Computer Science, vol. 12, no. 3, pp. 275–378, 2016.
DOI: 10.1561/0400000070.

Full text available at: http://dx.doi.org/10.1561/0400000070

1
Introduction

‘Load Balancing’ is a generic name given to a variety of algorithmic
problems where a set of items need to be partitioned across buckets, so
that the load of each bucket, however defined, is approximately evenly
distributed. Phrased in such general terms, the task of load balancing
is one of the most fundamental and commonly addressed algorithmic
challenges. Typical applications include storage systems where buckets
are disks and items files or blocks, data structures where buckets are
memory locations and items are keys or distributed execution engines
where buckets are servers and items are processes, etc..

This monograph presents some of the basic algorithmic ideas that
underpin many of the practical and theoretically interesting approaches
for this problem. The most basic building block is a hash function which
maps the domain of items into the set of buckets. The hash function
is sampled from some family and thus in effect is assumed to be ‘ran-
dom’ in some precise way. For instance, if the hash function is sampled
uniformly from the set of all possible mappings of items to buckets,
then each item is mapped in effect to a uniformly sampled bucket, and
the mapping of each item is independent of all other items. In this
case the number of items mapped to a given item has the Binomial

2

Full text available at: http://dx.doi.org/10.1561/0400000070

3

distribution and bounds on the maximum load could be understood by
a fairly standard analysis of the tail of the Binomial distribution (see
Section 2).

The first half of this monograph focuses on an algorithmic schema
called the multiple-choice scheme, named this way because it employs
the use of multiple hash functions. On a high level, when there are
multiple hash functions each item is mapped to multiple buckets and
therefore the algorithm designer has freedom to choose in which of
those the item would reside. It turns out that this freedom allows for
algorithms which obtain allocations that are much more balanced then
that obtained by a single hash function. We will present the main al-
gorithmic ideas and the main mathematical tools that are used for
proving bounds on the allocations these algorithms produce. We will
see that the analysis is robust to variations in the basic model which in
our view explains the effectiveness of these algorithms in practical ap-
plications. Our starting point is the simple balls-into-bins model which
was essentially presented above but is put forth more formally in Sec-
tion 1.1. Throughout Sections 2, 3, 4 we examine in detail multiple
choice techniques.

The key takeaways a reader should obtain are a familiarity with
two powerful proof techniques - the layered induction approach (Sec-
tion 3) and the potential function based argument (Section 4). These
two proof techniques are quite robust and are typically used also for
variations over the basic model. A prime example is the Left[d] process,
see Section 3.2.

In the second half of the monograph we focus on the dictionary data
structure. A dictionary is a fundamental and widely used abstract data
structure that supports insertions, deletions and lookups of items. It
turns out that efficient implementations of dictionaries borrow substan-
tially from the theory of load balancing algorithms, most notably in a
scheme called cuckoo-hashing which we present along with many of its
variants in Section 5. Finally we discuss the linear probing dictionary,
which while not a part of the multiple-choice schema is commonly used
and fast in practice.

Full text available at: http://dx.doi.org/10.1561/0400000070

4 Introduction

1.1 The balls-into-bins model

A common framework for reasoning about load balancing processes
is that of ‘balls’ and ‘bins’ where balls represent the demand (keys,
processes, files etc..) and ‘bins’ represent the supply of resources (table
slots, servers, storage units etc..). Throughout this monograph we use
the terms buckets and bins as well as items and balls interchangeably.

In this setting we have m balls that are thrown into n bins, typ-
ically sequentially according to some allocation rule. The goal is to
understand the allocation of balls into bins at the end of the process,
usually bounding the load (=number of balls) in the most loaded bin.
In this model balls are assigned to bins via one or more hash functions.
These are functions that map a ball’s unique i.d. (typically implicit in
the model) to the set of bins, typically numbered 1...n. Using a hash
function to map a bin to a ball, as opposed to simply drawing a bin at
random, is useful in the common case where at some subsequent time,
a ball’s location needs to be recovered from its i.d..

The Random Hashing Assumption Throughout most of the mono-
graph we make the assumption that the hash functions we use are fully
random. That is, h(ball.id) is a uniformly sampled bin, independent
of h(·) for all other balls. Another way of saying it is that the family
of functions H from which h is uniformly sampled is the family of all
functions from the universe of bin i.d’s to the set of bins. Further, we
ignore the time it takes to compute h and the space it takes to store it.
This assumption allows us to focus on the probabilistic properties of
the allocation while ignoring the details of specifying and evaluating an
explicit function. In fact, under this assumption, when describing an al-
gorithm, it is sometimes convenient to suppress the existence of a hash
function altogether, and just assume that each item ‘samples’ a bin in
a uniform and independent manner. In practice however a specific and
explicit hash function has to be implemented, and one has to take into
account not only the probabilistic properties of the hash function but
also the space required to store it and the time required to compute
it. One can quickly observe that a fully random hash function is too
expensive to implement in realistic scenarios, as its complexity would

Full text available at: http://dx.doi.org/10.1561/0400000070

1.2. The Dictionary Data Structure 5

dominate the algorithm it serves. A vast body of work is dedicated to
removing this assumption and exploring time/space/randomness trade-
offs, often for specific applications. The starting point of this line of
research is the seminal work of Carter and Wegman [24] on universal
hashing. In this monograph we typically stick with the random hashing
assumptions, but for further reading see Section 5.5.

1.2 The Dictionary Data Structure

A dictionary is a data structure that stores key,value pairs and sup-
ports the operations of insert(key,value), delete(key) and lookup(key).
It is one of the oldest and most widely used data structures, already
implemented in the 50’s c.f [46, 92]. Numerous implementations exist
in essentially all standard libraries. There are many possible ways to
implement dictionaries with different algorithmic ideas, and we review
some of them in depth in Section 5, but as a primer consider the
most basic design called a simple chained hash table. The idea is to
use a hash function h, that maps the domain of keys to the set [n].
An array A of length n is allocated. Ideally we would like the insertion
procedure of a key-value pair (k, v) to simply place (k, v) in A[h(k)].
This is not attainable since more than one key may be mapped to the
same index in the array, a phenomena known as hash collisions. In the
simple chaining hash table the issue is resolved by having each element
of the array be a head pointer of a linked list which connects all the
items mapped to that index of the array. Now the insertion procedure
places the pair (k, v) in the linked list starting at A[h(k)]. Similarly,
the procedure lookup(k) searches for the key k in the same linked list.

There may be different ways to perform the actual insertion to the
list, but either way the running time of the lookup operation may be
as large as the number of items mapped to each index of the array; i.e.,
to the maximal length of the linked lists. Bounding the length of the
lists falls neatly within the balls-into-bins model and is the topic of the
next section.

Full text available at: http://dx.doi.org/10.1561/0400000070

References

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple random-
ized parallel algorithm for the maximal independent set problem. J.
Algorithms, 7(4):567–583, December 1986.

[2] Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank,
and Gábor Tardos. Linear hash functions. J. ACM, 46(5):667–683,
September 1999.

[3] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple
construction of almost k-wise independent random variables. Random
Struct. Algorithms, 3(3):289–304, 1992.

[4] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Ad-
dendum to "simple construction of almost k-wise independent random
variables". Random Struct. Algorithms, 4(1):119–120, 1993.

[5] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley,
1992.

[6] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized cuckoo hash-
ing: Provable worst-case performance and experimental results. In Au-
tomata, Languages and Programming, 36th International Colloquium,
ICALP, pages 107–118, 2009.

[7] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing:
Constant worst-case operations with a succinct representation. In 51st
Annual IEEE Symposium on Foundations of Computer Science, FOCS,
pages 787–796, 2010.

95

Full text available at: http://dx.doi.org/10.1561/0400000070

96 References

[8] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit
and efficient hash families suffice for cuckoo hashing with a stash. Al-
gorithmica, 70(3):428–456, 2014.

[9] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced
allocations. SIAM J. Comput., 29(1):180–200, September 1999.

[10] Tugkan Batu, Petra Berenbrink, and Colin Cooper. Chains-into-bins
processes. J. Discrete Algorithms, 14:21–28, 2012.

[11] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel.
Balls into non-uniform bins. J. Parallel Distrib. Comput., 74(2):2065–
2076, 2014.

[12] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöck-
ing. Balanced allocations: The heavily loaded case. SIAM J. Comput.,
35(6):1350–1385, 2006.

[13] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell A. Mar-
tin. On weighted balls-into-bins games. Theoretical Computuer Science,
409(3):511–520, December 2008.

[14] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-
Trenn, Lars Nagel, and Christopher Wastell. Self-stabilizing balls &
bins in batches: The power of leaky bins. CoRR, abs/1603.02188, 2016.

[15] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-
Trenn, Lars Nagel, and Christopher Wastell. Self-stabilizing balls &
bins in batches: The power of leaky bins. In Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, PODC, pages
83–92, 2016.

[16] Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and
Alexandre Stauffer. Balls-into-bins with nearly optimal load distri-
bution. In 25th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA, pages 326–335, 2013.

[17] Paul Bogdan, Thomas Sauerwald, Alexandre Stauffer, and He Sun. Balls
into bins via local search. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 16–34, 2013.

[18] Mark Braverman. Polylogarithmic independence fools ac0 circuits. J.
ACM, 57(5):28:1–28:10, June 2008.

Full text available at: http://dx.doi.org/10.1561/0400000070

References 97

[19] Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun.
Balls into bins via local search: cover time and maximum load. In
Ernst W. Mayr and Natacha Portier, editors, 31st International Sympo-
sium on Theoretical Aspects of Computer Science (STACS), volume 25
of Leibniz International Proceedings in Informatics (LIPIcs), pages 187–
198, 2014.

[20] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing.
In Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’90, pages 43–53, 1990.

[21] Andrei Z. Broder and Michael Mitzenmacher. Using multiple hash func-
tions to improve IP lookups. In Proceedings IEEE INFOCOM 2001, The
Conference on Computer Communications, pages 1454–1463, 2001.

[22] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple load
balancing for distributed hash tables. In Peer-to-Peer Systems II: Sec-
ond International Workshop, IPTPS, pages 80–87, 2003.

[23] Julie Anne Cain, Peter Sanders, and Nicholas C. Wormald. The random
graph threshold for k-orientiability and a fast algorithm for optimal
multiple-choice allocation. In Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 469–476, 2007.

[24] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences, 18(2):143 – 154,
1979.

[25] Cassandra. Apache. http://cassandra.apache.org/.
[26] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and

bins: Smaller hash families and faster evaluation. SIAM J. Comput.,
42(3):1030–1050, 2013.

[27] X. Chen. Derandomized Balanced Allocation. ArXiv e-prints, February
2017.

[28] Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. From indepen-
dence to expansion and back again. In Proceedings of the 47th Annual
ACM on Symposium on Theory of Computing, STOC, pages 813–820,
2015.

[29] Artur Czumaj and Volker Stemann. Randomized allocation processes.
In 38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 194–203,
1997.

Full text available at: http://dx.doi.org/10.1561/0400000070

98 References

[30] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and
Mikkel Thorup. Hashing for statistics over k-partitions. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 1292–1310, 2015.

[31] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and
Mikkel Thorup. The power of two choices with simple tabulation. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
1631–1642, 2016.

[32] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220, Oc-
tober 2007.

[33] Luc Devroye and Pat Morin. Cuckoo hashing: Further analysis. Infor-
mation Processing Letters, 86:215–219, 2003.

[34] Martin Dietzfelbinger. Universal hashing and k-wise independent ran-
dom variables via integer arithmetic without primes. In STACS 96,
13th Annual Symposium on Theoretical Aspects of Computer Science,
Grenoble, France, February 22-24, 1996, Proceedings, pages 569–580,
1996.

[35] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pip-
penger. Polynomial hash functions are reliable. In Proceedings of the
19th International Colloquium on Automata, Languages and Program-
ming, ICALP ’92, pages 235–246. Springer-Verlag, London, UK, 1992.

[36] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, An-
drea Montanari, Rasmus Pagh, and Michael Rink. Tight thresholds for
cuckoo hashing via XORSAT. In Automata, Languages and Program-
ming, 37th International Colloquium, ICALP 2010, Bordeaux, France,
July 6-10, 2010, Proceedings, Part I, pages 213–225, 2010.

[37] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new uni-
versal class of hash functions and dynamic hashing in real time. In Pro-
ceedings of the 17th International Colloquium on Automata, Languages
and Programming, ICALP ’90, pages 6–19. Springer-Verlag, London,
UK, 1990.

[38] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm
Meyer auf der Heide, Hans Rohnert, and Robert Endre Tarjan. Dy-
namic perfect hashing: Upper and lower bounds. SIAM J. Comput.,
23(4):738–761, 1994.

Full text available at: http://dx.doi.org/10.1561/0400000070

References 99

[39] Martin Dietzfelbinger and Michael Rink. Applications of a splitting
trick. In Proceedings of the 36th International Colloquium on Au-
tomata, Languages and Programming: Part I, ICALP ’09, pages 354–
365. Springer-Verlag, Berlin, Heidelberg, 2009.

[40] Martin Dietzfelbinger and Ulf Schellbach. On risks of using cuckoo hash-
ing with simple universal hash classes. In Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 795–
804, Philadelphia, PA, USA, 2009.

[41] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and
dictionaries with tightly packed constant size bins. Theoretical Com-
puter Science, 380(1-2):47–68, 2007.

[42] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with
simple hash functions. In Proceedings of the 35th Annual ACM Sympo-
sium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA,
pages 629–638, 2003.

[43] Gregory Dresden and Du Zhaohui. A simplified binet formula for k-
generalized fibonacci numbers. Journal of Integer Sequences, 17, 2014.

[44] Michael Drmota and Reinhard Kutzelnigg. A precise analysis of cuckoo
hashing. ACM Trans. Algorithms, 8(2):11, 2012.

[45] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1st edition, 2009.

[46] Arnold I. Dumey. Indexing for rapid random access memory systems.
Computers and Automation, 12(5):6–9, 1956.

[47] Daniel Fernholz and Vijaya Ramachandran. The k-orientability thresh-
olds for Gn, p. In Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana,
USA, January 7-9, 2007, pages 459–468, 2007.

[48] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis.
Space efficient hash tables with worst case constant access time. Theory
Comput. Syst., 38(2):229–248, 2005.

[49] Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou.
The multiple-orientability thresholds for random hypergraphs. In Pro-
ceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, pages 1222–1236, 2011.

Full text available at: http://dx.doi.org/10.1561/0400000070

100 References

[50] Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp load thresh-
olds for cuckoo hashing. Random Struct. Algorithms, 41(3):306–333,
2012.

[51] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger.
On the insertion time of cuckoo hashing. SIAM J. Comput., 42(6):2156–
2181, 2013.

[52] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a
sparse table with 0(1) worst case access time. J. ACM, 31(3):538–544,
June 1984.

[53] Alan Frieze, Páll Melsted, and Michael Mitzenmacher. An analysis of
random-walk cuckoo hashing. SIAM J. Comput., 40(2):291–308, March
2011.

[54] Alan M. Frieze and Tony Johansson. On the insertion time of random
walk cuckoo hashing. CoRR, abs/1602.04652, 2016.

[55] Alan M. Frieze and Páll Melsted. Maximum matchings in random bi-
partite graphs and the space utilization of cuckoo hash tables. Random
Struct. Algorithms, 41(3):334–364, 2012.

[56] Pu Gao and Nicholas C. Wormald. Orientability thresholds for random
hypergraphs. Combinatorics, Probability & Computing, 24(5):774–824,
2015.

[57] P. Brighten Godfrey. Balls and bins with structure: Balanced allocations
on hypergraphs. In Proceedings of the 19th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’08, pages 511–517, Philadelphia,
PA, USA, 2008.

[58] Michael Goodrich, Evgenios Kornaropoulos, Michael Mitzenmacher,
and Roberto Tamassia. More practical and secure history-independent
hash tables. In European symposium on Research in Computer Security,
2016.

[59] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide
web. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC ’97, pages 654–663, New York, NY, USA, 1997.

[60] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide.
Efficient pram simulation on a distributed memory machine. In Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing,
STOC ’92, pages 318–326, New York, NY, USA, 1992.

Full text available at: http://dx.doi.org/10.1561/0400000070

References 101

[61] Krishnaram Kenthapadi and Rina Panigrahy. Balanced allocation on
graphs. In Proceedings of the Seventeenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, Jan-
uary 22-26, 2006, pages 434–443, 2006.

[62] Megha Khosla. Balls into bins made faster. In Algorithms - ESA 2013 -
21st Annual European Symposium, Sophia Antipolis, France, September
2-4, 2013. Proceedings, pages 601–612, 2013.

[63] Adam Kirsch and Michael Mitzenmacher. Using a queue to de-
amortized cuckoo hashing in hardware. In the 45th Annual Allerton
Conference on Communication, Control, and Computing, 2007.

[64] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust
hashing: Cuckoo hashing with a stash. SIAM J. Comput., 39(4):1543–
1561, December 2009.

[65] Toryn Qwyllyn Klassen and Philipp Woelfel. Independence of
tabulation-based hash classes. In LATIN 2012: Theoretical Informatics
- 10th Latin American Symposium, Arequipa, Peru, April 16-20, 2012.
Proceedings, pages 506–517, 2012.

[66] Donald Knuth. Notes on open addressing. 1963.
[67] Reinhard Kutzelnigg. A further analysis of cuckoo hashing with a stash

and random graphs of excess r. Discrete Mathematics & Theoretical
Computer Science, 12(3):81–102, 2010.

[68] Eric Lehman and Rina Panigrahy. 3.5-way cuckoo hashing for the price
of 2-and-a-bit. In Amos Fiat and Peter Sanders, editors, ESA, volume
5757 of Lecture Notes in Computer Science, pages 671–681. Springer,
2009.

[69] Marc Lelarge. A new approach to the orientation of random hyper-
graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,
pages 251–264, 2012.

[70] Daniel Lemire. The universality of iterated hashing over variable-length
strings. Discrete Applied Mathematics, 160(4-5):604–617, 2012.

[71] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel
randomized load balancing: Extended abstract. In Proceedings of the
43rd Annual ACM Symposium on Theory of Computing, STOC ’11,
pages 11–20, New York, NY, USA, 2011.

[72] Chi-Jen Lu. Improved pseudorandom generators for combinatorial rect-
angles. Combinatorica, 22(3):417–434, 2002.

Full text available at: http://dx.doi.org/10.1561/0400000070

102 References

[73] Raghu Meka, Omer Reingold, Guy N. Rothblum, and Ron D. Roth-
blum. Fast pseudorandomness for independence and load balancing -
(extended abstract). In Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, pages 859–870, 2014.

[74] Daniele Micciancio. Oblivious data structures: Applications to cryptog-
raphy. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, STOC ’97, pages 456–464, New York, NY, USA, 1997.

[75] Michael Mitzenmacher. The Power of Two Choices in Randomized Load
Balancing. PhD thesis, University of California at Berkeley, 1996.

[76] Michael Mitzenmacher. Balanced allocations and double hashing. In
26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’14, Prague, Czech Republic - June 23 - 25, 2014, pages 331–342,
2014.

[77] Michael Mitzenmacher, Andréa W. Richa, and Ramesh Sitaraman. The
power of two random choices: A survey of techniques and results. In in
Handbook of Randomized Computing, pages 255–312. Kluwer, 2000.

[78] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, New York, NY, USA, 2005.

[79] Michael Mitzenmacher and Salil Vadhan. Why simple hash functions
work: Exploiting the entropy in a data stream. In Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’08, pages 746–755, Philadelphia, PA, USA, 2008.

[80] Michael Mitzenmacher and Berhold Vöcking. The asymptotics of se-
lecting the shortest of two, improved. In Proceedings of the 37th An-
nual Allerton Conference on Communication, Control, and Computing,
pages 326–327, 1999.

[81] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[82] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient
constructions and applications. SIAM J. Comput., 22(4):838–856, 1993.

[83] Moni Naor, Gil Segev, and Udi Wieder. History-independent cuckoo
hashing. In Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceed-
ings, Part II - Track B: Logic, Semantics, and Theory of Programming &
Track C: Security and Cryptography Foundations, pages 631–642, 2008.

Full text available at: http://dx.doi.org/10.1561/0400000070

References 103

[84] Moni Naor and Vanessa Teague. Anti-persistence: History independent
data structures. In Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, STOC ’01, pages 492–501, New York, NY, USA,
2001.

[85] Moni Naor and Udi Wieder. Novel architectures for p2p applications:
The continuous-discrete approach. In Proceedings of the 15th Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’03,
pages 50–59, New York, NY, USA, 2003.

[86] Noam Nisan and David Zuckerman. Randomness is linear in space. J.
Comput. Syst. Sci., 52(1):43–52, February 1996.

[87] Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and
optimal space. SIAM J. Comput., 38(1):85–96, 2008.

[88] Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with 5-wise
independence. SIAM Review, 53(3):547–558, 2011.

[89] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algo-
rithms, 51(2):122–144, May 2004.

[90] Rina Panigrahy. Efficient hashing with lookups in two memory accesses.
In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’05, pages 830–839, Philadelphia, PA, USA,
2005.

[91] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced al-
locations and the (1 + beta)-choice process. Random Structures and
Algorithms, 2014.

[92] W. W. Peterson. Addressing for random-access storage. IBM J. Res.
Dev., 1(2):130–146, April 1957.

[93] Mihai Pătraşcu and Mikkel Thorup. The power of simple tabulation
hashing. J. ACM, 59(3):14, 2012.

[94] Mihai Pătraşcu and Mikkel Thorup. Twisted tabulation hashing. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’13, pages 209–228, Philadelphia, PA, USA, 2013.

[95] Mihai Pǎtraşcu and Mikkel Thorup. On the k-independence required
by linear probing and minwise independence. ACM Trans. Algorithms,
12(1):8:1–8:27, November 2015.

[96] Martin Raab and Angelika Steger. Balls into bins - a simple and tight
analysis. In Michael Luby, Jose D.P. Rolim, and Maria Serna, edi-
tors, Randomization and Approximation Techniques in Computer Sci-
ence, volume 1518 of Lecture Notes in Computer Science, pages 159–170.
Springer Berlin Heidelberg, 1998.

Full text available at: http://dx.doi.org/10.1561/0400000070

104 References

[97] Omer Reingold, Ron D. Rothblum, and Udi Wieder. Pseudorandom
graphs in data structures. In Automata, Languages, and Programming
- 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I, pages 943–954, 2014.

[98] A. Wayne Roberts and Dale E. Varberg. Convex Functions. Academic
Press Inc., New York, NY, USA, 1st edition, 1973.

[99] Peter Sanders, Sebastian Egner, and Jan Korst. Fast concurrent access
to parallel disks. In Proceedings of the 11th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’00, pages 849–858, Philadelphia,
PA, USA, 2000.

[100] Alan Siegel. On universal classes of extremely random constant-time
hash functions. SIAM J. Comput., 33(3):505–543, 2004.

[101] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. SIGCOMM Comput. Commun. Rev., 31(4):149–160,
August 2001.

[102] Kunal Talwar and Udi Wieder. Balanced allocations: the weighted case.
In Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting, San Diego, California, USA, June 11-13, 2007, pages 256–265,
2007.

[103] Kunal Talwar and Udi Wieder. Balanced allocations: A simple proof
for the heavily loaded case. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming, volume 8572 of Lecture Notes in Computer Science, pages
979–990. Springer Berlin Heidelberg, 2014.

[104] Mikkel Thorup. String hashing for linear probing. In Proceedings of the
20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, New York, NY, USA, January 4-6, 2009, pages 655–664, 2009.

[105] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hash-
ing with applications to linear probing and second moment estimation.
SIAM J. Comput., 41(2):293–331, 2012.

[106] Berthold Vöcking. How asymmetry helps load balancing. J. ACM,
50(4):568–589, July 2003.

[107] Mark N. Wegman and Larry Carter. New hash functions and their use
in authentication and set equality. J. Comput. Syst. Sci., 22(3):265–279,
1981.

Full text available at: http://dx.doi.org/10.1561/0400000070

References 105

[108] Udi Wieder. Balanced allocations with heterogenous bins. In Proceed-
ings of the 19th Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’07, pages 188–193, New York, NY, USA, 2007.

[109] Philipp Woelfel. Asymmetric balanced allocation with simple hash func-
tions. In Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithm, SODA ’06, pages 424–433, Philadelphia, PA, USA,
2006.

Full text available at: http://dx.doi.org/10.1561/0400000070

	Introduction
	The balls-into-bins model
	The Dictionary Data Structure

	Simple Hashing - the One Choice Scheme
	Multiple Choice Schemes
	The Lightly Loaded Greedy[d] process
	The Left[d] Process
	Alternative proof techniques

	The Heavily Loaded Case
	General Placement Processes
	Back to Greedy[d]
	The Power of Majorization
	A Lower Bound
	Adaptive Schemes

	Dictionaries
	Cuckoo Hashing
	Some Interesting Variations
	Generalized Cuckoo Hashing and k-Orientability
	Linear Probing
	Explicit hash functions

	Acknowledgments
	References

