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Abstract

Coding for interactive communication augments coding theory to the
interactive setting: instead of communicating a message from a sender
to a receiver, here the parties are involved in an interactive conversation.

Coding schemes allow the parties to complete their conversation
despite noise added by the channel. Similar to the unidirectional case,
good coding schemes can withstand a large amount of noise and succeed
with high probability, while adding only a small amount of redundant
information.

We aim at giving a comprehensive view on the foundations of
coding for interactive communication. In particular, we review basic
features of coding schemes in the interactive setting, and survey the
main techniques used in designing such schemes. Furthermore, we
survey recent developments in interactive coding schemes, and their
applications to other related fields.

R. Gelles. Coding for Interactive Communication: A Survey. Foundations and
TrendsR© in Theoretical Computer Science, vol. 13, no. 1-2, pp. 1–157, 2017.
DOI: 10.1561/0400000079.



1
Introduction

1.1 Motivation

Assume Alice and Bob play chess with each other. Since they live in
different countries, they play over the phone—every evening Alice calls
Bob and they communicate the next move. Now assume the phone line
is noisy. While Bob declares his next move “B2 to B4”, Alice hears “D2
to D4”. Many days later, when Bob declares a victory, Alice rejects his
claims: on her board Bob is not even close to being victorious.

This situation—where two parties interact with each other over
a noisy communication—is the topic of this manuscript. As opposed
to the standard error-correction setting in which one side has some
information to convey to the other side, here both sides need to convey
information to each other. One could let the parties simply use standard
error-correcting codes to send all their information to the other side in a
noise-robust way. Such a naïve approach would cause the conversation to
be very long: the possibility of interacting is crucial for having efficient
conversations. Consider, for instance, the preceding chess game. We
can think of each player as having a fixed playing strategy that defines,
for every position of the board, the next move that should be played.
Compared to the (approximately) one hundred moves an average chess
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1.2. The setting 3

game takes [21], a description of a player’s complete strategy may be
extremely long as it needs to describe its move for all the (more than)
1040 different board positions [54].

A second naïve approach would be to employ error-correcting codes
independently to each round of the conversation. Such an approach
would result in poor performance—it could tolerate only a very small
amount of noise, namely, the noise it takes to corrupt a single message.
The ideal solution is one that tolerates a large amount of noise (e.g.,
a coding that works even if a constant fraction of the messages are
corrupted), and yet does not increase the communication by too much
(e.g., it multiplies the communication by at most a constant).

1.2 The setting

In the standard interactive communication setting [83], two parties (Al-
ice and Bob) compute a function f(x, y) by holding a conversation. Al-
ice is given the input x, Bob is given y, and they aim to compute f(x, y)
by exchanging as few bits as possible. Kushilevitz and Nisan’s book [60]
gives an excellent description of the communication complexity of com-
puting functions within the interactive setting. In the setting of coding
for interactive communication, the channel that connects the parties
may be noisy (see Figure 1.1). The parties’ goal is now to succeed, with
high probability, in computing f(x, y) despite the channel’s noise, while
sending as few bits as possible.

An interactive computation is performed via a protocol π, which is
a pair of algorithms π = (πA, πB) run by Alice and Bob, respectively.
Each round, the protocol defines the next message to send, as a function
of the party’s input, the round number, and the symbols that party has
received so far (the transcript). For example, in the first round Alice
sends πA(x, 1, ∅) ∈ Σ and Bob sends πB(y, 1, ∅) ∈ Σ, where Σ is the
channel’s alphabet. It is possible that only a single party speaks at each
round—for example, Alice at odd rounds and Bob at even rounds. In this
case we assume πA(x, i, ·) = ∅ for even i’s, and πB(x, i, ·) = ∅ for odd i’s.

After a fixed number n of rounds the protocol concludes and outputs
a value. Alice’s output is given by πA(x, n+ 1, transA), and Bob’s, by
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x y
σ1 σ̃1

σ3 σ̃3

σ̃2 σ2

σ̃4 σ4

...
σ̃n σn

Figure 1.1: An alternating interactive protocol π of length |π| = n rounds between
Alice that holds the input x, and Bob that holds y, where the communication takes
place over a noisy channel.

πB(x, n + 1, transB), where trans is the transcript seen by that party.
Recall that due to the noisy channel, the parties may receive different
symbols than the ones sent to them.

Let X,Y, Z be some finite sets. We say that π computes the function
f : X × Y → Z if for any pair of inputs (x, y) ∈ X × Y , both parties
output f(x, y). We define the length of the protocol to be its round
complexity and denote it by |π| = n. At each round, the parties send a
symbol out of the channels’ alphabet Σ. The communication complexity
of a protocol, CC(π), is the number of bits communicated by both
parties; specifically, assuming one symbol is sent at each round, we
have CC(π) = n log |Σ|.1

When evaluating a noise-resilient protocol π for some function f ,
it is convenient to compare it to the noiseless protocol π0 of the same
function. In this manuscript, we will care about coding schemes that,
given a noiseless protocol π0 construct a resilient version π that outputs a
valid transcript of π0 (and, thus, computes f). Our noiseless protocol π0
is always defined over a binary alphabet and takes |π0| = n0 rounds.
Unless otherwise stated, Alice and Bob talk in π0 in alternating rounds:
Alice sends one bit in odd rounds and Bob sends one bit in even rounds,
so that the total communication complexity of the noiseless protocol

1Throughout this manuscript, all logarithms are taken to base two.
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is CC(π0) = n0. Note that any protocol can be converted into a binary
alternating form at the cost of increasing the communication by at most
2 log |Σ|. Hence, the preceding format of the noiseless protocol π0 can be
considered without loss of generality as its communication complexity
differs by a factor of 2 log |Σ| (this difference does affect the generality
when considering communication-optimized coding schemes). Due to
technical reasons, we will sometimes need π0 to be defined for rounds
greater than n0. In this case we can assume that after round n0, π0
sends zeros indefinitely.

Remark 1.1. In the following we will use the Landau notations to
describe how a coding scheme π behaves with respect to the noiseless
protocol π0. In particular, we write O(),Ω(), and so on, to denote the
asymptotic behavior of quantities as n0 →∞.

1.3 Parameters that we care about

We can evaluate the performance of an interactive coding scheme ac-
cording to several parameters.

• Maximal Noise Rate: The maximal noise rate that the resilient
protocol can tolerate. Usually, the noise rate ε ∈ [0, 1] is measured
as the fraction of corrupted symbols out of all the symbols that
were communicated during the protocol. We will be mostly inter-
ested in coding schemes that tolerate a constant fraction of noise
(i.e., when ε = O(1)). We also consider the case where the noise
is stochastic (i.e., where each symbol is corrupted independently
with probability ε; see §1.4).

• Code Rate: The rate of the coding scheme π with respect to the
noiseless π0, defined by

r = CC(π0)
CC(π) .

The rate indicates how much redundancy was added in order to
make the computation noise resilient. We will be mostly interested
in resilient schemes that have a constant rate (positive rate), in
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which the communication complexity of the resilient scheme is at
most a constant times more than the complexity of the noiseless
computation, CC(π) = O(CC(π0)) = O(n0). If a scheme does not
have a constant rate, that is, when limn0→∞ r = 0, we say the
coding scheme has a vanishing rate.

• Success Probability The probability that both parties output
the correct value. The probability is over the randomness of the
protocol (if randomized) and the noise (if randomized). We aim
to obtain coding schemes that succeed with exponentially high
probability in the length of the noiseless protocol, 1− 2−Ω(n0).

• Efficiency: The computational efficiency of the protocol. We aim
for protocols for which the next symbol can be computed in at
most polynomial time in n0 (assuming a black-box access to π0,
as the noiseless protocol by itself may be inefficient).

1.4 Parameters that make a difference

When defining the setting, several variables come into play. Many times,
these seemingly meaningless tweaks make a substantial difference in the
capabilities of coding schemes.

• The Channel. We assume a channel Ch over alphabet Σ is a
causal function Ch : Σ→ Σ, where each instantiation of the func-
tion may (implicitly) depend on all previous channel instantia-
tions. The channel is characterized by the following parameters:

– Alphabet size. While the channel is always assumed to have
a fixed-size alphabet (which is independent of the function
we compute), the specific size of the alphabet may affect
the noise resilience of the coding scheme. It is common that
the alphabet in use is determined as a function of the noise
resilience, and as the resilience approaches the limit, the
alphabet size increases. The most difficult setting is thus when
the alphabet is set to be of size 2, that is, a binary channel.
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– Noise (type). In the standard noisy channel, the noise may
substitute an input symbol σ ∈ Σ into any other symbol
σ′ ∈ Σ. A different type of noisy channel is the erasure
channel, Ch : Σ → Σ ∪ {⊥}, in which the input symbol
is either delivered without any disturbance or turns into a
special erasure mark ⊥ /∈ Σ. In the more general channel
with insertions and deletions, the channel Ch : (Σ ∪ ∅) →
(Σ ∪ ∅) is allowed to completely remove transmitted symbols
(so that the receiver will not be aware a symbol was sent to
it) or inject new symbols (so that a symbol arrives at the
receiver without the sender sending it).

– Noise (power). The power of the noise can be classified into
three main categories:
(i) adversarial noise, where the adversarial channel is consid-
ered to be all powerful, and the only restriction on the noise
is the total amount of corruptions the channel is allowed to
make. As mentioned before, the corruption budget is usually
given as a fraction of the total communication. That is, an
adversarial noise rate of ε means that at most εn symbols
can be corrupted.
(ii) computationally efficient noise, where the adversarial
channel is considered to be computationally limited, in ad-
dition to being restricted to corrupting an ε-fraction of the
transmissions.
(iii) random noise, where each symbol is disturbed with some
fixed probability, independently of previous transmissions,
that is, a memoryless channel. The prominent example is the
binary symmetric channel with flipping probability ε < 1/2,
denoted BSCε, where each bit goes through undisturbed with
probability 1− ε or gets flipped with probability ε, indepen-
dently per transmission. Note that random noise is a special
type of a computationally bounded noise (yet, there is no
limit on the fraction of corrupted transmissions).

– Feedback. In the case of channels with feedback, we assume
the sender instantly learns the symbol received at the other
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side via a separate noiseless feedback channel. The feedback
channel is not counted towards the communication complex-
ity nor the corruption budget.

• Order of Speaking. The order of speaking, both in the noiseless
protocol π0 and in the simulation π, may have a great effect on
the properties of the coding scheme—specifically, its rate and
noise resilience. We distinguish the case of fixed order of speaking
in which the party that sends a symbol at the i-th round is
predetermined and independent of the inputs of the protocol and
the observed noise, and the case of adaptive order of speaking,
where each party independently determines whether to send a
symbol at the next round according to its input and received
transcript.

• Shared Randomness. Whether or not the parties begin the
computation with a random string unknown to the adversarial
channel may have an effect either on the maximal obtainable rate
of the coding scheme or on its noise resilience. In a sense, having
a shared randomness has a certain effect of converting adversarial
noise into a random one [64]. Practically, the parties can use
shared randomness to better detect corruptions, reducing bit flips
into erasure marks (with high probability).

• Number of Parties. The above interactive setting can be aug-
mented to include the multiparty case, where m parties {pi} hold
a private input {xi}, respectively, and wish to compute some func-
tion f(x1, . . . , xm) while communicating over a noisy network.
The network’s topology has an important effect on the coding
scheme’s properties.

1.5 Organization

We begin in Section 2 by discussing coding for interactive communica-
tion in the presence of adversarial noise. We discuss the maximal noise
that can be tolerated and show a scheme with an optimal resilience.
To that end we discuss two main techniques for coding (tree codes and
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rewind-if-error) that will be used throughout the manuscript. In Sec-
tion 3 we discuss (computationally) efficient constructions of coding
schemes. We begin with the random noise setting and show several relax-
ations to tree codes that yield an efficient coding scheme. We then turn
to the adversarial noise setting and show that optimal noise resilience can
be achieved by an efficient coding scheme, using list-decoding techniques.

An advanced family of coding schemes adaptively change their
structure (i.e., their length and the order in which the parties speak)
according to the observed noise. In Section 4 we discuss two models for
adaptive protocols and show that a better noise resilience can be achieved
in each of these more general models. The rate of coding schemes is
discussed in Section 5. In particular, we show coding schemes in the
random noise setting, whose rate approaches one as the noise probability
approaches zero. We also discuss the maximal possible rate, that is, the
capacity of interactive communication over memoryless noisy channels.

Section 6 explores other types of noisy channels. In particular,
we survey coding schemes for channels that allow a noiseless feedback,
erasure channels, channels with insertions and deletions, and quantum
channels. In Section 7 we extend the discussion to the multiparty
case and discuss how to code distributed protocols performed over a
noisy network, both in the random and the adversarial noise settings.
When more than two parties perform a distributed computation, it
is important to define whether messages pass in a synchronous or
an asynchronous way. We survey coding schemes in both message-
passing models and compare their properties. Applications of coding
for interactive communications, and related topics that build on the
techniques of interactive coding are presented in Section 8.

Finally, in Appendix B we provide several tables that summarize
the coding schemes discussed in this manuscript and compare their
properties.
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