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Foreword

This monograph is based on lecture notes from my mini-course “Com-
plexity Theory, Game Theory, and Economics,” taught at the Bellairs
Research Institute of McGill University, Holetown, Barbados, February
19–23, 2017, as the 29th McGill Invitational Workshop on Computa-
tional Complexity.

The goal of this monograph is twofold:

(i) to explain how complexity theory has helped illuminate several
barriers in economics and game theory; and

(ii) to illustrate how game-theoretic questions have led to new and
interesting complexity theory, including several very recent break-
throughs.

It consists of two five-lecture sequences: the Solar Lectures, focusing on
the communication and computational complexity of computing equi-
libria; and the Lunar Lectures, focusing on applications of complexity
theory in game theory and economics.1 No background in game theory
is assumed.

Thanks are due to many people: Denis Therien and Anil Ada for
organizing the workshop and for inviting me to lecture; Omri Weinstein,
for giving a guest lecture on simulation theorems in communication

1Cris Moore: “So when are the stellar lectures?”

2
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complexity; Alex Russell, for coordinating the scribe notes; the scribes,2
for putting together a terrific first draft; and all of the workshop at-
tendees, for making the experience so unforgettable (if intense!). I also
thank Yakov Babichenko, Mika Göös, Aviad Rubinstein, Eylon Yogev,
and an anonymous reviewer for numerous helpful comments on earlier
drafts of this monograph.

The writing of this monograph was supported in part by NSF award
CCF-1524062, a Google Faculty Research Award, and a Guggenheim
Fellowship. I would be very happy to receive any comments or corrections
from readers.

Tim Roughgarden
Bracciano, Italy
December 2017
(Revised December 2019)

2Anil Ada, Amey Bhangale, Shant Boodaghians, Sumegha Garg, Valentine
Kabanets, Antonina Kolokolova, Michal Koucký, Cristopher Moore, Pavel Pudlák,
Dana Randall, Jacobo Torán, Salil Vadhan, Joshua R. Wang, and Omri Weinstein.
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6
How Computer Science Has Influenced

Real-World Auction Design.
Case Study: The 2016–2017 FCC Incentive

Auction

6.1 Preamble

Computer science is changing the way auctions are designed and im-
plemented. For over 20 years, the US and other countries have used
spectrum auctions to sell licenses for wireless spectrum to the highest
bidder. What’s different this decade, and what necessitated a new auc-
tion design, is that in the US the juiciest parts of the spectrum for
next-generation wireless applications are already accounted for, owned
by over-the-air television broadcasters. This led Congress to authorize
the FCC in the fall of 2012 to design a novel auction (the FCC Incentive
Auction) that would repurpose spectrum—procuring licenses from tele-
vision broadcasters (a relatively low-value activity) and selling them to
parties that would put them to better use (e.g., telecommunication com-
panies who want to roll out the next generation of wireless broadband
services). Thus the FCC Incentive Auction is really a double auction,
comprising two stages: a reverse auction, where the government buys
back licenses for spectrum from their current owners; and then a forward
auction, where the government sells the procured licenses to the highest
bidder. Computer science techniques played a crucial role in the design
of the new reverse auction. The main aspects of the forward auction

98
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6.2. Reverse Auction 99

have been around a long time; here, theoretical computer science has
contributed on the analysis side, and to understanding when and why
such forward auctions work well. Sections 6.2 and 6.3 give more details
on the reverse and forward parts of the auction, respectively.

The FCC Incentive Auction finished around the end of March 2017,
and so the numbers are in. The government spent roughly 10 billion USD
in the reverse part of the auction buying back licenses from television
broadcasters, and earned roughly 20 billion USD of revenue in the
forward auction. Most of the 10 billion USD profit was used to reduce
the US debt!1

6.2 Reverse Auction

6.2.1 Descending Clock Auctions

The reverse auction is the part of the FCC Incentive Auction that was
totally new, and where computer science techniques played a crucial role
in the design. The auction format, proposed by Milgrom and Segal [113],
is what’s called a descending clock auction. By design, the auction is
very simple from the perspective of any one participant. The auction is
iterative, and operates in rounds. In each round of the auction, each
remaining broadcaster is asked a question of the form: “Would you
or would you not be willing to sell your license for (say) 1 million
dollars?” The broadcaster is allowed to say “no,” with the consequence
of getting kicked out of the auction forevermore (the station will keep
its license and remain on the air, and will receive no compensation
from the government). The broadcaster is also allowed to say “yes” and
accept the buyout offer. In the latter case, the government will not
necessarily buy the license for 1 million dollars—in the next round, the
broadcaster might get asked the same question, with a lower buyout
price (e.g., 950,000 USD). If a broadcaster is still in the auction when
it ends (more on how it ends in a second), then the government does
indeed buy their license, at the most recent (and hence lowest) buyout

1This was the plan all along, which is probably one of the reasons the bill didn’t
have trouble passing a notoriously partisan Congress. Another reason might be the
veto-proof title of the bill: “The Middle Class Tax Relief and Job Creation Act.”

Full text available at: http://dx.doi.org/10.1561/0400000085



100 How Computer Science Has Influenced Real-World Auction Design

offer. Thus all a broadcaster has to do is answer a sequence of “yes/no”
questions for some decreasing sequence of buyout offers. The obvious
strategy for a broadcaster is to formulate the lowest acceptable offer
for their license, and to drop out of the auction once the buyout price
drops below this threshold.

The auction begins with very high buyout offers, so that every
broadcaster would be ecstatic to sell their license at the initial price.
Intuitively, the auction then tries to reduce the buyout prices as much
as possible, subject to clearing a target amount of spectrum. Spectrum
is divided into channels which are blocks of 6 MHz each. For example,
one could target broadcasters assigned to channels 38–51, and insist on
clearing 10 out of these 14 channels (60 MHz overall).2 By “clearing a
channel,” we mean clearing it nationwide. Of course, in the descending
clock auction, bidders will drop out in an uncoordinated way—perhaps
the first station to drop out is channel 51 in Arizona, then channel 41 in
western Massachusetts, and so on. To clear several channels nationwide
without buying out essentially everybody, it was essential for the gov-
ernment to use its power to reassign the channels of the stations that
remain on the air. Thus while a station that drops out of the auction
is guaranteed to retain its license, it is not guaranteed to retain its
channel—a station broadcasting on channel 51 before the auction might
be forced to broadcast on channel 41 after the auction.

The upshot is that the auction maintains the invariant that the
stations that have dropped out of the auction (and hence remain on
the air) can be assigned channels so that at most a target number
of channels are used (in our example, 4 channels). This is called the
repacking problem. Naturally, two stations with overlapping broadcasting
regions cannot be assigned the same channel (otherwise they would
interfere with each other). See Figure 6.1.

2The FCC Incentive Auction wound up clearing 84 MHz of spectrum (14 chan-
nels).
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6.2. Reverse Auction 101

Figure 6.1: Different TV stations with overlapping broadcasting areas must be
assigned different channels (indicated by shades of gray). Checking whether or not
a given subset of stations can be assigned to a given number of channels without
interference is an NP-hard problem.

6.2.2 Solving the Repacking Problem

Any properly trained computer scientist will recognize the repacking
problem as the NP-complete graph coloring problem in disguise.3 For
the proposed auction format to be practically viable, it must quickly
solve the repacking problem. Actually, make that thousands of repacking
problems every round of the auction!4

The responsibility of quickly solving repacking problems fell to a
team led by Kevin Leyton-Brown (see [56, 102]). The FCC gave the
team a budget of one minute per repacking problem, ideally with most
instances solved within one second. The team’s approach was to build on

3The actual repacking problem was more complicated—overlapping stations
cannot even be assigned adjacent channels, and there are idiosyncratic constraints at
the borders with Canada and Mexico. See Leyton-Brown et al. [102] for more details.
But the essence of the repacking problem really is graph coloring.

4Before the auction makes a lower offer to some remaining broadcaster in the
auction, it needs to check that it would be OK for the broadcaster to decline and
drop out of the auction. If a station’s dropping out would render the repacking
problem infeasible, then that station’s buyout price remains frozen until the end of
the auction.
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102 How Computer Science Has Influenced Real-World Auction Design

state-of-the-art solvers for the satisfiability (SAT) problem. As you can
imagine, it’s straightforward to translate an instance of the repacking
problem into a SAT formula (even with the idiosyncratic constraints).5
Off-the-shelf SAT solvers did pretty well, but still timed out on too
many representative instances.6 Leyton-Brown’s team added several new
innovations, including taking advantage of problem structure specific
to the application and implementing a number of caching techniques
(reusing work done solving previous instances to quickly solve closely
related new instances). In the end, they were able to solve more than
99% of the relevant repacking problems in under a minute.

Hopefully the high-level point is clear:

without cutting-edge techniques for solving NP -complete
problems, the FCC would have had to use a different auction
format.

6.2.3 Reverse Greedy Algorithms

One final twist: the novel reverse auction format motivates some basic
algorithmic questions (and thus ideas flow from computer science to
auction theory and back). We can think of the auction as an algorithm, a
heuristic that tries to maximize the value of the stations that remain on
the air, subject to clearing the target amount of spectrum. Milgrom and
Segal [113] prove that, ranging over all ways of implementing the auction
(i.e., of choosing the sequences of descending prices), the corresponding
algorithms are exactly the reverse greedy algorithms.7 This result gives

5A typical representative instance would have thousands of variables and tens of
thousands of constraints.

6Every time the repacking algorithm fails to find a repacking when one exists,
money is left on the table—the auction has to conservatively leave the current
station’s buyout offer frozen, even though it could have safely lowered it.

7For example, Kruskal’s algorithm for the minimum spanning tree problem
(start with the empty set, go through the edges of the graph from cheapest to most
expensive, adding an edge as long as it doesn’t create a cycle) is a standard (forward)
greedy algorithm. The reverse version is: start with the entire edge set, go through
the edges in reverse sorted order, and remove an edge whenever it doesn’t disconnect
the graph. For the minimum spanning tree problem (and more generally for finding
the minimum-weight basis of a matroid), the reverse greedy algorithm is just as
optimal as the forward one. In general (and even for e.g. bipartite matching), the
reverse version of a good forward greedy algorithm can be bad [50].
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6.3. Forward Auction 103

the first extrinsic reason to study the power and limitations of reverse
greedy algorithms, a research direction explored by Dütting et al. [50]
and Gkatzelis et al. [65].

6.3 Forward Auction

Computer science did not have an opportunity to influence the design of
the forward auction used in the FCC Incentive Auction, which resembles
the formats used over the past 20+ years. Still, the theoretical computer
science toolbox turns out to be ideally suited for explaining when and
why these auctions work well.8

6.3.1 Bad Auction Formats Cost Billions

Spectrum auction design is stressful, because small mistakes can be
extremely costly. One cautionary tale is provided by an auction run by
the New Zealand government in 1990 (before governments had much
experience with auctions). For sale were 10 essentially identical national
licenses for television broadcasting. For some reason, lost to the sands of
time, the government decided to sell these licenses by running 10 second-
price auctions in parallel. A second-price or Vickrey auction for a single
good is a sealed-bid auction that awards the item to the highest bidder
and charges her the highest bid by someone else (the second-highest bid
overall). When selling a single item, the Vickrey auction is often a good
solution. In particular, each bidder has a dominant strategy (always at
least as good as all alternatives), which is to bid her true maximum
willingness-to-pay.9,10

The nice properties of a second-price auction evaporate if many of
them are run simultaneously. A bidder can now submit up to one bid
in each auction, with each license awarded to the highest bidder (on
that license) at a price equal to the second-highest bid (on that license).
With multiple simultaneous auctions, it is no longer clear how a bidder

8Much of the discussion in Sections 6.3.1–6.3.3 is from [136, Lecture 8], which in
turn takes inspiration from Milgrom [112].

9Intuitively, a second-price auction shades your bid optimally after the fact, so
there’s no reason to try to game it.

10For a more formal treatment of single-item auctions, see Section 9.1.1.
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104 How Computer Science Has Influenced Real-World Auction Design

should bid. For example, imagine you want one of the licenses, but only
one. How should you bid? One legitimate strategy is to pick one of the
licenses—at random, say—and go for it. Another strategy is to bid less
aggressively on multiple licenses, hoping that you get one at a bargain
price, and that you don’t inadvertently win extra licenses that you don’t
want. The difficulty is trading off the risk of winning too many licenses
with the risk of winning too few.

The challenge of bidding intelligently in simultaneous sealed-bid
auctions makes the auction format prone to poor outcomes. The revenue
in the 1990 New Zealand auction was only $36 million, a paltry fraction
of the projected $250 million. On one license, the high bid was $100,000
while the second-highest bid (and selling price) was $6! On another,
the high bid was $7 million and the second-highest was $5,000. To add
insult to injury, the winning bids were made available to the public,
who could then see just how much money was left on the table!

6.3.2 Simultaneous Ascending Auctions

Modern spectrum auctions are based on simultaneous ascending auctions
(SAAs), following 1993 proposals by McAfee and by Milgrom and Wilson.
You’ve seen—in the movies, at least—the call-and-response format of
an ascending single-item auction, where an auctioneer asks for takers at
successively higher prices. Such an auction ends when there’s only one
person left accepting the currently proposed price (who then wins, at
this price). Conceptually, SAAs are like a bunch of single-item English
auctions being run in parallel in the same room, with one auctioneer
per item.

The primary reason that SAAs work better than sequential or sealed-
bid auctions is price discovery. As a bidder acquires better information
about the likely selling prices of licenses, she can implement mid-course
corrections—abandoning licenses for which competition is fiercer than
anticipated, snapping up unexpected bargains, and rethinking which
packages of licenses to assemble. The format typically resolves the
miscoordination problems that plague simultaneous sealed-bid auctions.

Full text available at: http://dx.doi.org/10.1561/0400000085



6.3. Forward Auction 105

6.3.3 Inefficiency in SAAs

SAAs have two big vulnerabilities. The first problem is demand reduction,
and this is relevant even when items are substitutes.11 Demand reduction
occurs when a bidder asks for fewer items than she really wants, to
lower competition and therefore the prices paid for the items that she
gets.

To illustrate, suppose there are two identical items and two bidders.
By the valuation of a bidder for a given bundle of items, we mean
her maximum willingness to pay for that bundle. Suppose the first
bidder has valuation 10 for one of the items and valuation 20 for both.
The second bidder has valuation 8 for one of the items and does not
want both (i.e., her valuation remains 8 for both). The socially optimal
outcome is to give both licenses to the first bidder. Now consider how
things play out in an SAA. The second bidder would be happy to have
either item at any price less than 8. Thus, the second bidder drops
out only when the prices of both items exceed 8. If the first bidder
stubbornly insists on winning both items, her utility is 20− 16 = 4. An
alternative strategy for the first bidder is to simply concede the second
item and never bid on it. The second bidder takes the second item
and (because she only wants one license) withdraws interest in the first,
leaving it for the first bidder. Both bidders get their item essentially for
free, and the utility of the first bidder has jumped to 10.

The second big problem with SAAs is relevant when items can be
complements, and is called the exposure problem.12 As an example,
consider two bidders and two nonidentical items. The first bidder only
wants both items—they are complementary items for the bidder—and

11Items are substitutes if they provide diminishing returns—having one item only
makes others less valuable. For two items A and B, for example, the substitutes
condition means that a bidder’s value for the bundle of A and B is at most the sum
of her values for A and B individually. In a spectrum auction context, two licenses
for the same area with equal-sized frequency ranges are usually substitute items.

12Items are complements if there are synergies between them, so that possessing
one makes others more valuable. With two items A and B, this translates to a
bidder’s valuation for the bundle of A and B exceeding the sum of her valuations for
A and B individually. Complements arise naturally in wireless spectrum auctions, as
some bidders want a collection of licenses that are adjacent, either in their geographic
areas or in their frequency ranges.
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106 How Computer Science Has Influenced Real-World Auction Design

her valuation is 100 for them (and 0 for anything else). The second
bidder is willing to pay 75 for either item but only wants one item. The
socially optimal outcome is to give both items to the first bidder. But
in an SAA, the second bidder will not drop out until the price of both
items reaches 75. The first bidder is in a no-win situation: to get both
items she would have to pay 150, more than her value. The scenario of
winning only one item for a nontrivial price could be even worse. Thus
the exposure problem leads to economically inefficient allocations for
two reasons. First, an overly aggressive bidder might acquire unwanted
items. Second, an overly tentative bidder might fail to acquire items for
which she has the highest valuation.

6.3.4 When Do SAAs Work Well?

If you ask experts who design or consult for bidders in real-world SAAs,
a rough consensus emerges about when they are likely to work well.

Folklore Belief 1. Without strong complements, SAAs work pretty
well. Demand reduction does happen, but it is not a deal-breaker because
the loss of efficiency appears to be small.

Folklore Belief 2. With strong complements, simple auctions like
SAAs are not good enough. The exposure problem is a deal-breaker
because it can lead to very poor outcomes (in terms of both economic
efficiency and revenue).

There are a number of beautiful and useful theoretical results about
spectrum auctions in the economics literature, but none map cleanly to
these two folklore beliefs. A possible explanation: translating these beliefs
into theorems seems to fundamentally involve approximate optimality
guarantees, a topic that is largely avoided by economists but right in
the wheelhouse of theoretical computer science.

In the standard model of combinatorial auctions, there are n bidders
(e.g., telecoms) andm items (e.g., licenses).13 Bidder i has a nonnegative
valuation vi(S) for each subset S of items she might receive. Note
that, in general, describing a bidder’s valuation function requires 2m

13This model is treated more thoroughly in the next lecture (see Section 7.1).
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parameters. Each bidder wants to maximize her utility, which is the
value of the items received minus the total price paid for them. From
a social perspective, we’d like to award bundles of items T1, . . . , Tn to
the bidders to maximize the social welfare

∑n
i=1 vi(Ti).

To make the first folklore belief precise, we need to commit to a
definition of “without strong complements” and to a specific auction
format. We’ll focus on simultaneous first-price auctions (S1As), where
each bidder submits a separate bid for each item, for each item the
winner is the highest bidder (on that item), and winning bidders pay
their bid on each item won.14 One relatively permissive definition of
“complement-free” is to restrict bidders to have subadditive valuations.
This means what it sounds like: if A and B are two bundles of items,
then bidder i’s valuation vi(A ∪B) for their union should be at most
the sum vi(A) + vi(B) of her valuations for each bundle separately.
Observe that subadditivity is violated in the exposure problem example
in Section 6.3.3.

We also need to define what we mean by “the outcome of an auc-
tion” like S1As. Remember that bidders are strategic, and will bid to
maximize their utility (value of items won minus the price paid). Thus
we should prove approximation guarantees for the equilibria of auc-
tions. Happily, computer scientists have been working hard since 1999
to prove approximation guarantees for game-theoretic equilibria, also
known as bounds on the price of anarchy [97, 131, 139].15 In the early
days, price-of-anarchy bounds appeared somewhat ad hoc and problem-
specific. Fast forwarding to the present, we now have a powerful and
user-friendly theory for proving price-of-anarchy bounds, which combine
“extension theorems” and “composition theorems” to build up bounds
for complex settings (including S1As) from bounds for simple settings.16

14Similar results hold for other auction formats, like simultaneous second-price
auctions. Directly analyzing what happens in iterative auctions like SAAs when there
are multiple items appears difficult.

15See Section 7.3.2 of the next lecture for a formal definition.
16We will say more about this theory in Lunar Lecture 10. See also Roughgarden

et al. [141] for a recent survey.
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In particular, Feldman et al. [54] proved the following translation of
Folklore Belief #1.17

Theorem 6.1 (Feldman et al. [54]). When every bidder has a subaddi-
tive valuation, every equilibrium of an S1A has social welfare at least
50% of the maximum possible.

One version of Theorem 6.1 concerns (mixed) Nash equilibria in
the full-information model (in which bidders’ valuations are common
knowledge), as studied in the Solar Lectures. Even here, the bound in
Theorem 6.1 is tight in the worst case [38]. The approximation guarantee
in Theorem 6.1 holds more generally for Bayes-Nash equilibria, the
standard equilibrium notion for games of incomplete information.18

Moving on to the second folklore belief, let’s now drop the subaddi-
tivity restriction. S1As no longer work well.

Theorem 6.2 (Hassidim et al. [78]). When bidders have arbitrary
valuations, an S1A can have a mixed Nash equilibrium with social
welfare arbitrarily smaller than the maximum possible.

Thus for S1As, the perspective of worst-case approximation confirms
the dichotomy between the cases of substitutes and complements. But
the lower bound in Theorem 6.2 applies only to one specific auction
format. Could we do better with a different natural auction format?
Folklore Belief #2 asserts the stronger statement that no “simple”
auction works well with general valuations. This stronger statement can
also be translated into a theorem (using nondeterministic communication
complexity), and this will be the main subject of Lunar Lecture 7.

17To better appreciate this result, we note that multi-item auctions like S1As are
so strategically complex that they have historically been seen as unanalyzable. For
example, we have no idea what their equilibria look like in general. Nevertheless, we
can prove good approximation guarantees for them!

18In more detail, in this model there is a commonly known prior distribution over
bidders’ valuations. In a Bayes-Nash equilibrium, every bidder bids to maximize her
expected utility given her information at the time: her own valuation, her posterior
belief about other bidders’ valuations, and the bidding strategies (mapping valuations
to bids) used by the other bidders. Theorem 6.1 continues to hold for every Bayes-
Nash equilibrium of an S1A, as long as bidders’ valuations are independently (and
not necessarily identically) distributed.

Full text available at: http://dx.doi.org/10.1561/0400000085



6.3. Forward Auction 109

Theorem 6.3 [133]. With general valuations, every simple auction
can have an equilibrium with social welfare arbitrarily smaller than the
maximum possible.

The definition of “simple” used in Theorem 6.3 is quite generous:
it requires only that the number of strategies available to each player
is sub-doubly-exponential in the number of items m. For example, run-
ning separate single-item auctions provides each player with only an
exponential (in m) number of strategies (assuming a bounded number
of possible bid values for each item). Thus Theorem 6.3 makes use of
the theoretical computer science toolbox to provide solid footing for
Folklore Belief #2.

Full text available at: http://dx.doi.org/10.1561/0400000085



7
Communication Barriers to Near-Optimal

Equilibria

This lecture is about the communication complexity of the welfare-
maximization problem in combinatorial auctions and its implications
for the price of anarchy of simple auctions. Section 7.1 defines the model,
Section 7.2 proves lower bounds for nondeterministic communication
protocols, and Section 7.3 gives a black-box translation of these lower
bounds to equilibria of simple auctions. In particular, Section 7.3 pro-
vides the proof of Theorem 6.3 from last lecture. Section 7.4 concludes
with a juicy open problem on the topic.1

7.1 Welfare Maximization in Combinatorial Auctions

Recall from Section 6.3.4 the basic setup in the study of combinatorial
auctions.

1. There are k players. (In a spectrum auction, these are the tele-
coms.)

2. There is a set M of m items. (In a spectrum auction, these are
the licenses.)

1Much of this lecture is drawn from [137, Lecture 7].
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3. Each player i has a valuation vi : 2M → R+. The number vi(T )
indicates i’s value, or willingness to pay, for the items T ⊆M . The
valuation is the private input of player i, meaning that i knows vi
but none of the other vj ’s. (I.e., this is a number-in-hand model.)
We assume that vi(∅) = 0 and that the valuations are monotone,
meaning vi(S) ≤ vi(T ) whenever S ⊆ T . (The more items, the
better.) To avoid bit complexity issues, we’ll also assume that
all of the vi(T )’s are integers with description length polynomial
in k and m. We sometimes impose additional restrictions on the
valuations to study special cases of the general problem.

Note that we may have more than two players—more than just Alice
and Bob. (For example, you might want to think of k as ≈ m1/3.) Also
note that the description length of a player’s valuation is exponential
in the number of items m.

In the welfare-maximization problem, the goal is to partition the
items M into sets T1, . . . , Tk to maximize, at least approximately, the
social welfare

k∑
i=1

vi(Ti), (7.1)

using communication polynomial in k and m. Note this amount of
communication is logarithmic in the sizes of the private inputs. Maxi-
mizing social welfare (7.1) is the most commonly studied objective in
combinatorial auctions, and it is the one we will focus on in this lecture.

7.2 Communication Lower Bounds for Approximate
Welfare Maximization

This section studies the communication complexity of computing an
approximately welfare-maximizing allocation in a combinatorial auction.
For reasons that will become clear in Section 7.3, we are particularly in-
terested in the problem’s nondeterministic communication complexity.2

2For basic background on nondeterministic multi-party communication protocols,
see Kushilevitz and Nisan [98] or Roughgarden [137].
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7.2.1 Lower Bound for General Valuations

We begin with a result of Nisan [120] showing that, alas, computing even
a very weak approximation of the welfare-maximizing allocation requires
exponential communication. To make this precise, it is convenient to
turn the optimization problem of welfare maximization into a decision
problem. In the Welfare-Maximization(k) problem, the goal is to
correctly identify inputs that fall into one of the following two cases:

(1) Every partition (T1, . . . , Tk) of the items has welfare at most 1.

(0) There exists a partition (T1, . . . , Tk) of the items with welfare at
least k.

Arbitrary behavior is permitted on inputs that fail to satisfy either (1)
or (0). Clearly, communication lower bounds for Welfare-Maximiza-
tion(k) apply to the more general problem of obtaining a better-than-k-
approximation of the maximum welfare.3

Theorem 7.1 [120]. The nondeterministic communication complex-
ity of Welfare-Maximization(k) is exp{Ω(m/k2)}, where k is the
number of players and m is the number of items.

This lower bound is exponential in m, provided that m = Ω(k2+ε)
for some ε > 0. Since communication complexity lower bounds apply
even to players who cooperate perfectly, this impossibility result holds
even when all of the (tricky) incentive issues are ignored.

7.2.2 The Multi-Disjointness Problem

The plan for the proof of Theorem 7.1 is to reduce a multi-party ver-
sion of the Disjointness problem to the Welfare-Maximization(k)
problem. There is some ambiguity about how to define a version of
Disjointness for three or more players. For example, suppose there
are three players, and among the three possible pairings of them, two
have disjoint sets while the third have intersecting sets. Should this

3Achieving a k-approximation is trivial: every player communicates her
value vi(M) for the whole set of items, and the entire set of items is awarded
to the bidder with the highest value for them.
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count as a “yes” or “no” instance? We’ll skirt this issue by worrying
only about unambiguous inputs, that are either “totally disjoint” or
“totally intersecting.”

Formally, in the Multi-Disjointness problem, each of the k players
i holds an input xi ∈ {0, 1}n. (Equivalently, a set Si ⊆ {1, 2, . . . , n}.)
The task is to correctly identify inputs that fall into one of the following
two cases:

(1) “Totally disjoint,” with Si ∩ Si′ = ∅ for every i 6= i′.

(0) “Totally intersecting,” with ∩ki=1Si 6= ∅.

When k = 2, this is the standard Disjointness problem. When k > 2,
there are inputs that are neither 1-inputs nor 0-inputs. We let protocols
off the hook on such ambiguous inputs—they can answer “1” or “0”
with impunity.

The following communication complexity lower bound for Multi-
Disjointness is credited to Jaikumar Radhakrishnan and Venkatesh
Srinivasan in [120]. (The proof is elementary, and for completeness is
given in Section 7.5.)

Theorem 7.2. The nondeterministic communication complexity of
Multi-Disjointness, with k players with n-bit inputs, is Ω(n/k).

This nondeterministic lower bound is for verifying a 1-input. (It
is easy to verify a 0-input—the prover just suggests the index of an
element r in ∩ki=1Si.)4

7.2.3 Proof of Theorem 7.1

The proof of Theorem 7.1 relies on Theorem 7.2 and a combinatorial
gadget. We construct this gadget using the probabilistic method. Con-
sider t random partitions P 1, . . . , P t of M , where t is a parameter to
be defined later. By a random partition P j = (P j1 , . . . , P

j
k ), we mean

4In proving Theorem 7.1, we’ll be interested in the case where k is much smaller
than n, such as k = Θ(logn). Intuition might suggest that the lower bound should be
Ω(n) rather than Ω(n/k), but this is incorrect—a slightly non-trivial argument shows
that Theorem 7.2 is tight for nondeterministic protocols (for all small enough k, like
k = O(

√
n)). This factor-k difference won’t matter for our applications, however.
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that each of the m items is assigned to exactly one of the k players,
independently and uniformly at random.

We are interested in the probability that two classes of different
partitions intersect: for all i 6= i′ and j 6= `, because the probability that
a given item is assigned to i in P j and also to i′ in P ` is 1

k2 , we have

Pr[P ji ∩ P
`
i′ = ∅] =

(
1− 1

k2

)m
≤ e−m/k2

.

Taking a Union Bound over the k choices for i and i′ and the t choices
for j and `, we have

Pr[∃i 6= i′, j 6= ` s.t. P ji ∩ P
`
i′ = ∅] ≤ k2t2e−m/k

2
. (7.2)

Call P 1, . . . , P t an intersecting family if P ji ∩ P `i′ 6= ∅ whenever i 6= i′,
j 6= `. By (7.2), the probability that our random experiment fails to
produce an intersecting family is less than 1 provided t < 1

ke
m/2k2 . The

following lemma is immediate.

Lemma 7.3. For every m, k ≥ 1, there exists an intersecting family of
partitions P 1, . . . , P t with t = exp{Ω(m/k2)}.

A simple combination of Theorem 7.2 and Lemma 7.3 now proves
Theorem 7.1.

Proof. (of Theorem 7.1) The proof is a reduction from Multi-Disjoint-
ness. Fix k and m. (To be interesting, m should be significantly bigger
than k2.) Let (S1, . . . , Sk) denote an input to Multi-Disjointness
with t-bit inputs, where t = exp{Ω(m/k2)} is the same value as in
Lemma 7.3. We can assume that the players have coordinated in ad-
vance on an intersecting family of t partitions of a set M of m items.
Each player i uses this family and her input Si to form the following
valuation:

vi(T ) =
{

1 if T ⊇ P ji for some j ∈ Si
0 otherwise.

That is, player i is either happy (value 1) or unhappy (value 0), and
is happy if and only if she receives all of the items in the correspond-
ing class P ji of some partition P j with index j belonging to its input
to Multi-Disjointness. The valuations v1, . . . , vk define an input to
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Welfare-Maximization(k). Forming this input requires no communi-
cation between the players.

Consider the case where the input to Multi-Disjointness is a
1-input, with Si ∩ Si′ = ∅ for every i 6= i′. We claim that the induced
input to Welfare-Maximization(k) is a 1-input, with maximum
welfare at most 1. To see this, consider a partition (T1, . . . , Tk) in which
some player i is happy (with vi(Ti) = 1). For some j ∈ Si, player i
receives all the items in P ji . Since j 6∈ Si′ for every i′ 6= i, the only
way to make a second player i′ happy is to give her all the items in
P `i′ in some other partition P ` with ` ∈ Si′ (and hence ` 6= j). Since
P 1, . . . , P t is an intersecting family, this is impossible — P ji and P `i′
overlap for every ` 6= j.

When the input to Multi-Disjointness is a 0-input, with an
element r in the mutual intersection ∩ki=1Si, we claim that the induced
input to Welfare-Maximization(k) is a 0-input, with maximum
welfare at least k. This is easy to see: for i = 1, 2, . . . , k, assign the
items of P ri to player i. Since r ∈ Si for every i, this makes all k players
happy.

This reduction shows that a (deterministic, nondeterministic, or
randomized) protocol for Welfare-Maximization(k) yields one for
Multi-Disjointness (with t-bit inputs) with the same communication.
We conclude that the nondeterministic communication complexity of
Welfare-Maximization(k) is Ω(t/k) = exp{Ω(m/k2)}.

7.2.4 Subadditive Valuations

To an algorithms person, Theorem 7.1 is depressing, as it rules out any
non-trivial positive results. A natural idea is to seek positive results
by imposing additional structure on players’ valuations. Many such
restrictions have been studied. We consider here the case of subadditive
valuations (see also Section 6.3.4 of the preceding lecture), where each
vi satisfies vi(S ∪ T ) ≤ vi(S) + vi(T ) for every pair S, T ⊆M .

Our reduction in Theorem 7.1 easily implies a weaker inapprox-
imability result for welfare maximization with subadditive valuations.
Formally, define the Welfare-Maximization(2) problem as that of
identifying inputs that fall into one of the following two cases:
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(1) Every partition (T1, . . . , Tk) of the items has welfare at most k+1.

(0) There exists a partition (T1, . . . , Tk) of the items with welfare at
least 2k.

Communication lower bounds for Welfare-Maximization(2) ap-
ply also to the more general problem of obtaining a better-than-2-
approximation of the maximum social welfare.

Theorem 7.4 (Dobzinski et al. [49]). The nondeterministic commu-
nication complexity of Welfare-Maximization(2) is exp{Ω(m/k2)},
even when all players have subadditive valuations.

This theorem follows from a modification of the proof of Theorem 7.1.
The 0-1 valuations used in that proof are not subadditive, but they can
be made subadditive by adding 1 to each bidder’s valuation vi(T ) of each
non-empty set T . The social welfare obtained in inputs corresponding
to 1- and 0-inputs of Multi-Disjointness become k + 1 and 2k,
respectively, and this completes the proof of Theorem 7.4.

There is also a quite non-trivial deterministic and polynomial-
communication protocol that guarantees a 2-approximation of the social
welfare when bidders have subadditive valuations [52].

7.3 Lower Bounds on the Price of Anarchy of Simple Auctions

The lower bounds of the previous section show that every protocol for the
welfare-maximization problem that interacts with the players and then
explicitly computes an allocation has either a bad approximation ratio
or high communication cost. Over the past decade, many researchers
have considered shifting the work from the protocol to the players, by
analyzing the equilibria of simple auctions. Can such equilibria bypass
the communication complexity lower bounds proved in Section 7.2? The
answer is not obvious, because equilibria are defined non-constructively,
and not through a low-cost communication protocol.

7.3.1 Auctions as Games

What do we mean by a “simple” auction? For example, recall the
simultaneous first-price auctions (S1As) introduced in Section 6.3.4
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of the preceding lecture. Each player i chooses a strategy bi1, . . . , bim,
with one bid per item.5 Each item is sold separately in parallel using a
“first-price auction”—the item is awarded to the highest bidder on that
item, with the selling price equal to that bidder’s bid.6 The payoff of
a player i in a given outcome (i.e., given a choice of strategy for each
player) is then her utility:

vi(Ti)︸ ︷︷ ︸
value of items won

−
∑
j∈Ti

bij︸ ︷︷ ︸
price paid for them

,

where Ti denotes the items on which i is the highest bidder (given the
bids of the others).

Bidders strategize already in a first-price auction for a single item—a
bidder certainly doesn’t want to bid her actual valuation (this would
guarantee utility 0), and instead will “shade” her bid down to a lower
value. (How much to shade is a tricky question, and depends on what the
other bidders are doing.) Thus it makes sense to assess the performance
of an auction by its equilibria. As usual, a Nash equilibrium comprises a
(randomized) strategy for each player, so that no player can unilaterally
increase her expected payoff through a unilateral deviation to some
other strategy (given how the other players are bidding).

7.3.2 The Price of Anarchy

So how good are the equilibria of various auction games, such as S1As?
To answer this question, we use an analog of the approximation ratio,
adapted for equilibria. Given a game G (like an S1A) and a nonnegative
maximization objective function f on the outcomes (like the social wel-
fare), Koutsoupias and Papadimitriou [97] defined the price of anarchy
(POA) of G as the ratio between the objective function value of an

5To keep the game finite, let’s agree that each bid has to be an integer between
0 and some known upper bound B.

6In the preceding lecture we mentioned the Vickrey or second-price auction,
where the winner does not pay their own bid, but rather the highest bid by someone
else (the second-highest overall). We’ll stick with S1As for simplicity, but similar
results are known for simultaneous second-price auctions, as well.
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optimal solution, and that of the worst equilibrium:

PoA(G) := f(OPT (G))
minρ is an equilibrium of G f(ρ) ,

where OPT (G) denotes the optimal outcome of G (with respect to f).7
Thus the price of anarchy of a game quantifies the inefficiency of selfish
behavior.8 The POA of a game and a maximization objective function
is always at least 1. We can identify “good performance” of a system
with strategic participants as having a POA close to 1.9

The POA depends on the choice of equilibrium concept. For example,
the POA with respect to approximate Nash equilibria can only be worse
(i.e., bigger) than for exact Nash equilibria (since there are only more
of the former).

7.3.3 The Price of Anarchy of S1As

As we saw in Theorem 6.1 of the preceding lecture, the equilibria of
simple auctions like S1As can be surprisingly good.10 We restate that
result here.11

Theorem 7.5 (Feldman et al. [54]). In every S1A with subadditive
bidder valuations, the POA is at most 2.

This result is particularly impressive because achieving an approxi-
mation factor of 2 for the welfare-maximization problem with subaddi-
tive bidder valuations by any means (other than brute-force search) is
not easy (see [52]).

7If ρ is a probability distribution over outcomes, as in a mixed Nash equilibrium,
then f(ρ) denotes the expected value of f w.r.t. ρ.

8Games generally have multiple equilibria. Ideally, we’d like an approximation
guarantee that applies to all equilibria, so that we don’t need to worry about which
one is reached—this is the point of the POA.

9One caveat is that it’s not always clear that a system will reach an equilibrium
in a reasonable amount of time. A natural way to resolve this issue is to relax the
notion of equilibrium enough so that it become relatively easy to reach an equilibrium.
See Lunar Lecture 10 for more on this point.

10The first result of this type, for simultaneous second-price auctions and bidders
with submodular valuations, is due to Christodoulou et al. [37].

11For a proof, see the original paper [54] or course notes by the author [134,
Lecture 17.5].
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As mentioned last lecture, a recent result shows that the analysis
of [54] is tight.

Theorem 7.6 (Christodoulou et al. [38]). The worst-case POA of S1As
with subadditive bidder valuations is at least 2.

The proof of Theorem 7.6 is an ingenious explicit construction—
the authors exhibit a choice of subadditive bidder valuations and a
Nash equilibrium of the corresponding S1A so that the welfare of this
equilibrium is only half of the maximum possible. One reason that
proving results like Theorem 7.6 is challenging is that it can be difficult
to solve for a (bad) equilibrium of a complex game like a S1A.

7.3.4 Price-of-Anarchy Lower Bounds from
Communication Complexity

Theorem 7.5 motivates an obvious question: can we do better? Theo-
rem 7.6 implies that the analysis in [54] cannot be improved, but can we
reduce the POA by considering a different auction? Ideally, the auction
would still be “reasonably simple” in some sense. Alternatively, perhaps
no “simple” auction could be better than S1As? If this is the case, it’s
not clear how to prove it directly—proving lower bounds via explicit
constructions auction-by-auction does not seem feasible.

Perhaps it’s a clue that the POA upper bound of 2 for S1As (Theo-
rem 7.5) gets stuck at the same threshold for which there is a lower bound
for protocols that use polynomial communication (Theorem 7.4). It’s
not clear, however, that a lower bound for low-communication protocols
has anything to do with equilibria. Can we extract a low-communication
protocol from an equilibrium?

Theorem 7.7 (Roughgarden [133]). Fix a class V of possible bidder
valuations. Suppose that, for some α ≥ 1, there is no nondeterministic
protocol with subexponential (in m) communication for the 1-inputs of
the following promise version of the welfare-maximization problem with
bidder valuations in V:

(1) Every allocation has welfare at most W ∗/α.

(0) There exists an allocation with welfare at least W ∗.
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Let ε be bounded below by some inverse polynomial function of k and m.
Then, for every auction with sub-doubly-exponential (in m) strategies
per player, the worst-case POA of ε-approximate Nash equilibria with
bidder valuations in V is at least α.

Theorem 7.7 says that lower bounds for nondeterministic protocols
carry over to all “sufficiently simple” auctions, where “simplicity” is
measured by the number of strategies available to each player. These
POA lower bounds follow automatically from communication complexity
lower bounds, and do not require any new explicit constructions.

To get a feel for the simplicity constraint, note that S1As with
integral bids between 0 and B have (B + 1)m strategies per player—
singly exponential in m. On the other hand, in a “direct-revelation”
auction, where each bidder is allowed to submit a bid on each bundle
S ⊆M of items, each player has a doubly-exponential (in m) number
of strategies.12

The POA lower bound promised by Theorem 7.7 is only for ap-
proximate Nash equilibria; since the POA is a worst-case measure and
the set of ε-NE is nondecreasing with ε, this is weaker than a lower
bound for exact Nash equilibria. It is an open question whether or not
Theorem 7.7 holds also for the POA of exact Nash equilibria.13

Theorem 7.7 has a number of interesting corollaries. First, consider
the case where V is the set of subadditive valuations. Since S1As
have only a singly-exponential (in m) number of strategies per player,
Theorem 7.7 applies to them. Thus, combining it with Theorem 7.4
recovers the POA lower bound of Theorem 7.6—modulo the exact vs.
approximate Nash equilibria issue—and shows the optimality of the
upper bound in Theorem 7.5 without an explicit construction. Even
more interestingly, this POA lower bound of 2 applies not only to S1As,
but more generally to all auctions in which each player has a sub-doubly-
exponential number of strategies. Thus, S1As are in fact optimal among

12Equilibria can achieve the optimal welfare in a direct-revelation auction, so
some bound on the number of strategies is necessary in Theorem 7.7.

13Arguably, Theorem 7.7 is good enough for all practical purposes—a POA upper
bound that holds for exact Nash equilibria and does not hold (at least approximately)
for approximate Nash equilibria with very small ε is too brittle to be meaningful.
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the class of all such auctions when bidders have subadditive valuations
(w.r.t. the worst-case POA of ε-approximate Nash equilibria).

We can also take V to be the set of all (monotone) valuations, and
then combine Theorem 7.7 with Theorem 7.1 to deduce that no “simple”
auction gives a non-trivial (i.e., better-than-k) approximation for general
bidder valuations. We conclude that with general valuations, complexity
is essential to any auction format that offers good equilibrium guarantees.
This completes the proof of Theorem 6.3 from the preceding lecture and
formalizes the second folklore belief in Section 6.3.4; we restate that
result here.

Theorem 7.8 [133]. With general valuations, every simple auction can
have equilibria with social welfare arbitrarily worse than the maximum
possible.

7.3.5 Proof of Theorem 7.7

Presumably, the proof of Theorem 7.7 extracts a low-communication
protocol from a good POA bound. The hypothesis of Theorem 7.7 offers
the clue that we should be looking to construct a nondeterministic
protocol. So what could we use an all-powerful prover for? We’ll see
that a good role for the prover is to suggest a Nash equilibrium to the
players.

Unfortunately, it can be too expensive for the prover to write down
the description of a Nash equilibrium, even in S1As. Recall that a mixed
strategy is a distribution over pure strategies, and that each player has
an exponential (in m) number of pure strategies available in a S1A.
Specifying a Nash equilibrium thus requires an exponential number of
probabilities. To circumvent this issue, we resort to approximate Nash
equilibria, which are guaranteed to exist even if we restrict ourselves
to distributions with small descriptions. We proved this for two-player
games in Solar Lecture 1 (Theorem 1.15); the same argument works for
games with any number of players.

Lemma 7.9 (Lipton et al. [104]). For every ε > 0 and every game with k
players with strategy sets A1, . . . , Ak, there exists an ε-approximate Nash
equilibrium with description length polynomial in k, log(maxki=1 |Ai|),
and 1

ε .
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players compute
expected welfare of x

players privately
verify -NE conditions

(i) OPT ≤ W/α
(ii) OPT ≥ W

prover writes
down an -NE x

if E[welfare(x)] > W/α
then OPT > W/α
(so case (ii))

if E[welfare(x)] ≤ W/α
then OPT ≤ ρW/α < W
(so case (i))

Figure 7.1: Proof of Theorem 7.7. How to extract a low-communication nondeter-
ministic protocol from a good price-of-anarchy bound.

In particular, every game with a sub-doubly-exponential number of
strategies admits an approximate Nash equilibrium with subexponential
description length.

We now proceed to the proof of Theorem 7.7.

Proof. (of Theorem 7.7) Fix an auction with at most A strategies per
player, and a value for ε = Ω(1/poly(k,m)). Assume that, no matter
what the bidder valuations v1, . . . , vk ∈ V are, the POA of ε-approximate
Nash equilibria of the auction is at most ρ < α. We will show that A
must be doubly-exponential in m.

Consider the following nondeterministic protocol for verifying a 1-
input of the welfare-maximization problem—for convincing the k players
that every allocation has welfare at mostW ∗/α. See also Figure 7.1. The
prover writes on a publicly visible blackboard an ε-approximate Nash
equilibrium (σ1, . . . , σk) of the auction, with description length polyno-
mial in k, logA, and 1

ε = O(poly(k,m)) as guaranteed by Lemma 7.9.
The prover also writes down the expected welfare contribution E[vi(S)]
of each bidder i in this equilibrium.

Given this advice, each player i verifies that σi is indeed an ε-
approximate best response to the other σj ’s and that her expected
welfare is as claimed when all players play the mixed strategies σ1, . . . , σk.
Crucially, player i is fully equipped to perform both of these checks
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without any communication—she knows her valuation vi (and hence
her utility in each outcome of the game) and the mixed strategies used
by all players, and this is all that is needed to verify her ε-approximate
Nash equilibrium conditions and compute her expected contribution to
the social welfare.14 Player i accepts if and only if the prover’s advice
passes these two tests, and if the expected welfare of the equilibrium is
at most W ∗/α.

For the protocol correctness, consider first the case of a 1-input,
where every allocation has welfare at most W ∗/α. If the prover writes
down the description of an arbitrary ε-approximate Nash equilibrium
and the appropriate expected contributions to the social welfare, then
all of the players will accept (the expected welfare is obviously at most
W ∗/α). We also need to argue that, for the case of a 0-input—where
some allocation has welfare at leastW ∗—there is no proof that causes all
of the players to accept. We can assume that the prover writes down an
ε-approximate Nash equilibrium and its correct expected welfare W , as
otherwise at least one player will reject. Because the maximum-possible
welfare is at least W ∗ and (by assumption) the POA of ε-approximate
Nash equilibria is at most ρ < α, the expected welfare of the given
ε-approximate Nash equilibrium must satisfy W ≥ W ∗/ρ > W ∗/α.
The players will reject such a proof, so we can conclude that the
protocol is correct. Our assumption then implies that the protocol has
communication cost exponential in m. Since the cost of the protocol is
polynomial in k, m, and logA, A must be doubly exponential in m.

Conceptually, the proof of Theorem 7.7 argues that, when the POA
of ε-approximate Nash equilibria is small, every ε-approximate Nash
equilibrium provides a privately verifiable proof of a good upper bound
on the maximum-possible welfare. When such upper bounds require
large communication, the equilibrium description length (and hence the
number of available strategies) must be large.

14These computations may take a super-polynomial amount of time, but they do
not contribute to the protocol’s cost.
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7.4 An Open Question

While Theorems 7.4, 7.5, and 7.7 pin down the best-possible POA
achievable by simple auctions with subadditive bidder valuations, open
questions remain for other valuation classes. For example, a valuation vi
is submodular if it satisfies

vi(T ∪ {j})− vi(T ) ≤ vi(S ∪ {j})− vi(S)

for every S ⊆ T ⊂ M and j /∈ T . This is a “diminishing returns”
condition for set functions. Every monotone submodular function is
also subadditive, so welfare-maximization with the former valuations is
only easier than with the latter.

The worst-case POA of S1As is exactly e
e−1 ≈ 1.58 when bidders

have submodular valuations. The upper bound was proved by Syrgkanis
and Tardos [151], the lower bound by Christodoulou et al. [38]. It is an
open question whether or not there is a simple auction with a smaller
worst-case POA. The best lower bound known—for nondeterministic
protocols and hence, by Theorem 7.7, for the POA of ε-approximate
Nash equilibria of simple auctions—is 2e

2e−1 ≈ 1.23 [48]. Intriguingly,
there is an upper bound (very slightly) better than e

e−1 for polynomial-
communication protocols [53]—can this better upper bound also be
realized as the POA of a simple auction? What is the best-possible
approximation guarantee, either for polynomial-communication proto-
cols or for the POA of simple auctions? Resolving this question would
require either a novel auction format (better than S1As), a novel lower
bound technique (better than Theorem 7.7), or both.

7.5 Appendix: Proof of Theorem 7.2

The proof of Theorem 7.2 proceeds in three easy steps.

Step 1: Every nondeterministic protocol with communication cost c
induces a cover of the 1-inputs of M(f) by at most 2c monochromatic
boxes. By “M(f),” we mean the k-dimensional array in which the ith
dimension is indexed by the possible inputs of player i, and an array entry
contains the value of the function f on the corresponding joint input.
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By a “box,” we mean the k-dimensional generalization of a rectangle—a
subset of inputs that can be written as a product A1×A2×· · ·×Ak. By
“monochromatic,” we mean a box that does not contain both a 1-input
and a 0-input. (Recall that for the Multi-Disjointness problem there
are also inputs that are neither 1 nor 0—a monochromatic box can
contain any number of these.) The proof of this step is the same as the
standard one for the two-party case (see e.g. [98]).

Step 2: The number of 1-inputs in M(f) is (k + 1)n. In a 1-input
(x1, . . . ,xk), for every coordinate `, at most one of the k inputs has
a 1 in the `th coordinate. This yields k + 1 options for each of the n
coordinates, thereby generating a total of (k + 1)n 1-inputs.

Step 3: The number of 1-inputs in a monochromatic box is at most
kn. Let B = A1 × A2 × · · · × Ak be a 1-box. The key claim here is:
for each coordinate ` = 1, . . . , n, there is a player i ∈ {1, . . . , k} such
that, for every input xi ∈ Ai, the `th coordinate of xi is 0. That is, to
each coordinate we can associate an “ineligible player” that, in this box,
never has a 1 in that coordinate. This is easily seen by contradiction:
otherwise, there exists a coordinate ` such that, for every player i,
there is an input xi ∈ Ai with a 1 in the `th coordinate. As a box, B
contains the input (x1, . . . ,xk). But this is a 0-input, contradicting the
assumption that B is a 1-box.

The claim implies the stated upper bound. Every 1-input of B can
be generated by choosing, for each coordinate `, an assignment of at
most one “1” in this coordinate to one of the k − 1 eligible players for
this coordinate. With only k choices per coordinate, there are at most
kn 1-inputs in the box B.

Conclusion: Steps 2 and 3 imply that covering the 1s of the k-
dimensional array of the Multi-Disjointness function requires at
least (1 + 1

k )n 1-boxes. By the discussion in Step 1, this implies a lower
bound of n log2(1 + 1

k ) = Θ(n/k) on the nondeterministic communica-
tion complexity of the Multi-Disjointness function (and output 1).
This concludes the proof of Theorem 7.2.
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8
Why Prices Need Algorithms

You’ve probably heard about “market-clearing prices,” which equate
the supply and demand in a market. When are such prices guaranteed
to exist? In the classical setting with divisible goods (milk, wheat, etc.),
market-clearing prices exist under reasonably weak conditions [6]. But
with indivisible goods (houses, spectrum licenses, etc.), such prices may
or may not exist. As you can imagine, many papers in the economics and
operations research literatures study necessary and sufficient conditions
for existence. The punchline of today’s lecture, based on joint work with
Inbal Talgam-Cohen [138], is that computational complexity considera-
tions in large part govern whether or not market-clearing prices exist
in a market of indivisible goods. This is cool and surprising because
the question (existence of equilibria) seems to have nothing to do with
computation (cf., the questions studied in the Solar Lectures).

8.1 Markets with Indivisible Items

The basic setup is the same as in the preceding lecture, when we were
studying price-of-anarchy bounds for simple combinatorial auctions
(Section 7.1). To review, there are k players, a set M of m items, and
each player i has a valuation vi : 2M → R+ describing her maximum

126
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willingness to pay for each bundle of items. For simplicity, we also
assume that vi(∅) = 0 and that vi is monotone (with vi(S) ≤ vi(T )
whenever S ⊆ T ). As in last lecture, we will often vary the class V of
allowable valuations to make the setting more or less complex.

8.1.1 Walrasian Equilibria

Next is the standard definition of “market-clearing prices” in a market
with multiple indivisible items.

Definition 8.1 (Walrasian Equilibrium). A Walrasian equilibrium
is an allocation S1, . . . , Sk of the items of M to the players and nonneg-
ative prices p1, p2, . . . , pm for the items such that:

(W1) All buyers are as happy as possible with their respective allocations,
given the prices: for every i = 1, 2, . . . , k, Si ∈ argmaxT {vi(T )−∑
j∈T pj}.

(W2) Feasibility: Si ∩ Sj = ∅ for i 6= j.

(W3) The market clears: for every j ∈M , j ∈ Si for some i.1

Note that Si might be the empty set, if the prices are high enough
for (W1) to hold for player i. Also, property (W3) is crucial for the
definition to be non-trivial (otherwise set pj = +∞ for every j).

Walrasian equilibria are remarkable: even though each player opti-
mizes independently (modulo tie-breaking) and gets exactly what she
wants, somehow the global feasibility constraint is respected.

8.1.2 The First Welfare Theorem

Recall from last lecture that the social welfare of an allocation S1, . . . , Sk
is defined as

∑k
i=1 vi(Si). Walrasian equilibria automatically maximize

the social welfare, a result known as the “First Welfare Theorem.”

1The most common definition of a Walrasian equilibrium asserts instead that an
item j is not awarded to any player only if pj = 0. With monotone valuations, there
is no harm in insisting that every item is allocated.
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Theorem 8.2 (First Welfare Theorem). If the prices p1, p2, . . . , pm
and allocation S1, S2, . . . , Sk of items constitute a Walrasian equilibrium,
then

(S1, S2, . . . , Sk) ∈ argmax(T1,T2,...,Tk)

k∑
i=1

vi(Ti),

where (T1, . . . , Tk) ranges over all feasible allocations (with Ti ∩ Tj = ∅
for i 6= j).

If one thinks of a Walrasian equilibrium as the natural outcome of
a market, then Theorem 8.2 can be interpreted as saying “markets are
efficient.”2 There are many versions of the “First Welfare Theorem,”
and all have this flavor.

Proof. Let (S∗1 , . . . , S∗k) denote a welfare-maximizing feasible allocation.
We can apply property (W1) of Walrasian equilibria to obtain

vi(Si)−
∑
j∈Si

pj ≥ vi(S∗i )−
∑
j∈S∗i

pj

for each player i = 1, 2, . . . , k. Summing over i, we have

k∑
i=1

vi(Si)−
k∑
i=1

∑
j∈Si

pj

 ≥ k∑
i=1

vi(S∗i )−
k∑
i=1

∑
j∈S∗i

pj

 . (8.1)

Properties (W2) and (W3) imply that the second term on the left-
hand side of (8.1) equals the sum

∑m
j=1 pj of all the item prices. Since

(S∗1 , . . . , S∗n) is a feasible allocation, each item is awarded at most once
and hence the second term on the right-hand side is at most

∑m
j=1 pj .

Adding
∑m
j=1 pj to both sides gives

k∑
i=1

vi(Si) ≥
k∑
i=1

vi(S∗i ),

which proves that the allocation (S1, . . . , Sk) is also welfare-maximizing.

2Needless to say, much blood and ink have been spilled over this interpretation
over the past couple of centuries.
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8.1.3 Existence of Walrasian Equilibria

The First Welfare Theorem says that Walrasian equilibria are great
when they exist. But when do they exist?

Example 8.3. Suppose M contains only one item. Consider the allo-
cation that awards the item to the player i with the highest value for
it, and a price that is between player i’s value and the highest value
of some other player (the second-highest overall). This is a Walrasian
equilibrium: the price is low enough that bidder i prefers receiving the
item to receiving nothing, and high enough that all the other bidders
prefer the opposite. A simple case analysis shows that these are all of
the Walrasian equilibria.

Example 8.4. Consider a market with two items, A and B. Suppose
the valuation of the first player is

v1(T ) =

3 for T = {A,B}
0 otherwise

and that of the second player is

v2(T ) =

2 for T 6= ∅
0 otherwise.

The first bidder is called a “single-minded” or “AND” bidder, and
is happy only if she gets both items. The second bidder is called a
“unit-demand” or “OR” bidder, and effectively wants only one of the
items.3

We claim that there is no Walrasian equilibrium in this market.
From the First Welfare Theorem, we know that such an equilibrium
must allocate the items to maximize the social welfare, which in this
case means awarding both items to the first player. For the second
player to be happy getting neither item, the price of each item must be
at least 2. But then the first player pays 4 and has negative utility, and
would prefer to receive nothing.

3More formally, a unit-demand valuation v is characterized by nonnegative values
{αj}j∈M , with v(S) = maxj∈S αj for each S ⊆ M . Intuitively, a bidder with a
unit-demand valuation throws away all her items except her favorite.
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These examples suggest a natural question: under what conditions
is a Walrasian equilibrium guaranteed to exist? There is a well-known
literature on this question in economics (e.g. [74, 92, 111]); here are the
highlights.

1. If every player’s valuation vi satisfies the “gross substitutes (GS)”
condition, then a Walrasian equilibrium is guaranteed to exist.
We won’t need the precise definition of the GS condition in this
lecture. GS valuations are closely related to weighted matroid rank
functions, and hence are a subclass of the submodular valuations
defined at the end of last lecture in Section 7.4.4 A unit-demand
(a.k.a. “OR”) valuation, like that of the second player in Exam-
ple 8.4, satisfies the GS condition (corresponding to the 1-uniform
matroid). It follows that single-minded (a.k.a. “AND”) valuations,
like that of the first player in Example 8.4, do not in general
satisfy the GS condition (otherwise the market in Example 8.4
would have a Walrasian equilibrium).

2. If V is a class of valuations that contains all unit-demand valu-
ations and also some valuation that violates the GS condition,
then there is a market with valuations in V that does not possess
a Walrasian equilibrium.

These results imply that GS valuations are a maximal class of valuations
subject to the guaranteed existence of Walrasian equilibria. These results
do, however, leave open the possibility of guaranteed existence for classes
V that contain non-GS valuations but not all unit-demand valuations,
and a number of recent papers in economics and operations research
have pursued this direction (e.g. [11, 24, 25, 150]). All of the non-
existence results in this line of work use explicit constructions, like in
Example 8.4.

4A weighted matroid rank function f is defined using a matroid (E, I) and
nonnegative weights on the elements E, with f(S) defined as the maximum weight
of an independent set (i.e., a member of I) that lies entirely in the subset S ⊆ E.
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8.2 Complexity Separations Imply Non-Existence of
Walrasian Equilibria

8.2.1 Statement of Main Result

Next we describe a completely different approach to ruling out the
existence of Walrasian equilibria, based on complexity theory rather
than explicit constructions. The main result is the following.

Theorem 8.5 (Roughgarden and Talgam-Cohen [138]). Let V denote
a class of valuations. Suppose the welfare-maximization problem for V
does not reduce to the utility-maximization problem for V. Then, there
exists a market with all player valuations in V that has no Walrasian
equilibrium.

In other words, a necessary condition for the guaranteed existence
of Walrasian equilibria is that welfare-maximization is no harder than
utility-maximization. This connects a purely economic question (when
do equilibria exist?) to a purely algorithmic one.

To fill in some of the details in the statement of Theorem 8.5,
by “does not reduce to,” we mean that there is no polynomial-time
Turing reduction from the former problem to the latter. By “the welfare-
maximization problem for V,” we mean the problem of, given player
valuations v1, . . . , vk ∈ V, computing an allocation that maximizes
the social welfare

∑k
i=1 vi(Si).5 By “the utility-maximization prob-

lem for V,” we mean the problem of, given a valuation v ∈ V and
nonnegative prices p1, . . . , pm, computing a utility-maximizing bundle
S ∈ argmaxT⊆M{v(T )−

∑
j∈T pj}.

The utility-maximization problem, which involves only one player,
can generally only be easier than the multi-player welfare-maximization
problem. Thus the two problems either have the same computational
complexity, or welfare-maximization is strictly harder. Theorem 8.5
asserts that whenever the second case holds, Walrasian equilibria need
not exist.

5For concreteness, think about the case where every valuation vi has a succinct
description and can be evaluated in polynomial time. Analogous results hold when
an algorithm has only oracle access to the valuations.
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8.2.2 Examples

Before proving Theorem 8.5, let’s see how to apply it. For most natural
valuation classes V, a properly trained theoretical computer scientist
can identify the complexity of the utility- and welfare-maximization
problems in a matter of minutes.

Example 8.6 (AND Valuations). Let Vm denote the class of “AND”
valuations for markets where |M | = m. That is, each v ∈ Vm has the
following form, for some α ≥ 0 and T ⊆M :

v(S) =

α if S ⊇ T
0 otherwise.

The utility-maximization problem for Vm is trivial: for a single player
with an AND valuation with parameters α and T , the better of ∅ or T is
a utility-maximizing bundle. The welfare-maximization problem for Vm
is essentially set packing and is NP-hard (with m→∞).6 We conclude
that the welfare-maximization problem for V does not reduce to the
utility-maximization problem for V (unless P = NP). Theorem 8.5 then
implies that, assuming P 6= NP, there are markets with AND valuations
that do not have any Walrasian equilibria.7

Of course, Example 8.4 already shows, without any complexity
assumptions, that markets with AND bidders do not generally have

6For example, given an instance G = (V,E) of the Independent Set problem,
take M = E, make one player for each vertex i ∈ V , and give player i an AND
valuation with parameters α = 1 and T equal to the edges that are incident to i in
G.

7It probably seems weird to have a conditional result ruling out equilibrium
existence. A conditional non-existence result can of course be made unconditional
through an explicit example. A proof that the welfare-maximization problem for V
is NP-hard will generally suggest candidate markets to check for non-existence.
The following analogy may help: consider computationally tractable linear pro-

gramming relaxations of NP-hard optimization problems. Conditional on P 6= NP,
such relaxations cannot be exact (i.e., have no integrality gap) for all instances. NP-
hardness proofs generally suggest instances that can be used to prove directly (and
unconditionally) that a particular linear programming relaxation has an integrality
gap.
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Walrasian equilibria.8 Our next example addresses a class of valua-
tions for which the status of Walrasian equilibrium existence was not
previously known.

Example 8.7 (Capped Additive Valuations). A capped additive val-
uation v is parameterized by m + 1 numbers c, α1, α2, . . . , αm and is
defined as

v(S) = min

c,∑
j∈S

αj

 .
The αj ’s indicate each item’s value, and c the “cap” on the maximum
value that can be attained. Capped additive valuations were proposed
in Lehmann et al. [100] as a natural subclass of submodular valua-
tions, and have been studied previously from a welfare-maximization
standpoint.

Let Vm,d denote the class of capped additive valuations in mar-
kets with |M | = m and with c and α1, . . . , αm restricted to be posi-
tive integers between 1 and md. (Think of d as fixed and m → ∞.)
A Knapsack-type dynamic programming algorithm shows that the
utility-maximization problem for Vm,d can be solved in polynomial time
(using that c and the αj ’s are polynomially bounded). For d a sufficiently
large constant, however, the welfare-maximization problem for Vm,d
is NP-hard (it includes the strongly NP-hard Bin Packing problem).
Theorem 8.5 then implies that, assuming P 6= NP, there are markets
with valuations in Vm,d with no Walrasian equilibrium.

8.3 Proof of Theorem 8.5

8.3.1 The Plan

Here’s the plan for proving Theorem 8.5. Fix a class V of valuations,
and assume that a Walrasian equilibrium exists in every market with
player valuations in V. We will show, in two steps, that the welfare-
maximization problem for V (polynomial-time Turing) reduces to the
utility-maximization problem for V.

8Replacing the OR bidder in Example 8.4 with an appropriate pair of AND
bidders extends the example to markets with only AND bidders.

Full text available at: http://dx.doi.org/10.1561/0400000085



134 Why Prices Need Algorithms

Step 1: The “fractional” version of the welfare-maximization problem
for V reduces to the utility-maximization problem for V.

Step 2: A market admits a Walrasian equilibrium if and only if
the fractional welfare-maximization problem has an optimal integral
solution. (We’ll only need the “only if” direction.)

Since every market with valuations in V admits a Walrasian equilib-
rium (by assumption), these two steps imply that the integral welfare-
maximization problem reduces to utility-maximization.

8.3.2 Step 1: Fractional Welfare-Maximization Reduces
to Utility-Maximization

This step is folklore, and appears for example in Nisan and Segal [121].
Consider the following linear program (often called the configuration
LP), with one nonnegative variable xiS for each player i and bundle
S ⊆ 2M :

max
k∑
i=1

∑
S⊆M

vi(S)xiS

s.t.
k∑
i=1

∑
S⊆M : j∈S

xiS ≤ 1 for j = 1, 2, . . . ,m

∑
S⊆M

xiS = 1 for i = 1, 2, . . . , k.

The intended semantics are

xiS =

1 if i gets the bundle S
0 otherwise.

The first set of constraints enforces that each item is awarded only once
(perhaps fractionally), and the second set enforces that every player
receives one bundle (perhaps fractionally). Every feasible allocation
induces a 0-1 feasible solution to this linear program according to the
intended semantics, and the objective function value of this solution is
exactly the social welfare of the allocation.

This linear program has an exponential (in m) number of variables.
The good news is that it has only a polynomial number of constraints.
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This means that the dual linear program will have a polynomial number
of variables and an exponential number of constraints, which is right in
the wheelhouse of the ellipsoid method.

Precisely, the dual linear program is:

min
k∑
i=1

ui +
m∑
j=1

pj

s.t. ui +
∑
j∈S

pj ≥ vi(S) for all i = 1, 2, . . . , k and S ⊆M

pj ≥ 0 for j = 1, 2, . . . ,m,

where ui and pj correspond to the primal constraints that bidder i re-
ceives one bundle and that item j is allocated at most once, respectively.

Recall that the ellipsoid method [93] can solve a linear program
in time polynomial in the number of variables, as long as there is a
polynomial-time separation oracle that can verify whether or not a
given point is feasible and, if not, produce a violated constraint. For the
dual linear program above, this separation oracle boils down to solving
the following problem: for each player i = 1, 2, . . . , k, check that

ui ≥ max
S⊆M

vi(S)−
∑
j∈S

pj

 .
But this reduces immediately to the utility-maximization problem for
V! Thus the ellipsoid method can be used to solve the dual linear
program to optimality, using a polynomial number of calls to a utility-
maximization oracle. The optimal solution to the original fractional
welfare-maximization problem can then be efficiently extracted from
the optimal dual solution.9

9In more detail, consider the (polynomial number of) dual constraints generated
by the ellipsoid method when solving the dual linear program. Form a reduced
version of the original primal problem, retaining only the (polynomial number of)
variables that correspond to this subset of dual constraints. Solve this polynomial-size
reduced version of the primal linear program using your favorite polynomial-time
linear programming algorithm.
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8.3.3 Step 2: Walrasian Equilibria and Exact Linear
Programming Relaxations

We now proceed with the second step, which is based on Bikhchandani
and Mamer [12] and follows from strong linear programming duality.
Recall from linear programming theory (see e.g. [39]) that a pair of
primal and dual feasible solutions are both optimal if and only if the
“complementary slackness” conditions hold.10 These conditions assert
that every non-zero decision variable in one of the linear programs
corresponds to a tight constraint in the other. For our primal-dual pair
of linear programs, these conditions are:

(i) xiS > 0 implies that ui = vi(S) −
∑
j∈S pj (i.e., only utility-

maximizing bundles are used);

(ii) pj > 0 implies that
∑
i

∑
S:j∈S xiS = 1 (i.e., item j is not fully

sold only if it is worthless).

Comparing the definition of Walrasian equilibria (Definition 8.1)
with conditions (i) and (ii), we see that a 0-1 primal feasible solution x
(corresponding to an allocation) and a dual solution p (corresponding
to item prices) constitute a Walrasian equilibrium if and only if the
complementary slackness conditions hold (where ui is understood to be
set to maxS⊆M vi(S)−

∑
j∈S pj). Thus a Walrasian equilibrium exists if

and only if there is a feasible 0-1 solution to the primal linear program
and a feasible solution to the dual linear problem that satisfy the
complementary slackness conditions, which in turn holds if and only if
the primal linear program has an optimal 0-1 feasible solution.11 We
conclude that a Walrasian equilibrium exists if and only if the fractional
welfare-maximization problem has an optimal integral solution. This
completes the proof of Theorem 8.5.

10If you’ve never seen or have forgotten about complementary slackness, there’s
no need to be afraid. To derive them, just write down the usual proof of weak LP
duality (which is a chain of inequalities), and back out the conditions under which
all the inequalities hold with equality.

11This argument re-proves the First Welfare Theorem (Theorem 8.2). It also
proves the Second Welfare Theorem, which states that for every welfare-maximizing
allocation, there exist prices that render it a Walrasian equilibrium—any optimal
solution to the dual linear program furnishes such prices.
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8.4 Beyond Walrasian Equilibria

For valuation classes V that do not always possess Walrasian equilibria,
is it possible to define a more general notion of “market-clearing prices”
so that existence is guaranteed? For example, what if we use prices that
are more complex than item prices? This section shows that complexity
considerations provide an explanation of why interesting generalizations
of Walrasian equilibria have been so hard to come by.

Consider a class V of valuations, and a class P of pricing functions.
A pricing function, just like a valuation, is a function p : 2M → R+
from bundles to nonnegative numbers. The item prices p1, . . . , pm used
to define Walrasian equilibria correspond to additive pricing functions,
with p(S) =

∑
j∈S pj . The next definition articulates the appropriate

generalization of Walrasian equilibria to more general classes of pricing
functions.

Definition 8.8 (Price Equilibrium). A price equilibrium (w.r.t. pricing
functions P) is an allocation S1, . . . , Sk of the items of M to the players
and a pricing function p ∈ P such that:

(P1) All buyers are as happy as possible with their respective allocations,
given the prices: for every i = 1, 2, . . . , k, Si ∈ argmaxT {vi(T )−
p(T )}.

(P2) Feasibility: Si ∩ Sj = ∅ for i 6= j.

(P3) Revenue maximizing, given the prices: (S1, S2, . . . , Sk) ∈
argmax(T1,T2,...,Tk){

∑k
i=1 p(Ti)}.

Condition (P3) is the analog of the market-clearing condition (W3) in
Definition 8.1. It is not enough to assert that all items are sold, because
with a general pricing function, different ways of selling all of the items
can lead to different amounts of revenue. Under conditions (P1)–(P3),
the First Welfare Theorem (Theorem 8.2) still holds, with essentially
the same proof, and so every price equilibrium maximizes the social
welfare.
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For which choices of valuations V and pricing functions P is Defini-
tion 8.8 interesting? Ideally, the following properties should hold.

1. Guaranteed existence: for every set M of items and valuations
v1, . . . , vk ∈ V, there exists a price equilibrium with respect to P.

2. Efficient recognition: there is a polynomial-time algorithm for
checking whether or not a given allocation and pricing function
constitute a price equilibrium. This boils down to assuming that
utility-maximization (with respect to V and P) and revenue-
maximization (with respect to P) are polynomial-time solvable
problems (to check (W1) and (W3), respectively).

3. Markets with valuations in V do not always have a Walrasian
equilibrium. (Otherwise, why bother generalizing item prices?)

We can now see why there are no known natural choices of V and P
that meet these three requirements. The first two requirements imply
that the welfare-maximization problem belongs to NP ∩ co-NP. To
certify a lower bound of W ∗ on the maximum social welfare, one can
exhibit an allocation with social welfare at leastW ∗. To certify an upper
bound of W ∗, one can exhibit a price equilibrium that has welfare at
most W ∗—this is well defined by the first condition, efficiently verifiable
by the second condition, and correct by the First Welfare Theorem.

Problems in (NP ∩ co-NP) \ P appear to be rare, especially in
combinatorial optimization. The preceding paragraph gives a heuristic
argument that interesting generalizations of Walrasian equilibria are
possible only for valuation classes for which welfare-maximization is
polynomial-time solvable. For every natural such class known, the linear
programming relaxation in Section 8.3 has an optimal integral solution;
in this sense, solving the configuration LP appears to be a “universal
algorithm” for polynomial-time welfare-maximization. But the third
requirement asserts that a Walrasian equilibrium does not always exist
in markets with valuations in V and so, by the second step of the proof
of Theorem 8.5 (in Section 8.3.3), there are markets for which the
configuration LP sometimes has only fractional optimal solutions.

The upshot is that interesting generalizations of Walrasian equi-
libria appear possible only for valuation classes where a non-standard
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algorithm is necessary and sufficient to solve the welfare-maximization
problem in polynomial time. It is not clear if there are any natural
valuation classes for which this algorithmic barrier can be overcome.12

12See [138, Section 5.3.2] for an unnatural such class.
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The Borders of Border’s Theorem

Border’s theorem [16] is a famous result in auction theory about the
design space of single-item auctions, and it provides an explicit linear
description of the single-item auctions that are “feasible” in a certain
sense. Despite the theorem’s fame, there have been few generalizations
of it. This lecture, based on joint work with Parikshit Gopalan and
Noam Nisan [73], uses complexity theory to explain why: if there were
significant generalizations of Border’s theorem, the polynomial hierarchy
would collapse!

9.1 Optimal Single-Item Auctions

9.1.1 The Basics of Single-Item Auctions

Single-item auctions have made brief appearances in previous lectures;
let’s now study the classic model, due to Vickrey [154], in earnest. There
is a single seller of a single item. There are n bidders, and each bidder i
has a valuation vi for the item (her maximum willingness to pay).
Valuations are private, meaning that vi is known a priori to bidder i but
not to the seller or the other bidders. Each bidder wants to maximize
the value obtained from the auction (vi if she wins, 0 otherwise) minus

140
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the price she has to pay. In the presence of randomization (either in the
input or internal to the auction), we assume that bidders are risk-neutral,
meaning they act to maximize their expected utility.

This lecture is our only one on the classical Bayesian model of
auctions, which can be viewed as a form of average-case analysis. The
key assumption is that each valuation vi is drawn from a distribution Fi
that is known to the seller and possibly the other bidders. The actual
realization vi remains unknown to everybody other than bidder i. For
simplicity we’ll work with discrete distributions, and let Vi denote
the support of Fi and fi(vi) the probability that bidder i’s valuation
is vi ∈ Vi. Typical examples include (discretized versions of) the uniform
distribution, the lognormal distribution, the exponential distribution,
and power-law distributions. We also assume that bidders’ valuations
are stochastically independent.

When economists speak of an “optimal auction,” they usually mean
the auction that maximizes the seller’s expected revenue with respect
to a known prior distribution.1 Before identifying optimal auctions, we
need to formally define the design space. The auction designer needs to
decide who wins and how much they pay. Thus the designer must define
two (possibly randomized) functions of the bid vector ~b: an allocation
rule ~x(~b) which determines which bidder wins the item, where xi = 1
and if i wins and xi = 0 otherwise, and a payment rule ~p(~b) where pi
is how much i pays. We impose the constraint that whenever bidder i
bids bi, the expected payment E[pi(~b)] of the bidder is at most bi times
the probability xi(~b) that she wins. (The randomization is over the bids
by the other bidders and any randomness internal to the auction.) This
participation constraint ensures that a bidder who does not overbid
will obtain nonnegative expected utility from the auction. (Without it,
an auction could just charge +∞ to every bidder.) The revenue of an
auction on the bid vector ~b is

∑n
i=1 pi(~b).

1One advantage of assuming a distribution over inputs is that there is an un-
equivocal way to compare the performance of different auctions (by their expected
revenues), and hence an unequivocal way to define an optimal auction. One auction
generally earns more revenue than another on some inputs and less on others, so in
the absence of a prior distribution, it’s not clear which one to prefer.
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For example, in the Vickrey or second-price auction, the allocation
rule awards the item to the highest bidder, and the payment rule charges
the second-highest bid. This auction is (dominant-strategy) truthful,
meaning that for each bidder, truthful bidding (i.e., setting bi = vi)
is a dominant strategy that maximizes her utility no matter what the
other bidders do. With such a truthful auction, there is no need to
assume that the distributions F1, . . . , Fn are known to the bidders. The
beauty of the Vickrey auction is that it delegates underbidding to the
auctioneer, who determines the optimal bid for the winner on their
behalf.

A first-price auction has the same allocation rule as a second-price
auction (give the item to the highest bidder), but the payment rule
charges the winner her bid. Bidding truthfully in a first-price auction
guarantees zero utility, so strategic bidders will underbid. Because bid-
ders do not have dominant strategies—the optimal amount to underbid
depends on the bids of the others—it is non-trivial to reason about the
outcome of a first-price auction. The traditional solution is to assume
that the distributions F1, . . . , Fn are known in advance to the bidders,
and to consider Bayes-Nash equilibria. Formally, a strategy of a bidder i
in a first-price auction is a predetermined plan for bidding—a function
bi(·) that maps a valuation vi to a bid bi(vi) (or a distribution over
bids). The semantics are: “when my valuation is vi, I will bid bi(vi).” We
assume that bidders’ strategies are common knowledge, with bidders’
valuations (and hence induced bids) private as usual. A strategy pro-
file b1(·), · · · , bn(·) is a Bayes-Nash equilibrium if every bidder always
bids optimally given her information—if for every bidder i and every
valuation vi, the bid bi(vi) maximizes i’s expected utility, where the
expectation is with respect to the distribution over the bids of other
bidders induced by F1, . . . , Fn and their bidding strategies.2 Note that
the set of Bayes-Nash equilibria of an auction generally depends on the
prior distributions F1, . . . , Fn.

An auction is called Bayesian incentive compatible (BIC) if truthful
bidding (with bi(vi) = vi for all i and vi) is a Bayes-Nash equilibrium.

2Straightforward exercise: if there are n bidders with valuations drawn i.i.d. from
the uniform distribution on [0, 1], then setting bi(vi) = n−1

n
· vi for every i and vi

yields a Bayes-Nash equilibrium.
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That is, as a bidder, if all other bidders bid truthfully, then you also
want to bid truthfully. A second-price auction is BIC, while a first-price
auction is not.3 However, for every choice of F1, . . . , Fn, there is a BIC
auction that is equivalent to the first-price auction. Specifically: given
bids a1, . . . , an, implement the outcome of the first-price auction with
bids b1(a1), . . . , bn(an), where b1(·), . . . , bn(·) denotes a Bayes-Nash equi-
librium of the first-price auction (with prior distributions F1, . . . , Fn).
Intuitively, this auction makes the following pact with each bidder:
“you promise to tell me your true valuation, and I promise to bid on
your behalf as you would in a Bayes-Nash equilibrium.” More generally,
this simulation argument shows that for every auction A, distributions
F1, . . . , Fn, and Bayes-Nash equilibrium of A (w.r.t. F1, . . . , Fn), there
is a BIC auction A′ whose (truthful) outcome (and hence expected
revenue) matches that of the chosen Bayes-Nash equilibrium of A. This
result is known as the Revelation Principle. This principle implies that,
to identify an optimal auction, there is no loss of generality in restricting
to BIC auctions.4

9.1.2 Optimal Auctions

In optimal auction design, the goal is to identify an expected revenue-
maximizing auction, as a function of the prior distributions F1, . . . , Fn.
For example, suppose that n = 1, and we restrict attention to truthful
auctions. The only truthful auctions are take-it-or-leave-it offers (or
a randomization over such offers). That is, the selling price must be
independent of the bidder’s bid, as any dependence would result in
opportunities for the bidder to game the auction. The optimal truthful
auction is then the take-it-or-leave-it offer at the price r that maximizes

r︸︷︷︸
revenue of a sale

· (1− F (r))︸ ︷︷ ︸
probability of a sale

,

3The second-price auction is in fact dominant-strategy incentive compatible
(DSIC)—truthful bidding is a dominant strategy for every bidder, not merely a
Bayes-Nash equilibrium.

4Of course, non-BIC auctions like first-price auctions are still useful in practice.
For example, the description of the first-price auction does not depend on bidders’
valuation distributions F1, . . . , Fn and can be deployed without knowledge of them.
This is not the case for the simulating auction.
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where F denotes the bidder’s valuation distribution. Given a distribu-
tion F , it is usually a simple matter to solve for the best r. An optimal
offer price is called a monopoly price of the distribution F . For example,
if F is the uniform distribution on [0, 1], then the monopoly price is 1

2 .
Myerson [116] gave a complete solution to the optimal single-item

auction design problem, in the form of a generic compiler that takes
as input prior distributions F1, . . . , Fn and outputs a closed-form de-
scription of the optimal auction for F1, . . . , Fn. The optimal auction is
particularly easy to interpret in the symmetric case, in which bidders’
valuations are drawn i.i.d. from a common distribution F . Here, the
optimal auction is simply a second-price auction with a reserve price r
equal to the monopoly price of F (i.e., an eBay auction with a suitably
chosen opening bid).5,6 For example, with any number n of bidders
with valuations drawn i.i.d. from the uniform distribution on [0, 1], the
optimal single-item auction is a second-price auction with a reserve price
of 1

2 . This is a pretty amazing confluence of theory and practice—we
optimized over the space of all imaginable auctions (which includes
some very strange specimens), and discovered that the theoretically
optimal auction format is one that is already in widespread use!7

Myerson’s theory of optimal auctions extends to the asymmetric case
where bidders have different distributions (where the optimal auction is
no longer so simple), and also well beyond single-item auctions.8 The
books by Hartline [77] and the author [136, Lectures 3 and 5] describe
this theory from a computer science perspective.

5Intuitively, a reserve price of r acts as an extra bid of r submitted by the seller.
In a second-price auction with a reserve price, the winner is the highest bidder who
clears the reserve (if any). The winner (if any) pays either the reserve price or the
second-highest bid, whichever is higher.

6Technically, this statement holds under a mild “regularity” condition on the
distribution F , which holds for all of the most common parametric distributions.

7In particular, there is always an optimal auction in which truthful bidding is a
dominant strategy (as opposed to merely being a BIC auction). This is also true in
the asymmetric case.

8The theory applies more generally to “single-parameter problems.” These include
problems in which in each outcome a bidder is either a “winner” or a “loser” (with
multiple winners allowed), and each bidder i has a private valuation vi for winning
(and value 0 for losing).
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9.2 Border’s Theorem

9.2.1 Context

Border’s theorem identifies a tractable description of all BIC single-item
auctions, in the form of a polytope in polynomially many variables.
(See Section 9.1.1 for the definition of a BIC auction.) This goal is in
some sense more ambitious than merely identifying the optimal auction;
with this tractable description in hand, one can efficiently compute the
optimal auction for any given set F1, . . . , Fn of prior distributions.

Economists are interested in Border’s theorem because it can be
used to extend the reach of Myerson’s optimal auction theory (Sec-
tion 9.1.2) to more general settings, such as the case of risk-adverse
bidders studied by Maskin and Riley [106]. Matthews [107] conjectured
the precise result that was proved by Border [16]. Computer scientists
have used Border’s theorem for orthogonal extensions to Myerson’s the-
ory, like computationally tractable descriptions of the expected-revenue
maximizing auction in settings with multiple non-identical items [3, 21].
While there is no hope of deriving a closed-form solution to the optimal
auction design problem with risk-adverse bidders or with multiple items,
Border’s theorem at least enables an efficient algorithm for computing
a description of an optimal auction (given descriptions of the prior
distributions).

9.2.2 An Exponential-Size Linear Program

As a lead-in to Border’s theorem, we show how to formulate the space
of BIC single-item auctions as an (extremely big) linear program. The
decision variables of the linear program encode the allocation and
payment rules of the auction (assuming truthful bidding, as appropriate
for BIC auctions). There is one variable xi(~v) ∈ [0, 1] that describes the
probability (over any randomization in the auction) that bidder i wins
the item when bidders’ valuations (and hence bids) are ~v. Similarly,
pi(~v) ∈ R+ denotes the expected payment made by bidder i when
bidders’ valuations are ~v.

Before describing the linear program, we need some odd but useful
notation (which is standard in game theory and microeconomics).
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Some Notation

For an n-vector ~z and a coordinate i ∈ [n], let ~z−i denote the
(n− 1)-vector obtained by removing the ith component from ~z. We
also identify (zi, ~z−i) with ~z.

Also, recall that Vi denotes the possible valuations of bidder i, and that
we assume that this set is finite.

Our linear program will have three sets of constraints. The first
set enforces the property that truthful bidding is in fact a Bayes-Nash
equilibrium (as required for a BIC auction). For every bidder i, possible
valuation vi ∈ Vi for i, and possible false bid v′i ∈ Vi,

vi ·E~v−i∼~F−i [xi(~v)]−E~v−i∼~F−i [pi(~v)]︸ ︷︷ ︸
expected utility of truthful bid vi

≥ vi ·E~v−i∼~F−i [xi(v
′
i, ~v−i)]−E~v−i∼~F−i [pi(v

′
i, ~v−i)]︸ ︷︷ ︸

expected utility of false bid v′i

. (9.1)

The expectation is over both the randomness in ~v−i and internal to the
auction. Each of the expectations in (9.1) expands to a sum over all
possible ~v−i ∈ ~V−i, weighted by the probability

∏
j 6=i fj(vj). Because all

of the fj(vj)’s are numbers known in advance, each of these constraints
is linear (in the xi(~v)’s and pi(~v)’s).

The second set of constraints encode the participation constraints
from Section 9.1.1, also known as the interim individually rational (IIR)
constraints. For every bidder i and possible valuation vi ∈ Vi,

vi ·E~v−i∼~F−i [xi(~v)]−E~v−i∼~F−i [pi(~v)] ≥ 0. (9.2)

The final set of constraints assert that, with probability 1, the item is
sold to at most one bidder: for every ~v ∈ ~V ,

n∑
i=1

xi(~v) ≤ 1. (9.3)

By construction, feasible solutions to the linear system (9.1)–(9.3)
correspond to the allocation and payment rules of BIC auctions with
respect to the distributions F1, . . . , Fn. This linear program has an
exponential number of variables and constraints, and is not immediately
useful.
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9.2.3 Reducing the Dimension with Interim Allocation Rules

Is it possible to re-express the allocation and payment rules of BIC
auctions with a small number of decision variables? Looking at the
constraints (9.1) and (9.2), a natural idea is to use only the decision
variables {yi(vi)}i∈[n],vi∈Vi and {qi(vi)}i∈[n],vi∈Vi , with the intended se-
mantics that

yi(vi) = E~v−i [xi(vi, ~v−i)] and qi(vi) = E~v−i [pi(vi, ~v−i)].

In other words, yi(vi) is the probability that bidder i wins when she
bids vi, and qi(vi) is the expected amount that she pays; these were
the only quantities that actually mattered in (9.1) and (9.2). (As usual,
the expectation is over both the randomness in ~v−i and internal to the
auction.) In auction theory, the yi(vi)’s are called an interim allocation
rule, the qi(vi)’s an interim payment rule.9

There are only 2
∑n
i=1 |Vi| such decision variables, far fewer than

the 2
∏n
i=1 |Vi| variables in (9.1)–(9.3). We’ll think of the |Vi|’s (and

hence the number of decision variables) as polynomially bounded. For
example, Vi could be the multiples of some small ε that lie in some
bounded range like [0, 1].

We can then express the BIC constraints (9.1) in terms of this
smaller set of variables by

vi · yi(vi)− qi(vi)︸ ︷︷ ︸
expected utility of truthful bid vi

≥ vi · yi(v′i)− qi(v′i)︸ ︷︷ ︸
expected utility of false bid v′i

(9.4)

for every bidder i and vi, v
′
i ∈ Vi. Similarly, the IIR constraints (9.2)

become
vi · yi(vi)− qi(vi) ≥ 0 (9.5)

for every bidder i and vi ∈ Vi.
Just one problem. What about the feasibility constraints (9.3), which

reference the individual xi(~v)’s and not merely their expectations?
9Auction theory generally thinks about three informational scenarios: ex ante,

where each bidder knows the prior distributions but not even her own valuation;
interim, where each bidder knows her own valuation but not those of the others;
and ex post, where all of the bidders know everybody’s valuation. Bidders typically
choose their bids at the interim stage.
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The next definition articulates what feasibility means for an interim
allocation rule.

Definition 9.1 (Feasible Interim Allocation Rule). An interim alloca-
tion rule {yi(vi)}i∈[n],vi∈Vi is feasible if there exist nonnegative values
for {xi(~v)}i∈[n],~v∈~V such that

n∑
i=1

xi(~v) ≤ 1

for every ~v (i.e., the xi(~v)’s constitute a feasible allocation rule), and

yi(vi) =
∑

~v−i∈~V−i

∏
j 6=i

fj(vj)

 · xi(vi, ~v−i)
︸ ︷︷ ︸

E~v−i [xi(vi,~v−i)]

for every i ∈ [n] and vi ∈ Vi (i.e., the intended semantics are respected).

In other words, the feasible interim allocation rules are exactly the
projections (onto the yi(vi)’s) of the feasible (ex post) allocation rules.

The big question is: how can we translate interim feasibility into our
new, more economical vocabulary?10 As we’ll see, Border’s theorem [16]
provides a crisp and computationally useful solution.

9.2.4 Examples

To get a better feel for the issue of checking the feasibility of an interim
allocation rule, let’s consider a couple of examples. A necessary condition
for interim feasibility is that the item is awarded to at most one bidder
in expectation (over the randomness in the valuations and internal to
the auction):

n∑
i=1

∑
vi∈Vi

fi(vi)yi(vi)︸ ︷︷ ︸
Pr[i wins]

≤ 1. (9.6)

10In principle, we know this is possible. The feasible (ex post) allocation rules
form a polytope, the projection of a polytope is again a polytope, and every polytope
can be described by a finite number of linear inequalities. So the real question is
whether or not there’s a computationally useful description of interim feasibility.
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Table 9.1: Certifying feasibility of an interim allocation rule is analogous to filling
in the table entries while respecting constraints on the sums of certain subsets of
entries.

(v1,v2) x1(v1,v2) x2(v1,v2)

(1, 1)
(1, 2)
(2, 1)
(2, 2)

Table 9.2: One solution to Example 9.2.

(v1,v2) x1(v1,v2) x2(v1,v2)

(1, 1) 1 0
(1, 2) 0 1
(2, 1) 3/4 1/4
(2, 2) 1 0

Could this also be a sufficient condition? That is, is every interim
allocation rule {yi(vi)}i∈[n],vi∈Vi that satisfies (9.6) induced by a bona
fide (ex post) allocation rule?

Example 9.2. Suppose there are n = 2 bidders. Assume that v1, v2
are independent and each is equally likely to be 1 or 2. Consider the
interim allocation rule given by

y1(1) = 1
2 , y1(2) = 7

8 , y2(1) = 1
8 , and y2(2) = 1

2 . (9.7)

Since fi(v) = 1
2 for all i = 1, 2 and v = 1, 2, the necessary condition

in (9.6) is satisfied. Can you find an (ex post) allocation rule that
induces this interim rule? Answering this question is much like solving
a Sudoku or KenKen puzzle—the goal is to fill in the table entries in
Table 9.1 so that each row sums to at most 1 (for feasibility) and that
the constraints (9.7) are satisfied. For example, the average of the top
two entries in the first column of Table 9.1 should be y1(1) = 1

2 . In
this example, there are a number of such solutions; one is shown in
Table 9.2. Thus, the given interim allocation rule is feasible.
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Example 9.3. Suppose we change the interim allocation rule to

y1(1) = 1
4 , y1(2) = 7

8 , y2(1) = 1
8 , and y2(2) = 3

4 .

The necessary condition (9.6) remains satisfied. Now, however, the
interim rule is not feasible. One way to see this is to note that y1(2) = 7

8
implies that x1(2, 2) ≥ 3

4 and hence x2(2, 2) ≤ 1
4 . Similarly, y2(2) = 3

4
implies that x2(2, 2) ≥ 1

2 , a contradictory constraint.

The first point of Examples 9.2 and 9.3 is that it is not trivial to
check whether or not a given interim allocation rule is feasible—the
problem corresponds to solving a big linear system of equations and
inequalities. The second point is that (9.6) is not a sufficient condition
for feasibility. In hindsight, trying to summarize the exponentially many
ex post feasibility constraints (9.3) with a single interim constraint (9.6)
seems naive. Is there a larger set of linear constraints—possibly an
exponential number—that characterizes interim feasibility?

9.2.5 Border’s Theorem

Border’s theorem states that a collection of “obvious” necessary condi-
tions for interim feasibility are also sufficient. To state these conditions,
assume for notational convenience that the valuation sets V1, . . . , Vn are
disjoint.11 Let {xi(~v)}i∈[n],~v∈~V be a feasible (ex post) allocation rule and
{yi(vi)}i∈[n],vi∈Vi the induced (feasible) interim allocation rule. Fix for
each bidder i a set Si ⊆ Vi of valuations. Call the valuations ∪ni=1Si the
distinguished valuations. Consider first the probability, over the random
valuation profile ~v ∼ ~F and any coin flips of the ex post allocation rule,
that the winner of the auction (if any) has a distinguished valuation.
By linearity of expectations, this probability can be expressed in terms
of the interim allocation rule:

n∑
i=1

∑
vi∈Si

fi(vi)yi(vi). (9.8)

The expression (9.8) is linear in the yi(vi)’s.
11This is without loss of generality, since we can simply “tag” each valuation

vi ∈ Vi with the “name” i (i.e., view each vi ∈ Vi as the set {vi, i}).
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The second quantity we study is the probability, over ~v ∼ ~F , that
there is a bidder with a distinguished valuation. This has nothing to
do with the allocation rule, and is a function of the prior distributions
only:

1−
n∏
i=1

1−
∑
vi∈Si

fi(vi)

 . (9.9)

Because there can only be a winner with a distinguished valuation if
there is a bidder with a distinguished valuation, the quantity in (9.8) can
only be less than (9.9). Border’s theorem asserts that these conditions,
ranging over all choices of S1 ⊆ V1, . . . , Sn ⊆ Vn, are also sufficient for
the feasibility of an interim allocation rule.

Theorem 9.4 (Border’s theorem [16]). An interim allocation rule
{yi(vi)}i∈[n],vi∈Vi is feasible if and only if for every choice S1 ⊆ V1, . . . ,

Sn ⊆ Vn of distinguished valuations,

n∑
i=1

∑
vi∈Si

fi(vi)yi(vi) ≤ 1−
n∏
i=1

1−
∑
vi∈Si

fi(vi)

 . (9.10)

Border’s theorem can be derived from the max-flow/min-cut theorem
(following [17, 28]); we include the proof in Section 9.4 for completeness.

Border’s theorem yields an explicit description as a linear system of
the feasible interim allocation rules induced by BIC single-item auctions.
To review, this linear system is

vi · yi(vi)− qi(vi) ≥ vi · yi(v′i)− qi(v′i)
∀i and vi, v′i ∈ Vi (9.11)

vi · yi(vi)− qi(vi) ≥ 0 ∀i and vi ∈ Vi (9.12)
n∑
i=1

∑
vi∈Si

fi(vi)yi(vi) ≤ 1−
n∏
i=1

1−
∑
vi∈Si

fi(vi)


∀S1 ⊆ V1, . . . , Sn ⊆ Vn. (9.13)

For example, optimizing the objective function

max
n∑
i=1

fi(vi) · qi(vi) (9.14)
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over the linear system (9.11)–(9.13) computes the expected revenue of
an optimal BIC single-item auction for the distributions F1, . . . , Fn.

The linear system (9.11)–(9.13) has only a polynomial number of
variables (assuming the |Vi|’s are polynomially bounded), but it does
have an exponential number of constraints of the form (9.13). One
solution is to use the ellipsoid method, as the linear system does admit
a polynomial-time separation oracle [3, 21].12 Alternatively, Alaei et al.
[3] provide a polynomial-size extended formulation of the polytope of
feasible interim allocation rules (with a polynomial number of additional
decision variables and only polynomially many constraints). In any case,
we conclude that there is a computationally tractable description of the
feasible interim allocation rules of BIC single-item auctions.

9.3 Beyond Single-Item Auctions: A Complexity-Theoretic Barrier

Myerson’s theory of optimal auctions (Section 9.1.2) extends beyond
single-item auctions to all “single-parameter” settings (see footnote 8
for discussion and Section 9.3.1 for two examples). Can Border’s the-
orem be likewise extended? There are analogs of Border’s theorem in
settings modestly more general than single-item auctions, including
k-unit auctions with unit-demand bidders [3, 21, 28], and approximate
versions of Border’s theorem exist fairly generally [21, 22]. Can this
state-of-the-art be improved upon? We next use complexity theory to
develop evidence for a negative answer.

Theorem 9.5 (Gopalan et al. [73]). (Informal) There is no exact
Border’s-type theorem for settings significantly more general than the
known special cases (unless PH collapses).

We proceed to defining what we mean by “significantly more general”
and a “Border’s-type theorem.”

9.3.1 Two Example Settings

The formal version of Theorem 9.5 conditionally rules out “Border’s-type
theorems” for several specific settings that are representative of what a

12This is not immediately obvious, as the max-flow/min-cut argument in Sec-
tion 9.4 involves an exponential-size graph.
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more general version of Border’s theorem might cover. We mention two
of these here (more are in [73]).

In a public project problem, there is a binary decision to make:
whether or not to undertake a costly project (like building a new school).
Each bidder i has a private valuation vi for the outcome where the project
is built, and valuation 0 for the outcome where it is not. If the project is
built, then everyone can use it. In this setting, feasibility means that all
bidders receive the same allocation: x1(~v) = x2(~v) = · · · = xn(~v) ∈ [0, 1]
for every valuation profile ~v.

In a matching problem, there is a set M of items, and each bid-
der is only interested in receiving a specific pair j, ` ∈ M of items.
(Cf., the AND bidders of the preceding lecture.) For each bidder, the
corresponding pair of items is common knowledge, while the bidder’s
valuation for the pair is private as usual. Feasible outcomes correspond
to (distributions over) matchings in the graph with vertices M and
edges given by bidders’ desired pairs.

The public project and matching problems are both “single-param-
eter” problems (i.e., each bidder has only one private parameter). As
such, Myerson’s optimal auction theory (Section 9.1.2) can be used to
characterize the expected revenue-maximizing auction. Do these settings
also admit analogs of Border’s theorem?

9.3.2 Border’s-Type Theorems

What do we actually mean by a “Border’s-type theorem?” Because we
aim to prove impossibility results, we should adopt a definition that
is as permissive as possible. Border’s theorem (Theorem 9.4) gives a
characterization of the feasible interim allocation rules of a single-item
auction as the solutions to a finite system of linear inequalities. This by
itself is not impressive—the set is a polytope, and as such is guaranteed
to have such a characterization. The appeal of Border’s theorem is that
the characterization uses only the “nice” linear inequalities in (9.10).
Our “niceness” requirement is that the characterization use only linear
inequalities that can be efficiently recognized and tested. This is a weak
necessary condition for such a characterization to be computationally
useful.

Full text available at: http://dx.doi.org/10.1561/0400000085



154 The Borders of Border’s Theorem

Definition 9.6 (Border’s-Type Theorem). A Border’s-type theorem
holds for an auction design setting if, for every instance of the setting
(specifying the number of bidders and their prior distributions, etc.),
there is a system of linear inequalities such that the following properties
hold.

1. (Characterization) The feasible solutions of the linear system are
precisely the feasible interim allocation rules of the instance.

2. (Efficient recognition) There is a polynomial-time algorithm that
can decide whether or not a given linear inequality (described as
a list of coefficients) belongs to the linear system.

3. (Efficient testing) The bit complexity of each linear inequality is
polynomial in the description of the instance. (The number of
inequalities can be exponential.)

For example, consider the original Border’s theorem, for single-item
auctions (Theorem 9.4). The recognition problem is straightforward:
the left-side of (9.10) encodes the Si’s, from which the right-hand side
can be computed and checked in polynomial time. It is also evident
that every inequality in (9.10) has a polynomial-length description.13

9.3.3 Consequences of a Border’s-Type Theorem

The high-level idea behind the proof of Theorem 9.5 is to show that a
Border’s-type theorem puts a certain computational problem low in the
polynomial hierarchy, and then to show that this problem is #P-hard for
the public project and matching settings defined in Section 9.3.1.14 The

13The characterization in Theorem 9.4 and the extensions in [3, 21, 28] have
additional features not required or implied by Definition 9.6, such as a polynomial-
time separation oracle (and even a compact extended formulation in the single-item
case [3]). The impossibility results in Section 9.3.4 rule out analogs of Border’s
theorem that merely satisfy Definition 9.6, let alone these stronger properties.

14Recall that Toda’s theorem [152] implies that a #P-hard problem is contained
in the polynomial hierarchy only if PH collapses.
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computational problem is: given a description of an instance (includ-
ing the prior distributions), compute the maximum-possible expected
revenue that can be obtained by a feasible and BIC auction.15

What use is a Border’s-type theorem? For starters, it implies that
the problem of testing the feasibility of an interim allocation rule is
in co-NP. To prove the infeasibility of such a rule, one simply exhibits
an inequality of the characterizing linear system that the rule fails to
satisfy. Verifying this failure reduces to the recognition and testing
problems, which by Definition 9.6 are polynomial-time solvable.

Proposition 9.7. If a Border’s-type theorem holds for an auction
design setting, then the membership problem for the polytope of feasible
interim allocation rules belongs to co-NP.

Combining Proposition 9.7 with the ellipsoid method puts the prob-
lem of computing the maximum-possible expected revenue in PNP.

Theorem 9.8. If a Border’s-type theorem holds for an auction design
setting, then the maximum expected revenue of a feasible BIC auction
can be computed in PNP.

Proof. We compute the optimal expected revenue of a BIC auction
via linear programming, as follows. The decision variables are the
same yi(vi)’s and qi(vi)’s as in (9.11)–(9.13), and we retain the BIC
constraints (9.11) and the IIR constraints (9.12). By assumption, we can
replace the single-item interim feasibility constraints (9.13) with a linear
system that satisfies the properties of Definition 9.6. The maximum
expected revenue of a feasible BIC auction can then be computed
by optimizing a linear objective function (in the qi(vi)’s, as in (9.14))
subject to these constraints. Using the ellipsoid method [93], this can be
accomplished with a polynomial number of invocations of a separation
oracle (which either verifies feasibility or exhibits a violated constraint).
Proposition 9.7 implies that we can implement this separation oracle

15Sanity check: this problem turns out to be polynomial-time solvable in the
setting of single-item auctions [73].
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in co-NP, and thus compute the maximum expected revenue of a BIC
auction in PNP.16

9.3.4 Impossibility Results from Computational Intractability

Theorem 9.8 concerns the problem of computing the maximum expected
revenue of a feasible BIC auction, given a description of an instance. It
is easy to classify the complexity of this problem in the public project
and matching settings introduced in Section 9.3.1 (and several other
settings, see [73]).

Proposition 9.9. Computing the maximum expected revenue of a
feasible BIC auction of a public project instance is a #P-hard problem.

Proposition 9.9 is a straightforward reduction from the #P-hard
problem of computing the number of feasible solutions to an instance
of the Knapsack problem.17

Proposition 9.10. Computing the maximum expected revenue of a
feasible BIC auction of a matching instance is a #P-hard problem.

Proposition 9.10 is a straightforward reduction from the #P-hard
Permanent problem.

We reiterate that Myerson’s optimal auction theory applies to
the public project and matching settings, and in particular gives a
polynomial-time algorithm that outputs a description of an optimal
auction (for given prior distributions). Moreover, the optimal auction
can be implemented as a polynomial-time algorithm. Thus it’s not hard
to figure out what the optimal auction is, nor to implement it—what’s
hard is figuring out exactly how much revenue it makes on average!

16One detail: Proposition 9.7 only promises solutions to the “yes/no” question of
feasibility, while a separation oracle needs to produce a violated constraint when given
an infeasible point. But under mild conditions (easily satisfied here), an algorithm
for the former problem can be used to solve the latter problem as well [144, P.189].

17An aside for aficionados of the analysis of Boolean functions: Proposition 9.9 is
essentially equivalent to the #P-hardness of checking whether or not given Chow
parameters can be realized by some bounded function on the hypercube. See [73] for
more details on the surprisingly strong correspondence between Myerson’s optimal
auction theory (in the context of public projects) and the analysis of Boolean
functions.
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Figure 9.1: The max-flow/min-cut proof of Border’s theorem.

Combining Theorem 9.8 with Propositions 9.9 and 9.10 gives the
following corollaries, which indicate that there is no Border’s-type
theorem significantly more general than the ones already known.

Corollary 9.11. If #P 6⊆ PH, then there is no Border’s-type theorem
for the setting of public projects.

Corollary 9.12. If #P 6⊆ PH, then there is no Border’s-type theorem
for the matching setting.

9.4 Appendix: A Combinatorial Proof of Border’s Theorem

Proof. (of Theorem 9.4) We have already argued the “only if” direction,
and now prove the converse. The proof is by the max-flow/min-cut
theorem—given the statement of the theorem and this hint, the proof
writes itself.

Suppose the interim allocation rule {yi(vi)}i∈[n],vi∈Vi satisfies (9.10)
for every S1 ⊆ V1, . . . , Sn ⊆ Vn. Form a four-layer s-t directed flow
network G as follows (Figure 9.1(a)). The first layer is the source
s, the last the sink t. In the second layer X, vertices correspond to
valuation profiles ~v. We abuse notation and refer to vertices of X by the
corresponding valuation profiles. There is an arc (s,~v) for every ~v ∈ X,
with capacity

∏n
i=1 fi(vi). Note that the total capacity of these edges

is 1.
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In the third layer Y , vertices correspond to winner-valuation pairs;
there is also one additional “no winner” vertex. We use (i, vi) to denote
the vertex representing the event that bidder i wins the item and also
has valuation vi. For each i and vi ∈ Vi, there is an arc ((i, vi), t) with
capacity fi(vi)yi(vi). There is also an arc from the “no winner” vertex
to t, with capacity 1−

∑n
i=1

∑
vi∈Vi fi(vi)yi(vi).

18

Finally, each vertex ~v ∈ X has n+ 1 outgoing arcs, all with infinite
capacity, to the vertices (1, v1), (2, v2), . . . , (n, vn) of Y and also to the
“no winner” vertex.

By construction, s-t flows of G with value 1 correspond to ex post
allocation rules with induced interim allocation rule {yi(vi)}i∈[n],vi∈Vi ,
with xi(~v) equal to the amount of flow on the arc (~v, (i, vi)) times
(
∏n
i=1 fi(vi))−1.
To show that there exists a flow with value 1, it suffices to show that

every s-t cut has value at least 1 (by the max-flow/min-cut theorem). So
fix an s-t cut. Let this cut include the vertices A from X and B from Y .
Note that all arcs from s to X\A and from B to t are cut (Figure 9.1(b)).
For each bidder i, define Si ⊆ Vi as the possible valuations of i that
are not represented among the valuation profiles in A. Then, for every
valuation profile ~v containing at least one distinguished valuation, the
arc (s,~v) is cut. The total capacity of these arcs is the right-hand
side (9.9) of Border’s condition.

Next, we can assume that every vertex of the form (i, vi) with vi /∈ Si
is in B, as otherwise an (infinite-capacity) arc from A to Y \B is cut.
Similarly, unless A = ∅—in which case the cut has value at least 1
and we’re done—we can assume that the “no winner” vertex lies in B.
Thus, the only edges of the form ((i, vi), t) that are not cut involve a
distinguished valuation vi ∈ Si. It follows that the total capacity of the
cut edges incident to t is at least 1 minus the left-hand size (9.8) of
Border’s condition. Given our assumption that (9.8) is at most (9.9),
this s-t cut has value at least 1. This completes the proof of Border’s
theorem.

18If
∑n

i=1

∑
vi∈Vi

fi(vi)yi(vi) > 1, then the interim allocation rule is clearly
infeasible (recall (9.6)). Alternatively, this would violate Border’s condition for the
choice Si = Vi for all i.
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10
Tractable Relaxations of Nash Equilibria

10.1 Preamble

Much of this monograph is about impossibility results for the efficient
computation of exact and approximate Nash equilibria. How should we
respond to such rampant computational intractability? What should
be the message to economists—should they change the way they do
economic analysis in some way?1

One approach, familiar from coping with NP-hard problems, is to
look for tractable special cases. For example, Solar Lecture 1 proved
tractability results for two-player zero-sum games. Some interesting
tractable generalizations of zero-sum games have been identified (see [23]
for a recent example), and polynomial-time algorithms are also known
for some relatively narrow classes of games (see e.g. [90]). Still, for the
lion’s share of games that we might care about, no polynomial-time
algorithms for computing exact or approximate Nash equilibria are
known.

1Recall the discussion in Section 1.1.7 of Solar Lecture 1: a critique of a widely
used concept like the Nash equilibrium is not particularly helpful unless accompanied
by a proposed alternative.
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A different approach, which has been more fruitful, is to continue to
work with general games and look for an equilibrium concept that is more
computationally tractable than exact or approximate Nash equilibria.
The equilibrium concepts that we’ll consider—the correlated equilibrium
and the coarse correlated equilibrium—were originally invented by game
theorists, but computational complexity considerations are now shining
a much brighter spotlight on them.

Where do these alternative equilibrium concepts come from? They
arise quite naturally from the study of uncoupled dynamics, which we
last saw in Solar Lecture 1.

10.2 Uncoupled Dynamics Revisited

Section 1.2 of Solar Lecture 1 introduced uncoupled dynamics in the
context of two-player games. In this lecture we work with the analogous
setup for a general number k of players. We use Si to denote the (pure)
strategies of player i, si ∈ Si a specific strategy, σi a mixed strategy,
~s and ~σ for profiles (i.e., k-vectors) of pure and mixed strategies, and
ui(~s) for player i’s payoff in the outcome ~s.

Uncoupled Dynamics (k-Player Version)

At each time step t = 1, 2, 3, . . .:

1. Each player i = 1, 2, . . . , k simultaneously chooses a mixed
strategy σti over Si as a function only of her own payoffs and
the strategies chosen by players in the first t− 1 time steps.

2. Every player observes all of the strategies ~σt chosen at time t.

“Uncoupled” refers to the fact that each player initially knows only her
own payoff function ui(·), while “dynamics” means a process by which
players learn how to play in a game.

One of the only positive algorithmic results that we’ve seen concerned
smooth fictitious play (SFP). The k-player version of SFP is as follows.
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Smooth Fictitious Play (k-Player Version)

Given: parameter family {ηt ∈ [0,∞) : t = 1, 2, 3, . . .}.

At each time step t = 1, 2, 3, . . .:

1. Every player i simultaneously chooses the mixed strategy σti
by playing each strategy si with probability proportional to
eη
tπti , where πti is the time-averaged expected payoff player i

would have earned by playing si at every previous time step.
Equivalently, πti is the expected payoff of strategy si when
the other players’ strategies ~s−i are drawn from the joint
distribution 1

t−1
∑t−1
h=1 ~σ

h
−i.2

2. Every player observes all of the strategies ~σt chosen at time t.

A typical choice for the ηt’s is ηt ≈
√
t.

In Theorem 1.8 in Solar Lecture 1 we proved that, in an m ×
n two-player zero-sum game, after O(log(m + n)/ε2) time steps, the
empirical distributions of the two players constitute an ε-approximate
Nash equilibrium.3 An obvious question is: what is the outcome of
a logarithmic number of rounds of smooth fictitious play in a non-
zero-sum game? Our communication complexity lower bound in Solar
Lectures 2 and 3 implies that it cannot in general be an ε-approximate
Nash equilibrium. Does it have some alternative economic meaning?
The answer to this question turns out to be closely related to some
classical game-theoretic equilibrium concepts, which we discuss next.

2Recall from last lecture that for an n-vector ~z and a coordinate i ∈ [k], ~z−i
denotes the (k − 1)-vector obtained by removing the ith component from ~z, and we
identify (zi, ~z−i) with ~z.

3Recall the proof idea: smooth fictitious play corresponds to running the vanishing-
regret “exponential weights” algorithm (with reward vectors induced by the play of
others), and in a two-player zero-sum game, the vanishing-regret guarantee (i.e., with
time-averaged payoff at least that of the best fixed action in hindsight, up to o(1)
error) implies the ε-approximate Nash equilibrium condition.
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10.3 Correlated and Coarse Correlated Equilibria

10.3.1 Correlated Equilibria

The correlated equilibrium is a well-known equilibrium concept defined
by Aumann [7]. We define it, then explain the standard semantics, and
then offer an example.4

Definition 10.1 (Correlated Equilibrium). A joint distribution ρ on
the set S1× · · ·×Sk of outcomes of a game is a correlated equilibrium if
for every player i ∈ {1, 2, . . . , k}, strategy si ∈ Si, and deviation s′i ∈ Si,

E~s∼ρ[ui(~s) | si] ≥ E~s∼ρ[ui(s′i, ~s−i) | si]. (10.1)

Importantly, the distribution ρ in Definition 10.1 need not be a prod-
uct distribution; in this sense, the strategies chosen by the players are
correlated. The Nash equilibria of a game correspond to the correlated
equilibria that are product distributions.

The usual interpretation of a correlated equilibrium involves a
trusted third party. The distribution ρ over outcomes is publicly known.
The trusted third party samples an outcome ~s according to ρ. For each
player i = 1, 2, . . . , k, the trusted third party privately suggests the
strategy si to i. The player i can follow the suggestion si, or not. At
the time of decision making, a player i knows the distribution ρ and
one component si of the realization ~s, and accordingly has a posterior
distribution on others’ suggested strategies ~s−i. With these semantics,
the correlated equilibrium condition (10.1) requires that every player
maximizes her expected payoff by playing the suggested strategy si. The
expectation is conditioned on i’s information—ρ and si—and assumes
that other players play their recommended strategies ~s−i.

Definition 10.1 is a bit of a mouthful. But you are intimately familiar
with a good example of a correlated equilibrium that is not a mixed
Nash equilibrium—a traffic light! Consider the following two-player
game, with each matrix entry listing the payoffs of the row and column
players in the corresponding outcome:

4This section draws from [136, Lecture 13].

Full text available at: http://dx.doi.org/10.1561/0400000085



10.3. Correlated and Coarse Correlated Equilibria 163

Stop Go

Stop 0,0 0,1
Go 1,0 −5,−5

This game has two pure Nash equilibria, the outcomes (Stop, Go)
and (Go, Stop). Define ρ by randomizing uniformly between these two
Nash equilibria. This is not a product distribution over the game’s four
outcomes, so it cannot correspond to a Nash equilibrium of the game.
It is, however, a correlated equilibrium.5

10.3.2 Coarse Correlated Equilibria

The outcome of smooth fictitious play in non-zero-sum games relates
to a still more permissive equilibrium concept, the coarse correlated
equilibrium, which was first studied by Moulin and Vial [115].

Definition 10.2 (Coarse Correlated Equilibrium). A joint distribution
ρ on the set S1 × · · · × Sk of outcomes of a game is a coarse correlated
equilibrium if for every player i ∈ {1, 2, . . . , k} and every unilateral
deviation s′i ∈ Si,

E~s∼ρ[ui(~s)] ≥ E~s∼ρ[ui(s′i, ~s−i)]. (10.2)

The condition (10.2) is the same as that for the Nash equilibrium
(Definition 1.3), except without the restriction that ρ is a product
distribution. In this condition, when a player i contemplates a devia-
tion s′i, she knows only the distribution ρ and not the component si of
the realization. That is, a coarse correlated equilibrium only protects
against unconditional unilateral deviations, as opposed to the unilateral
deviations conditioned on si that are addressed in Definition 10.1. It
follows that every correlated equilibrium is also a coarse correlated
equilibrium (Figure 10.1).

5For example, consider the row player. If the trusted third party (i.e., the traffic
light) recommends the strategy “Go” (i.e., is green), then the row player knows that
the column player was recommended “Stop” (i.e., has a red light). Assuming the
column player plays her recommended strategy and stops at the red light, the best
strategy for the row player is to follow her recommendation and to go.
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NE

CE

CCE

Figure 10.1: The relationship between Nash equilibria (NE), correlated equilibria
(CE), and coarse correlated equilibria (CCE). Enlarging the set of equilibria increases
computational tractability but decreases predictive power.

As you would expect, ε-approximate correlated and coarse correlated
equilibria are defined by adding a “−ε” to the right-hand sides of (10.1)
and (10.2), respectively. We can now answer the question about smooth
fictitious play in general games: the time-averaged history of joint play
under smooth fictitious play converges to the set of coarse correlated
equilibria.

Proposition 10.3 (SFP Converges to CCE). For every k-player game
in which every player has at most m strategies, after T = O((logm)/ε2)
time steps of smooth fictitious play, the time-averaged history of play
1
T

∑T
t=1 ~σ

t is an ε-approximate coarse correlated equilibrium.

Proposition 10.3 follows straightforwardly from the definition of
ε-approximate coarse correlated equilibria and the vanishing regret
guarantee of smooth fictitious play that we proved in Solar Lecture 1.
Precisely, by Corollary 1.11 of that lecture, after O((logm)/ε2) time
steps of smooth fictitious play, every player has at most ε regret (with
respect to the best fixed strategy in hindsight, see Definition 1.9 in
Solar Lecture 1). This regret guarantee is equivalent to the conclusion
of Proposition 10.3 (as you should check).

What about correlated equilibria? While the time-averaged history
of play in smooth fictitious play does not in general converge to the set
of correlated equilibria, Foster and Vohra [55] and Hart and Mas-Colell
[76] show that the time-averaged play of other reasonably simple types
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of uncoupled dynamics is guaranteed to be an ε-correlated equilibrium
after a polynomial (rather than logarithmic) number of time steps.

10.4 Computing an Exact Correlated or Coarse
Correlated Equilibrium

10.4.1 Normal-Form Games

Solar Lecture 1 showed that approximate Nash equilibria of two-player
zero-sum games can be learned (and hence computed) efficiently (Theo-
rem 1.8). Proposition 10.3 and the extensions in [55, 76] show analogs
of this result for approximate correlated and coarse correlated equilibria
of general games. Solar Lecture 1 also showed that an exact Nash equi-
librium of a two-player zero-sum game can be computed in polynomial
time by linear programming (Corollary 1.5). Is the same true for an
exact correlated or coarse correlated equilibrium of a general game?

Consider first the case of coarse correlated equilibria, and introduce
one decision variable x~s per outcome ~s of the game, representing the
probability assigned to ~s in a joint distribution ρ. The feasible solutions
to the following linear system are then precisely the coarse correlated
equilibria of the game:∑

~s

ui(~s)x~s ≥
∑
~s

ui(s′i, ~s−i)x~s for every i ∈ [k] and s′i ∈ Si (10.3)
∑
~s∈~S

x~s = 1 (10.4)

x~s ≥ 0 for every ~s ∈ ~S. (10.5)

Similarly, correlated equilibria are captured by the following linear
system:∑
~s : si=j

ui(~s)x~s ≥
∑

~s : si=j
ui(s′i, ~s−i)x~s for every i ∈ [k] and j, s′i ∈ Si

(10.6)∑
~s∈~S

x~s = 1 (10.7)

x~s ≥ 0 for every ~s ∈ ~S. (10.8)

The following proposition is immediate.
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Proposition 10.4 (Gilboa and Zemel [64]). An exact correlated or
coarse correlated equilibrium of a game can be computed in time polyno-
mial in the number of outcomes of the game.

More generally, any linear function (such as the sum of players’
expected payoffs) can be optimized over the set of correlated or coarse
correlated equilibria in time polynomial in the number of outcomes.

For games described in normal form, with each player i’s payoffs
{ui(~s)}~s∈~S given explicitly in the input, Proposition 10.4 provides an
algorithm with running time polynomial in the input size. However, the
number of outcomes of a game scales exponentially with the number k
of players.6 The computationally interesting multi-player games, and
the multi-player games that naturally arise in computer science applica-
tions, are those with a succinct description. Can we compute an exact
correlated or coarse correlated equilibrium in time polynomial in the
size of a game’s description?

10.4.2 Succinctly Represented Games

For concreteness, let’s look at one well-studied example of a class of
succinctly represented games: graphical games [91, 95]. A graphical
game is described by an undirected graph G = (V,E), with players
corresponding to vertices, and a local payoff matrix for each vertex.
The local payoff matrix for vertex i specifies i’s payoff for each possible
choice of its strategy and the strategies chosen by its neighbors in G.
By definition, the payoff of a player is independent of the strategies
chosen by non-neighboring players. When the graph G has maximum
degree ∆, the size of the game description is exponential in ∆ but
polynomial in the number k of players. The most interesting cases are
when ∆ = O(1) or perhaps ∆ = O(log k). In these cases, the number of
outcomes (and hence the size of the game’s normal-form description)
is exponential in the size of the succinct description of the game, and

6This fact should provide newfound appreciation for the distributed learning
algorithms that compute an approximate coarse correlated equilibrium (in Proposi-
tion 10.3) and an approximate correlated equilibrium (in [55, 76]), where the total
amount of computation is only polynomial in k (and in m and 1

ε
).
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solving the linear system (10.3)–(10.5) or (10.6)–(10.8) does not result
in a polynomial-time algorithm.

We next state a result showing that, quite generally, an exact corre-
lated (and hence coarse correlated) equilibrium of a succinctly repre-
sented game can be computed in polynomial time. The key assumption
is that the following Expected Utility problem can be solved in time
polynomial in the size of the game’s description.7

The Expected Utility Problem

Given a succinct description of a player’s payoff function ui and
mixed strategies σ1, . . . , σk for all of the players, compute the
player’s expected utility:

E~s∼~σ[ui(~s)].

For most of the succinctly represented multi-player games that come
up in computer science applications, the Expected Utility problem
can be solved in polynomial time. For example, in a graphical game it
can be solved by brute force—summing over the entries in player i’s
local payoff matrix, weighted by the probabilities in the given mixed
strategies. This algorithm takes time exponential in ∆ but polynomial
in the size of the game’s succinct representation.

Tractability of solving the Expected Utility problem is a suffi-
cient condition for the tractability of computing an exact correlated
equilibrium.

Theorem 10.5 (Papadimitriou and Roughgarden [124] and Jiang and
Leyton-Brown [84]). There is a polynomial-time Turing reduction from
the problem of computing a correlated equilibrium of a succinctly de-
scribed game to the Expected Utility problem.

Theorem 10.5 applies to a long list of succinctly described games
that have been studied in the computer science literature, with graphical
games serving as one example.8

7Some kind of assumption is necessary to preclude baking an NP-complete
problem into the game’s description.

8For the specific case of graphical games, Kakade et al. [87] were the first to
develop a polynomial-time algorithm for computing an exact correlated equilibrium.
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The starting point of the proof of Theorem 10.5 is the exponential-
size linear system (10.6)–(10.8). We know that this linear system is
feasible (by Nash’s Theorem, since the system includes all Nash equilib-
ria). With exponentially many variables, however, it’s not clear how to
efficiently compute a feasible solution. The dual linear system, mean-
while, has a polynomial number of variables (corresponding to the
constraints in (10.6)) and an exponential number of inequalities (cor-
responding to game outcomes). By Farkas’s Lemma—or, equivalently,
strong linear programming duality (see e.g. [39])—we know that this
dual linear system is infeasible.

The key idea is to run the ellipsoid algorithm [93] on the infea-
sible dual linear system—called the “ellipsoid against hope” in [124].
A polynomial-time separation oracle must produce, given an alleged
solution (which we know is infeasible), a violated inequality. It turns out
that this separation oracle reduces to solving a polynomial number of
instances of the Expected Utility problem (which is polynomial-time
solvable by assumption) and computing the stationary distribution of a
polynomial number of polynomial-size Markov chains (also polynomial-
time solvable, e.g. by linear programming). The ellipsoid against hope
terminates after a polynomial number of invocations of its separation
oracle, necessarily with a proof that the dual linear system is infeasible.
To recover a primal feasible solution (i.e., a correlated equilibrium),
one can retain only the primal decision variables corresponding to the
(polynomial number of) dual constraints generated by the separation
oracle, and solve directly this polynomial-size reduced version of the
primal linear system.9

10.5 The Price of Anarchy of Coarse Correlated Equilibria

10.5.1 Balancing Computational Tractability with Predictive Power

We now understand senses in which Nash equilibria are computation-
ally intractable (Solar Lectures 2–5) while correlated equilibria are
computationally tractable (Sections 10.3 and 10.4). From an economic

9As a bonus, this means that the algorithm will output a “sparse” correlated
equilibrium, with support size polynomial in the size of the game description.
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perspective, these results suggest that it could be prudent to study the
correlated equilibria of a game, rather than restricting attention only
to its Nash equilibria.10

Passing from Nash equilibria to the larger set of correlated equilibria
is a two-edged sword. Computational tractability increases, and with it
the plausibility that actual game play will conform to the equilibrium
notion. But whatever criticisms we had about the Nash equilibrium’s
predictive power (recall Section 1.1.7 in Solar Lecture 1), they are even
more severe for the correlated equilibrium (since there are only more of
them). The worry is that games typically have far too many correlated
equilibria to say anything interesting about them. Our final order of
business is to dispel this worry, at least in the context of price-of-anarchy
analyses.

Recall from Lunar Lecture 7 that the price of anarchy (POA) is
defined as the ratio between the objective function value of an optimal
solution, and that of the worst equilibrium:

PoA(G) := f(OPT (G))
minρ is an equilibrium of G f(ρ) ,

where G denotes a game, f denotes a maximization objective function
(with f(ρ) = E~s∼ρ[f(~s)] when ρ is a probability distribution), and
OPT (G) is the optimal outcome of G with respect to f . Thus the POA
of a game is always at least 1, and the closer to 1, the better.

The POA of a game depends on the choice of equilibrium concept.
Because it is defined with respect to the worst equilibrium, the POA
only degrades as the set of equilibria grows larger. Thus, the POA with
respect to coarse correlated equilibria is only worse (i.e., larger) than
that with respect to correlated equilibria, which in turn is only worse
than the POA with respect to Nash equilibria (recall Figure 10.1).

The hope is that there’s a “sweet spot” equilibrium concept—permissive
enough to be computationally tractable, yet stringent enough to al-
low good worse-case approximation guarantees. Happily, the coarse
correlated equilibrium is just such a sweet spot!

10This is not a totally unfamiliar idea to economists. According to Solan and
Vohra [146], Roger Myerson, winner of the 2007 Nobel Prize in Economics, asserted
that “if there is intelligent life on other planets, in a majority of them, they would
have discovered correlated equilibrium before Nash equilibrium.”
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10.5.2 Smooth Games and Extension Theorems

After the first ten years of price-of-anarchy analyses (roughly 1999-2008),
it was clear to researchers in the area that many such analyses across
different application domains share a common architecture (in routing
games, facility location games, scheduling games, auctions, etc.). The
concept of “proofs of POA bounds that follow the standard template”
was made precise in the theory of smooth games [135].11,12 One can then
define the robust price of anarchy of a game as the best (i.e., smallest)
bound on the game’s POA that can be proved by following the standard
template.

The proof template formalized by smooth games superficially ap-
pears relevant only for the POA with respect to pure Nash equilibria, as
the definition involves no randomness (let alone correlation). The good
news is that the template’s simplicity makes it relatively easy to use.
One would expect the bad news to be that bounds on the POA of more
permissive equilibrium concepts require different proof techniques, and
that the corresponding POA bounds would be much worse. Happily, this
is not the case—every POA bound proved using the canonical template
automatically applies not only to the pure Nash equilibria of a game,
but more generally to all of the game’s coarse correlated equilibria (and
hence all of its correlated and mixed Nash equilibria).13

Theorem 10.6 (Roughgarden [135]). In every game, the POA with
respect to coarse correlated equilibria is bounded above by its robust
POA.

11The formal definition is a bit technical, and we won’t need it here. Roughly, it
requires that the best-response condition is invoked in an equilibrium-independent
way and that a certain restricted type of charging argument is used.

12There are several important precursors to this theory, including Blum et al. [14],
Christodoulou and Koutsoupias [36], and Vetta [153]. See [135] for a detailed history.

13Smooth games and the “extension theorem” in Theorem 10.6 are the starting
point for the modular and user-friendly toolbox for proving POA bounds in complex
settings mentioned in Section 6.3.4. Generalizations of this theory to incomplete-
information games (like auctions) and to the composition of smooth games (like
simultaneous single-item auctions) lead to good POA bounds for simple auctions [151].
(These generalizations also brought together two historically separate subfields of
algorithmic game theory, namely algorithmic mechanism design and price-of-anarchy
analyses.) See [141] for a user’s guide to this toolbox.
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For ε-approximate coarse correlated equilibria—as guaranteed by
a logarithmic number of rounds of smooth fictitious play (Proposi-
tion 10.3)—the POA bound in Theorem 10.6 degrades by an additive
O(ε) term.
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