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Abstract

Lattice-based cryptography is the use of conjectured hard problems on
point lattices in Rn as the foundation for secure cryptographic systems.
Attractive features of lattice cryptography include apparent resistance to
quantum attacks (in contrast with most number-theoretic cryptography),
high asymptotic efficiency and parallelism, security under worst-case
intractability assumptions, and solutions to long-standing open problems
in cryptography.

This work surveys most of the major developments in lattice cryp-
tography over the past ten years. The main focus is on the foundational
short integer solution (SIS) and learning with errors (LWE) problems
(and their more efficient ring-based variants), their provable hardness
assuming the worst-case intractability of standard lattice problems, and
their many cryptographic applications.

C. Peikert. A Decade of Lattice Cryptography. Foundations and TrendsR© in
Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014.
DOI: 10.1561/0400000074.
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1
Introduction

This survey provides an overview of lattice-based cryptography, the use
of apparently hard problems on point lattices in Rn as the foundation
for secure cryptographic constructions. Lattice cryptography has many
attractive features, some of which we now describe.

Conjectured security against quantum attacks. Most number-
theoretic cryptography, such as the Diffie-Hellman protocol [62] and
RSA cryptosystem [173], relies on the conjectured hardness of inte-
ger factorization or the discrete logarithm problem in certain groups.
However, Shor [178] gave efficient quantum algorithms for all these
problems, which would render number-theoretic systems insecure in a
future where large-scale quantum computers are available. By contrast,
no efficient quantum algorithms are known for the problems typically
used in lattice cryptography; indeed, generic (and relatively modest)
quantum speedups provide the only known advantage over non-quantum
algorithms.

Algorithmic simplicity, efficiency, and parallelism. Lattice-based
cryptosystems are often algorithmically simple and highly parallelizable,

2
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3

consisting mainly of linear operations on vectors and matrices modulo
relatively small integers. Moreover, constructions based on “algebraic”
lattices over certain rings (e.g., the NTRU cryptosystem [105]) can be
especially efficient, and in some cases even outperform more traditional
systems by a significant margin.

Strong security guarantees from worst-case hardness. Cryptogra-
phy inherently requires average-case intractability, i.e., problems for
which random instances (drawn from a specified probability distribution)
are hard to solve. This is qualitatively different from the worst-case
notion of hardness usually considered in the theory of algorithms and
NP-completeness, where a problem is considered hard if there merely
exist some intractable instances. Problems that appear hard in the
worst case often turn out to be easier on the average, especially for
distributions that produce instances having some extra “structure,” e.g.,
the existence of a secret key for decryption.

In a seminal work, Ajtai [7] gave a remarkable connection between
the worst case and the average case for lattices: he proved that cer-
tain problems are hard on the average (for cryptographically useful
distributions), as long as some related lattice problems are hard in the
worst case. Using results of this kind, one can design cryptographic
constructions and prove that they are infeasible to break, unless all
instances of certain lattice problems are easy to solve.1

Constructions of versatile and powerful cryptographic objects. His-
torically, cryptography was mainly about sending secret messages. Yet
over the past few decades, the field has blossomed into a discipline hav-
ing much broader and richer goals, encompassing almost any scenario
involving communication or computation in the presence of potentially

1Note that many number-theoretic problems used in cryptography, such as dis-
crete logarithm and quadratic residuosity, also admit (comparatively simple) worst-
case/average-case reductions, but only within a fixed group. Such a reduction gives
us a distribution over a group which is as hard as the worst case for the same group,
but says nothing about whether the group itself is hard, or which groups are hardest.
Indeed, the complexity of these problems appears to vary quite widely depending on
the type of group (e.g., multiplicative groups of integers modulo a prime or of other
finite fields, elliptic curve groups, etc.).
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4 Introduction

malicious behavior. For example, the powerful notion of fully homomor-
phic encryption (FHE), first envisioned by Rivest et al. [172], allows an
untrusted worker to perform arbitrary computations on encrypted data,
without learning anything about that data. For three decades FHE
remained an elusive “holy grail” goal, until Gentry [80, 79] proposed
the first candidate construction of FHE, which was based on lattices
(as were all subsequent constructions). More recently, lattices have
provided the only known realizations of other versatile and powerful
cryptographic notions, such as attribute-based encryption for arbitrary
access policies [97, 36] and general-purpose code obfuscation [78].

1.1 Scope and Organization

This work surveys most of the major developments in lattice cryptog-
raphy over the past decade (since around 2005). The main focus is
on two foundational average-case problems, called the short integer
solution (SIS) and learning with errors (LWE) problems; their provable
hardness assuming the worst-case intractability of lattice problems; and
the plethora of cryptographic constructions that they enable.

Most of this survey should be generally accessible to early-stage
graduate students in theoretical computer science, or even to advanced
undergraduates. However, understanding the finer details of the crypto-
graphic constructions—especially the outlines of their security proofs,
which we have deliberately left informal so as to highlight the main
ideas—may require familiarity with basic cryptographic definitions and
paradigms, which can be obtained from any graduate-level course or the
textbooks by, e.g., Katz and Lindell [110] or Goldreich [91]. The reader
who lacks such background is encouraged to focus on the essential ideas
and mechanics of the cryptosystems, and may safely skip over the proof
summaries.

The survey is organized as follows:

• Chapter 2 recalls the necessary mathematical and cryptographic
background.
• Chapter 3 gives a high-level conceptual overview of the seminal
works in the area and their significance.
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1.1. Scope and Organization 5

• Chapter 4 covers the modern foundations of the area, which have
largely subsumed the earlier works. Here we formally define the
SIS and LWE problems and recall the theorems which say that
these problems are at least as hard to solve as certain worst-case
lattice problems. We also cover their more compact and efficient
ring-based analogues, ring-SIS and ring-LWE.

• Chapter 5 describes a wide variety of essential lattice-based cryp-
tographic constructions, ranging from basic encryption and digital
signatures to more powerful objects like identity-based encryption.
These schemes are presented within a unified framework, using
just a handful of concepts and technical tools that are developed
throughout the chapter.

• Chapter 6 describes a few more advanced cryptographic con-
structions, with a focus on fully homomorphic encryption and
attribute-based encryption.

• Chapter 7 concludes with a discussion of some important open
questions in the area.

While we have aimed to convey a wide variety of lattice-based
cryptographic constructions and their associated techniques, our cov-
erage of such a large and fast-growing area is necessarily incomplete.
For one, we do not discuss cryptanalysis or concrete parameters (key
sizes etc.) of lattice-based cryptosystems; representative works on these
topics include [75, 146, 76, 118, 51, 120]. We also do not include any
material on the recent seminal constructions of candidate multilinear
maps [77, 58, 83, 59] and their many exciting applications, such as
general-purpose code obfuscation [78, 175]. While all multilinear map
constructions to date are related to lattices, their conjectured security
relies on new, ad-hoc problems that are much less well-understood than
SIS/LWE. In particular, it is not known whether any of the proposed
constructions can be proved secure under worst-case hardness assump-
tions, and some candidates have even been broken in certain ways (see,
e.g., [53, 107, 54, 57]). Note that early constructions of fully homomor-
phic encryption also relied on ad-hoc assumptions, but constructions
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6 Introduction

based on more standard assumptions like (ring-)LWE soon followed;
the same may yet occur for multilinear maps and their applications.

1.2 Other Resources

There are several other resources on modern lattice cryptography, or
specialized subtopics thereof. (However, due to the rapid development
of the field over the past few years, these surveys are already a bit
dated in their coverage of advanced cryptographic constructions and
associated techniques.) Some excellent options include:

• The 2007 survey by Micciancio [138] on cryptographic functions
from worst-case complexity assumptions, including ring-based
functions;

• the 2009 survey by Micciancio and Regev [146] on lattice-based
cryptographic constructions and their cryptanalysis;

• the 2010 survey by Regev [171] on the learning with errors (LWE)
problem, its worst-case hardness, and some early applications;

• the overviews of fully homomorphic encryption by Gentry [81]
and Vaikuntanathan [182];

• videos from the 2012 Bar-Ilan Winter School on Lattice Cryptog-
raphy and Applications [28];

• other surveys, books, and course notes [155, 141, 168, 140] on
computational aspects of lattices, including cryptanalysis.
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