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Abstract

An interactive proof system is called doubly-efficient if the prescribed
prover strategy can be implemented in polynomial-time and the veri-
fier’s strategy can be implemented in almost-linear-time. Such proof
systems, introduced by Goldwasser, Kalai, and Rothblum (JACM,
2015), make the benefits of interactive proof system available to real-life
agents who are restricted to polynomial-time computation.

We survey some of the known results regarding doubly-efficient in-
teractive proof system. We start by presenting two simple constructions
for t-no-CLIQUE (due to Goldreich and Rothblum (ECCC, TR17-018
and TR18-046)), where the first construction offers the benefit of be-
ing generalized to any “locally characterizable” set, and the second
construction offers the benefit of preserving the combinatorial flavor
of the problem. We then turn to two more general constructions of
doubly-efficient interactive proof system: the proof system for sets hav-
ing (uniform) bounded-depth circuits (due to Goldwasser, Kalai and
Rothblum (JACM, 2015)), and the proof system for sets that are rec-
ognized in polynomial-time and small space (due to Reingold, Roth-
blum, and Rothblum (STOC, 2016)). Our presentation of the GKR
construction is quite complete (and is somewhat different from the
original presentation), but for the RRR construction we only provide
an overview.

O. Goldreich. On Doubly-Efficient Interactive Proof Systems. Foundations and
Trends® in Theoretical Computer Science, vol. 13, no. 3, pp. 158-246, 2018.
DOI: 10.1561/2300000084.
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1

Introduction

The notion of interactive proof systems, put forward by Goldwasser,
Micali, and Rackoff [28], and the demonstration of their power by Lund,
Fortnow, Karloff, and Nisan [35] and Shamir [44] are among the most
celebrated achievements of complexity theory. Recall that an interac-
tive proof system for a set S is associated with an interactive verifi-
cation procedure, V, that can be made to accept any input in S but
no input outside of S. That is, there exists an interactive strategy for
the prover that makes V' always accept any input in .S, but no strategy
can make V accept an input outside of S, except with negligible prob-
ability. (See Appendix A.1 for a formal definition of interactive proofs,
and [19, Chap. 9] for a wider perspective.)

The original definition does not restrict the complexity of the strat-
egy of the prescribed prover and the constructions of [35, 44] use prover
strategies of high complexity. This fact limits the applicability of these
proof systems in practice. (Nevertheless, such proof systems may be ac-
tually applied when the prover knows something that the verifier does
not know, such as an NP-witness to an NP-claim; this is beneficial when
the proof system offers an advantage (over NP-proof systems) such as
being zero-knowledge [28, 22].)
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1.1 The notion of doubly-efficient interactive proof systems

Seeking to make interactive proof systems available for a wider range
of applications, Goldwasser, Kalai and Rothblum put forward a no-
tion of doubly-efficient interactive proof systems (also called interactive
proofs for muggles [27] and interactive proofs for delegating computa-
tion [42]). In these proof systems the prescribed prover strategy can
be implemented in polynomial-time and the verifier’s strategy can be
implemented in almost-linear-time. That is, doubly-efficient interactive
proof systems are restricted by two additional efficiency requirements:

Prover’s efficiency requirement: The prescribed prover
strategy (referred to in the completeness condition) should
be implemented in polynomial-time.

Verifier’s efficiency requirement: The verifier strategy
should be implemented in almost-linear time.

(We stress that unlike in argument systems, the soundness condition
holds for all possible cheating strategies (not only for feasible ones).)*
Restricting the prescribed prover to run in polynomial-time im-
plies that such systems may exist only for sets in BPP, whereas a
polynomial-time verifier can check membership in such sets by itself.
However, restricting the verifier to run in almost-linear-time implies
that something can be gained by interacting with a more powerful
prover, even though the latter is restricted to polynomial-time.

The potential applicability of doubly-efficient interactive proof sys-
tems was demonstrated by Goldwasser, Kalai and Rothblum [27], who
constructed such proof systems for any set that has log-space uniform
circuits of small depth (e.g., log-space uniform NC). A recent work
of Reingold, Rothblum, and Rothblum [42] provided doubly-efficient
(constant-round) proof systems for any set that can be decided in
polynomial-time and small amount of space (e.g., for all sets in SC).
These two results are actually incomparable. The two constructions will
be reviewed in Chapters 3 and 4, respectively, but before doing so we
shall consider simpler constructions (see Section 1.2 and Chapter 2).

1See further discussion in Section 1.5.
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Terminology: We keep the term almost linear vague on purpose, but
whenever appropriate we shall spell-out a specific interpretation of it.
The most strict interpretation is that a function f : N — N is almost
linear if f(n) = O(n) = poly(logn)-n. This interpretation is suitable for
Chapter 3 and most of Chapter 2 (i.e., for the results of [27] and [24,
25], resp). In contrast, Chapter 4 (following [42]) uses a much more
liberal interpretation by which a sequence of functions of the form f, :
N — N (representing the complexities of a sequence of constructions)
is almost linear if f.(n) = O(n'*¢) for every ¢ > 0. We mention that
these interpretations have been used in the past also in other settings
(see discussion in [20, Sec. 13.3.3]).

1.2 Doubly-efficient NP-proof systems

For starters, we mention that doubly-efficient interactive proof systems
exist for some sets in P that are believed not to have almost-linear
decision procedures (or at least are not known to have such procedures).
Examples include perfect matching and ¢-CLIQUE, for any constant
t > 3. In these cases, the proof systems are actually of the NP-type.
The point is that in each of these cases, an easily verified NP-witness
(i.e., one that can be verified in almost-linear time) can be found in
polynomial-time.

The foregoing assertion is quite evident for perfect matching, by
virtue of the known matching algorithms and the fact that checking
whether a set of edges is a perfect matching in a given graph can be
done in linear time. The same hold for the maximum flow problem, by
virtue of the min-cut dual. More generally, morally, the same holds for
linear programming (again by duality; i.e., by checking the feasibility
of the dual program).? Turning to fixed-parameter problems, such as
t-CLIQUE, let us now consider the (popular) sets

t-CLIQUE: The set of n-vertex graphs that contain a clique of size t.

2Formally, issues may arise with respect to the length of the description of the
solutions to the primal and dual programs, but these issues can be resolved by
padding the input to that length (which seems quite natural in this context).
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t-SUM: The set of n-long sequences of integers, say, in [—n!T3,n!*3],

that contain ¢ elements that sum-up to zero.

t-0V: The set of n-long sequences of vectors over GF(2)10g2 " that con-
tain ¢ vectors such that their coordinate-wise multiplication yields
the all-zero vector.

In all cases, the NP-witness is a set of ¢ elements, which can be found
in time (}) and verified in poly(t - logn)-time. Recall that t-CLIQUE
is conjectured to require time nct, where ¢ is any constant smaller
than one third of the Boolean matrix multiplication exponent (see,
e.g., [1]), and that 3-SUM is conjectured to require almost quadratic
time (see, e.g., [40], which promoted it), whereas ¢-0V generalizes the
Orthogonal Vectors problem (see [6]).% Furthermore, t-CLIQUE is W/[1]-
complete [15], solving it in time n°® refutes the ETH [13], and lower
bounds for ¢-SUM are known to follow from lower bounds for ¢-CLIQUE
(see [2]).

In general, the class of sets having doubly-efficient NP-proof sys-
tems is a subclass of P N Ntime(L), where L denotes the set of almost-
linear functions. (Indeed, the class of sets having doubly-efficient NP-

proof systems consists of all sets S € Ntime(L) associated with a wit-
ness relation R such that given z € S we can find y € R(x) = {w

(r,w) € R} in polynomial-time.)* As in the case of ZP-versus-N'P,
the question is what can be gained by allowing the verifier to be in-
teractive, toss coins, and rule by statistical evidence. That is, moving

3Indeed, the Orthogonal Vectors problem corresponds to the case of ¢t = 2. Our
formulation of ¢-0V is different but equivalent to the one in [6], where the sequence
of vectors is partitioned into ¢ equal parts and a YES-instance has to take a single
vector from each part.

4Formally, S has a doubly-efficient NP-proof system if and only if there exists a
relation R such that

1. if (z,y) € R, then |y| is almost linear in |z|;
2. S={z:3ws.t. (z,w)€R};

3. there exists a polynomial-time algorithm that, on input = € S, outputs an
element of {w : (z,w) € R};

4. there exists an almost-linear time algorithm that, on input (z,y), decides
whether or not (z,y) € R.
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beyond doubly-efficient NP-proof systems, we focus on the power of
doubly-efficient interactive proof systems.

1.3 The power of doubly-efficient interactive proof systems

The bulk of this survey is devoted to demonstrating the power of
doubly-efficient interactive proof systems. We shall start by present-
ing two different (doubly-efficient interactive) proof systems for t-
no-CLIQUE (i.e., the complement of ¢-CLIQUE). These proof systems
(presented in Sections 2.1 and 2.3) are considerably simpler than the
proof systems that can be derived from the general results captured by
Theorems 1.1 and 1.2 (and presented in Chapters 3 and 4).5

Before turning to these more general results, we briefly discuss the
two doubly-efficient interactive proof systems for ¢-no-CLIQUE . One
of these systems (i.e., the one presented in Section 2.3) proceeds in ¢
rounds such that, in the i'" round, a claim regarding the number of
(t —i+1)-cliques in a graph is reduced to a claim regarding the number
of (t —i)-cliques in a related graph. Hence, in each iteration, a natural
computational problem is reduced to a closely related computational
problem, while preserving the combinatorial flavor of the original prob-
lem. This proof system can also handle varying ¢, yielding an alternative
interactive proof system for #7P.

The idea that underlies the other proof system for ¢-no-CLIQUE (pre-
sented in Section 2.1) can be applied to a natural class of “locally char-
acterizable” sets (defined in Section 2.2, following [24, Sec. 5]). This
class, which contains t-no-CLIQUE, is a subclass of NCNSC. This means
that doubly-efficient interactive proof systems for locally characteriz-
able sets can be obtained from either Theorem 1.1 or Theorem 1.2,
but the point of presenting the direct proof systems for locally char-
acterizable sets (in Section 2.2) is that they are considerably simpler
than those obtained by either Theorem 1.1 or Theorem 1.2. Still, the
latter theorems yield the most general results known regarding doubly-
efficient interactive proof systems.

®The two simple proof systems for t-no-CLIQUE are due to [24, Sec. 3] and [25,
Sec. 2], resp., whereas Theorems 1.1 and 1.2 are due to [27] and [42], resp.
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Theorem 1.1 (doubly-efficient interactive proof systems for log-space uni-
form N'C [27]). Every set that is decidable by a family of log-space
uniform circuits of depth d such that d(n) = O(n), has a doubly-
efficient interactive proof system. Furthermore, the proof system uses

O(logn) - d(n) rounds, and the verifier runs in O(n 4 d(n))-time.

Although circuit size and depth is related to time and space [10],
this relation is not tight enough to relate N'C and SC.% Hence, Theo-
rem 1.1 is incomparable to the following

Theorem 1.2 (doubly-efficient interactive proof systems for SC [42]).
Every set that is decidable by an algorithm that runs in polynomial
time and has space complexity s such that s(n) < y/n, has a doubly-
efficient interactive proof system. Furthermore, for any constant § > 0,
the proof system uses exp(O(1/6)) rounds, and verifier runs in (O(n)+
s(n)? - n’)-time.

As noted in [42], Theorem 1.2 can be extended to randomized algo-
rithms by first reducing their randomness complexity to linear (using
adequate pseudorandom generators), and then letting the verifier toss
coins for the derived algorithm and send the outcomes to the prover
(asking it to prove membership in the corresponding residual set).” A
begging open problem is whether the upper bound of s(n)? can be
replaced by s(n); that is,

Problem 1.3 (a possible quantitative improvement of Theorem 1.2). Does
every set that is decidable by an algorithm that runs in polynomial time
and linear space have a doubly-efficient interactive proof system?

5The point is that the translations between depth and space do not preserve
polynomial bounds on the size and time, respectively. Specifically, SC can be em-
ulated by uniform circuits of polylogarithmic depth (and quasi-polynomial size),
whereas log-space uniform A/C can be emulated by algorithms of polylogarithmic
space complexity (that run in quasi-polynomial time).

"When applied to a randomized algorithm with two-sided error this yields an
interactive proof system with two-sided error (a.k.a imperfect completeness (see
Appendix A.1)). Recall, however, that we our focus is on interactive proof systems
with perfect completeness (as in Definition A.1); such proof systems are obtained
here when applying the foregoing reduction to a randomized algorithm that always
accepts YES-instances. A similar comment holds with respect to all subsequent state-
ments about BPP (see, e.g., Theorem 1.4 and Section 1.5); that is, when considering
proof systems of perfect completeness, one may replace BPP by coRP.
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Another intriguing question is whether the round complexity in
Theorem 1.2 can be reduced to poly(1/9).

We mention that all the aforementioned proof systems, which will
be surveyed in the subsequent chapters, are of the public-coin type.®
Note that the known transformation of general interactive proof sys-
tems to public-coin ones does not apply to doubly-efficient interactive
proof systems, since the resulting prover strategy is not efficient and
this seems inherent [48]. This begs the question of whether general sys-
tems (i.e., ones that are not of the public-coin type) can offer some
advantages in the context of doubly-efficient interactive proof systems.

1.4 An upper bound on doubly-efficient interactive proof
systems

As stated upfront, doubly-efficient interactive proof systems exists only
for sets in BPP. This is the case, since a decision procedure can just
emulate the interaction between the prescribed polynomial-time prover
(and the polynomial-time verifier). Using the hypothesis that the ver-
ifier runs in almost linear time, it follows that such sets are decidable
in almost linear space. This is the case since the hypothesis implies
that the communication and the verifier’s randomness are (at most)
almost-linear (in the length of the input), and the same holds for the
space complexity of the verifier. Hence, a machine of almost linear space
complexity can decide membership in the set by emulating all possi-
ble interactions. For future reference, let us state the conclusion of the
foregoing discussion.

Theorem 1.4 (upper bound). Every set that has a doubly-efficient in-
teractive proof system can be decided in BPP N Dspace(), where ¢ is
an almost linear function.

Note that even if Theorem 1.2 is improved as suggested in Prob-
lem 1.3, a gap will remain between it and Theorem 1.4, since TiSp(7’, s)
is not necessarily equal Time(7') N Space(s). Hence, another begging

8In the public coin model, at each round, the verifier tosses a predetermined
number of coins and sends the outcome to the prover (see discussion at the end of
Appendix A.1).
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open problem is whether the power of doubly-efficient interactive proof
systems is captured by TiSp(poly, s) or by BPP N Space(s) (or by nei-
ther).

Problem 1.5 (on the gap between Theorems 1.2 and 1.4). Prove or pro-
vide evidence against at least one of the following conjectures:

1. For s(n) = O(n), every set in PNDspace(s) has a doubly-efficient
interactive proof system. Even establishing the claim for some
s(n) = w(logn) would be interesting.’

2. Every set that has a doubly-efficient interactive proof system can
be decided by a probabilistic algorithm that runs in polynomial
time and almost linear space.

We mention that the second conjecture contradicts the conjec-
ture that log-space uniform circuits of linear depth and polynomial
size cannot be emulated by polynomial-time algorithms of almost-linear
space complexity, since Theorem 1.1 provides doubly-efficient interac-
tive proof systems for the former. Can stronger evidence be brought
against the second conjecture? On the other hand, we propose a milder
form of the second conjecture asserting that every set that has a
constant-round doubly-efficient interactive proof system can be decided
by a probabilistic algorithm that runs in polynomial time and almost
linear space.

1.5 On doubly-efficient argument systems

Recall that argument systems are defined as interactive proof systems
with the exception that the soundness condition is replaced by a com-
putational soundness condition. That is, while the (standard) soundness
condition requires that no cheating strategy can make the prover accept
false assertions, except with negligible probability, the computational
soundness condition only requires the infeasibility of cheating (i.e., that

“Note that, by Theorem 1.1, the claim holds for any s(n) = O(logn), since L is
contained in log-space uniform NC.
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cheating strategies that can be implemented by polynomial size circuits
may only fool the verifier with negligible probability).!°

Doubly-efficient argument systems for any set in BPP are implicit
in Kilian’s argument system for sets in NP, which relies on colli-
sion resistance hashing [32].!! This system uses a constant number
of rounds. Furthermore, assuming the existence of computational PIR
schemes [33], every set in BPP has a two-message doubly-efficient argu-
ment system [30, 31, 11].12 On the other hand, any set having a doubly-
efficient argument system is in BPP (since we can decide membership
in such a set by emulating the interaction between the prescribed prover
and verifier strategies).!3

The fact that argument systems are always asserted by relying on an
intractability assumption is no coincidence, since these asserted systems
do not satisfy the information theoretic soundness requirement. In fact,
the existence of an argument system that is not an interactive proof
system (i.e., does not satisfy standard soundness) implies a complexity
separation (which is not known unconditionally). Specifically:

0Polynomial size circuits are preferred over probabilistic polynomial-time algo-
rithms in order to account for auxiliary information that may be available to the
prover (esp., when used as a subroutine inside a higher-level application).

"The claim is evident for sets in P, whereas proving membership in BPP-sets can
be reduced to proving membership in P-set as follows. First note that the hypothesis
(i-e., the existence of collision resistance hashing) implies the existence of one-way
functions, and hence of pseudorandom generators [29]. Using such a generator, we
can reduce the randomness complexity of the decision procedures for BPP to linear,
and let the verifier send a random-tape for such a procedure (as part of its first
message). Hence, it suffices to verify a claim that refers to the residual set, which is
in P.

2The result of [31], which builds on [30], uses a computational PIR of quasi-
polynomial security. The assumption was weakened to standard (polynomial secu-
rity) by [11]. The original results that are stated for P can be extended to BPP
(cf. Footnote 11).

3The validity of this decision procedure refers only to the probability that the
prescribed prover convinces the (prescribed) verifier.
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Theorem 1.6 (arguments that are not proofs imply separations). Let V
be a verifier strategy for an argument system for a set S, and sup-
pose that V' does not satisfy the (information theoretic) soundness re-
quirement. Then, PSPACE is not contained in P/poly. In particular,
BPP # PSPACE. M

In other words, Theorem 1.6 asserts that a gap between informa-
tion theoretic soundness and computational soundness means a gap
between computationally unbounded (prover) strategies and compu-
tationally bounded (prover) strategies. Recalling that, in the current
setting (of fooling a probabilistic polynomial-time verifier), the former
can be implemented in PSPACE, whereas the computational restric-
tion refers to P/poly, the main claim follows (and BPP # PSPACE
follows, since BPP C P /poly).

Proof: Assume, for simplicity and without loss of generality, that
in the said argument system each message of the prover consists of
a single bit, and let f : {0,1}* x {0,1}* — {0,1} denote an optimal
prover strategy with respect to this system (i.e., f(x,7) is the message
sent by the prover on common input z after receiving the sequence of
verifier messages described in the communication transcript ). Then,
f € PSPACE, since an optimal prover strategy (w.r.t a probabilistic
polynomial-time verifier) can be implemented in polynomial space. On
the other hand, f ¢ P/poly, since otherwise a polynomial size circuit
could implement the optimal strategy (for convincing V'), and so there
will be no gap between the information theoretic soundness and the
computational soundness of this proof system. W

1.6 Preliminaries: The Sum-Check protocol

The Sum-Check protocol, designed by Lund, Fortnow, Karloff, and
Nisan [35], is a key ingredient in some of the constructions that we
present. In particular, it will used in Sections 2.1 and 2.2 as well as in
Chapter 3.

MNote that BPP # PSP.ACE implies BPP C PSP.ACE, since BPP C PSPACE.
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Fixing a finite field 7 and a set H C F (e.g., H may be a two-
element set), we consider an m-variate polynomial P : F™ — F of
individual degree d. Given a value v, the Sum-Check protocol is used
to prove that

Z P(o1,...,0m) =, (1.1)
01, es0mEH
assuming that the verifier can evaluate P by itself. The Sum-Check

th jteration

protocol proceeds in m iterations, such that in the i
the number of summations (over H) decreases from m — i + 1 to

m — i. Specifically, the i*! iteration starts with a claim of the form

i omen P(r1y . 1ic1,04,. .. 0m) = vi—1, where r1,...,7;-1 and
vi—1 are as determined in prior iterations (with vy = v), and ends
with a claim of the form 3, . cpy P(ri,...,1,0i41,...,0m) = vi,

where r; and v; are determined in the i*" iteration. Initializing the
process with vy = v, in the i*? iteration the parties act as follows.

Prover’s move: The prover computes a univariate polynomial of de-
gree d over F

PZ(Z) d:ef Z P(Tl,...,Ti_l,Z,UZ‘+1,...,O’m), (1.2)

Oit1yes0mEH

where r1,...,7;_1 are as determined in prior iterations, and sends
P; to the verifier (claiming that > c g Pi(0) = vi—1).

Verifier’s move: Upon receiving a degree d polynomial, denoted 13,
the verifier checks that Y, < P(0) = v;_ and rejects if inequal-
ity holds. Otherwise, it selects r; uniformly in F, and sends it to
the prover, while setting v; < P(r;).

If all m iterations are completed successfully (i.e., without the verifier
rejecting in any of them), the verifier conducts a final check. It com-
putes the value of P(ry,...,r,) and accepts if and only if this value
equals vy,.

Clearly, if Eq. (1.1) holds (and the prover acts according to the pro-
tocol), then the verifier accepts with probability 1. Otherwise, no mat-
ter what the prover does, the verifier accepts with probability at most
m - d/|F|, because in each iteration if the prover provides the correct
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polynomial, then the verifier rejects (since Y, cp Pi(0) = Pi—1(ri—1) #
vi—1), and otherwise the (degree d) polynomial sent agrees with P; on
at most d points.'®

The complexity of verification is dominated by the complexity of
evaluating P (on a single point). As for the prescribed prover, it may
compute the relevant P;’s by interpolation, which is based on comput-
ing the value of P at (d+ 1) -|H|™ " points, for each i € [m]. (That is,
the polynomial P; is computed by obtaining its values at d + 1 points,
where the value of P; at each point is obtained by summing the values
of P at |H|™ % points.)!©

1.7 Organization

In Chapter 2 we present simple constructions of doubly-efficient in-
teractive proof systems for t-no-CLIQUE, as well as for a natural class
that contains it and is contained in uniform N'C (and also in SC). These
proof systems are due to Goldreich and Rothblum [24, 25]. In Chapter 3
we present the proof systems of Goldwasser, Kalai and Rothblum [27],
which are applicable to sets that are recognized by small depth circuits
(e.g., uniform NC). In Chapter 4 we provide an outline of the proof
systems of Reingold, Rothblum, and Rothblum [42], which are appli-
cable to sets recognized in polynomial-time and small space (e.g., sets
in SC).

As hinted in the foregoing paragraph, Chapter 2 is much easier
to read than Chapters 3 and 4. Furthermore, while Chapters 2 and 3

151f P; does not satisfy the current claim (i.e., Y wen Pi(0) # 18 - vi_1), then the

prover can avoid upfront rejection only if it sends P # P;. But in such a case, P
and P; (both being degree d polynomials) may agree on at most d points. Hence,
if the chosen r; € F is not one of these points, it holds that v; = ﬁ(n) # Pi(ri),
which means that the next iteration will also start with a false claim. Hence, starting
with a false claim (i.e., Y __, Pi(0) # i - vo since Eq. (1.1) does not hold), with
probability at least 1 —m - d/|F|, after m iterations we reach a false claim regarding
the value of P at a single point.

163pecifically, the value of P; at p is obtained from the values of P at the points
(r1,...,m-1,p,0), where 0 € H™ ™"
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provide full expositions of the claimed proof systems, Chapter 4 pro-
vides only an overview of the claimed proof system (while referring the
interested reader to the 70-page description in the original work [42]).

Each of the following three chapters starts with several overview
paragraphs that outline the contents of the chapter. Furthermore,
Chapters 3 and 4 proceed with overview sections (see Sections 3.1
and 4.1, respectively).

We conclude (in Chapter 5) with an attempt to provide a high-
level digest of the four fundamentally different proof systems reviewed
above and with some speculations regarding the study of interactive
proof systems at large.

Conventions: We assume that the verifier (resp., prover) has direct
access to the common input; that is, each bit in the input can be read
in unit cost. Unless explicitly stated differently, all logarithms are to
base 2.



Full text available at: http://dx.doi.org/10.1561/0400000084

References

1]

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the
Current Clique Algorithms are Optimal, So is Valiant’s Parser. In 46th
IEEE Symposium on Foundations of Computer Science, pages 98-117,
2015.

Amir Abboud, Kevin Lewi, and Ryan Williams. Losing Weight by Gain-
ing Edges. In 22nd ESA, pages 1-12, 2014.

Noga Alon, Oded Goldreich, Johan Hastad, and Rene Peralta. Simple
Constructions of Almost k-wise Independent Random Variables. Journal
of Random Structures and Algorithms, Vol. 3, No. 3, pages 289-304, 1992.
Preliminary version in 81st FOCS, 1990.

Laszlo Babai. Trading Group Theory for Randomness. In 17th ACM
Symposium on the Theory of Computing, pages 421-429, 1985.

Laszlo Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Check-
ing Computations in Polylogarithmic Time. In 23rd ACM Symposium
on the Theory of Computing, pages 21-31, 1991.

Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant N. Vasudevan.
Average-Case Fine-Grained Hardness. In 48th ACM Symposium on the
Theory of Computing, pages 483-496, 2017.

Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does Parallel Rep-
etition Lower the Error in Computationally Sound Protocols? In 38th
IEEE Symposium on Foundations of Computer Science, pages 374-383,
1997.

85



86

8]

[13]

Full text available at: http://dx.doi.org/10.1561/0400000084

References

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil Vadhan. Robust PCPs of Proximity, Shorter PCPs, and Appli-
cations to Coding. SIAM Journal on Computing, Vol. 36 (4), pages
889-974, 2006. Extended abstract in 36th STOC, 2004.

Andreas Bjorklund and Petteri Kaski. How Proofs are Prepared at
Camelot. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, pages 391-400, 2016.

Allan Borodin. On Relating Time and Space to Size and Depth. STAM
Journal on Computing, Vol. 6 (4), pages 733-744, 1977.

Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-
interactive delegation and batch NP verification from standard compu-
tational assumptions. In 49th ACM Symposium on the Theory of Com-
puting, pages 474-482, 2017.

Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin,
Ramamohan Paturi, and Stefan Schneider. Nondeterministic Extensions
of the Strong Exponential Time Hypothesis and Consequences for Non-
reducibility. In 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 261-270, 2016.

Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David
W. Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for cer-
tain parameterized NP-hard problems. Inf. Comput., Vol. 201 (2), pages
216-231, 2005.

Irit Dinur and Omer Reingold. Assignment-testers: Towards a combinato-
rial proof of the PCP-Theorem. STAM Journal on Computing, Vol. 36 (4),
pages 975-1024, 2006. Extended abstract in /5th FOCS, 2004.

Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability
and completeness II: On completeness for W[1]. Theoretical Computer
Science A, Vol. 141 (1-2), pages 109-131, 1995.

Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer-Verlag Monographs in Computer Science, 1999.

Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shmuel Safra, and Mario
Szegedy. Approximating Clique is almost NP-complete. Journal of the
ACM, Vol. 43, pages 268-292, 1996. Preliminary version in 32nd FOCS,
1991.

Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.

Oded Goldreich. Computational Complexity: A Conceptual Perspective.
Cambridge University Press, 2008.



Full text available at: http://dx.doi.org/10.1561/0400000084

References 87

[20]
[21]

[22]

[25]

[26]

Oded Goldreich. Introduction to Property Testing. Cambridge University
Press, 2017.

Oded Goldreich. On the doubly-efficient interactive proof systems of
GKR. ECCC, TR17-101, 2017.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield
Nothing but their Validity or All Languages in NP Have Zero-Knowledge
Proof Systems. Journal of the ACM, Vol. 38, No. 3, pages 691-729, 1991.
Preliminary version in 27th FOCS, 1986.

Oded Goldreich and Or Meir. Input-Oblivious Proof Systems and a
Uniform Complexity Perspective on P/poly. TOCT, Vol. 7 (4), pages
16:1-16:13, 2015.

Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient inter-
active proof systems for locally-characterizable sets. ECCC, TR17-018,
2017.

Oded Goldreich and Guy N. Rothblum. Counting ¢-cliques: Worst-case
to average-case reductions and direct interactive proof systems. ECCC,
TR18-046, 2018.

Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs
with a laconic provers. Computational Complexity, Vol. 11, pages 1-53,
2002.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegat-
ing Computation: Interactive Proofs for Muggles. Journal of the ACM,
Vol. 62(4), Art. 27:1-27:64, 2015. Extended abstract in 40th STOC, pages
113-122, 2008.

Shafi Goldwasser, Silvio Micali and Charles Rackoff. The Knowledge
Complexity of Interactive Proof Systems. SIAM Journal on Computing,
Vol. 18, pages 186—208, 1989. Preliminary version in 17th STOC, 1985.
Earlier versions date to 1982.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A Pseudorandom Generator from any One-way Function. SIAM Journal
on Computing, Volume 28, Number 4, pages 1364-1396, 1999.

Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for
bounded space. In 45th ACM Symposium on the Theory of Computing,
pages 565574, 2013.

Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate
computations: the power of no-signaling proofs. In 46th ACM Symposium
on the Theory of Computing, pages 485-494, 2014.



88

32]

33]

Full text available at: http://dx.doi.org/10.1561/0400000084

References

Joe Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments.
In 24th ACM Symposium on the Theory of Computing, pages 723-732,
1992.

Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT Needed:
SINGLE Database, Computationally-Private Information Retrieval. In
38th IEEE Symposium on Foundations of Computer Science, pages 364—
373, 1977.

Maya Leshkowitz. Round Complexity Versus Randomness Complexity
in Interactive Proofs. ECCC, TR17-055, 2017.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Alge-
braic methods for interactive proof systems. Journal of the ACM, Vol. 39,
No. 4, pages 859-868, 1992. Extended abstract in 31st FOCS, 1990.

Or Meir. IP = PSPACE Using Error-Correcting Codes. SIAM Journal
on Computing, Vol. 42 (1), pages 380—403, 2013.

Silvio Micali. Computationally Sound Proofs. SIAM Journal on Com-
puting, Vol. 30 (4), pages 1253-1298, 2000. Preliminary version in 35th
FOCS, 1994.

Joseph Naor and Moni Naor. Small-bias Probability Spaces: Efficient
Constructions and Applications. SIAM Journal on Computing, Vol 22,
pages 838-856, 1993. Preliminary version in 22nd STOC, 1990.

Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the sub-
graph problem. Commentationes Mathematicae Universitatis Carolinae,

Vol. 26, No. 2, pages 415-419, 1985.

Mihai Patrascu. Towards polynomial lower bounds for dynamic prob-
lems. In 42nd ACM Symposium on the Theory of Computing, pages
603-610, 2010.

Mihai Patrascu and Ryan Williams. On the Possibility of Faster SAT
Algorithms. In 21st SODA, pages 1065-1075, 2010.

Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-
round interactive proofs for delegating computation. In 48th ACM Sym-
posium on the Theory of Computing, pages 49-62, 2016.

Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient
Batch Verification for UP. ECCC, TR18-022, 2018.

Adi Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages
869-877, 1992. Preliminary version in 31st FOCS, 1990.



Full text available at: http://dx.doi.org/10.1561/0400000084

References 39

[45]

[46]

[49]

[50]

[51]

Madhu Sudan. Invariances in Property Testing. In Property Testing:
Current Research and Surveys. Springer, Lecture Notes in Computer
Science (Vol. 6390), pages 211-227, 2010.

Justin Thaler.  Semi-Streaming Algorithms for Annotated Graph
Streams. In /3rd International Colloguium on Automata, Languages,
and Programming, pages 59:1-59:14, 2016.

Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM
Journal on Computing, Vol. 20 (5), pages 865-877, 1991.

Salil P. Vadhan. On transformation of interactive proofs that preserve
the prover’s complexity. In 32nd ACM Symposium on the Theory of
Computing, pages 200-207, 2000.

Leslie G. Valiant. The complexity of computing the permanent. Theoret-
ical Computer Science, Vol. 8, pages 189-201, 1979.

Virginia Vassilevska Williams. Hardness of Easy Problems: Basing Hard-
ness on Popular Conjectures such as the Strong Exponential Time Hy-
pothesis. In 10th International Symposium on Parameterized and Fxact
Computation, pages 17-29, 2015.

Ryan Williams. Strong ETH Breaks With Merlin and Arthur: Short Non-
Interactive Proofs of Batch Evaluation. In 31st Conference on Compu-
tational Complexity, pages 2:1-2:17, 2016.



	Introduction
	The notion of doubly-efficient interactive proof systems
	Doubly-efficient NP-proof systems
	The power of doubly-efficient interactive proof systems
	An upper bound on doubly-efficient interactive proof systems
	On doubly-efficient argument systems
	Preliminaries: The Sum-Check protocol
	Organization

	Simple doubly-efficient interactive proof systems
	The first construction for t-no-CLIQUE
	A generic construction for locally-characterizable sets
	The second construction for t-no-CLIQUE

	On the doubly-efficient interactive proof systems of GKR
	Overview
	The main module
	Evaluating the polynomial "0362i
	Details

	Overview of the doubly-efficient interactive proof systems of RRR
	The high level structure
	Warm-up: Batch verification for NP
	Batch verification for unambiguous IP

	Epilogue
	Acknowledgments
	Appendices
	Defining interactive proofs and arguments
	The basic definition of interactive proofs
	On computationally bounded provers: An overview

	References





