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ABSTRACT
A contract is an economic tool used by a principal to incen-
tivize one or more agents to exert effort on her behalf, by
defining payments based on observable performance mea-
sures. A key challenge addressed by contracts — known in
economics as moral hazard — is that, absent a properly set
up contract, agents might engage in actions that are not
in the principal’s best interest. Another common feature
of contracts is limited liability, which means that payments
can go only from the principal — who has the deep pocket

— to the agents.
With classic applications of contract theory moving online,
growing in scale, and becoming more data-driven, tools from
contract theory become increasingly important for incentive-
aware algorithm design. At the same time, algorithm design
offers a whole new toolbox for reasoning about contracts,
ranging from additional tools for studying the tradeoff be-
tween simple and optimal contracts, through a language for
discussing the computational complexity of contracts in com-
binatorial settings, to a formalism for analyzing data-driven
contracts.

Paul Dütting, Michal Feldman and Inbal Talgam-Cohen (2024), “Algorithmic 
Contract Theory: A Survey”, Foundations and Trends® in Theoretical Computer 
Science: Vol. 16, No. 3-4, pp 211–411. DOI: 10.1561/0400000113.
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2

This survey aims to provide a computer science-friendly
introduction to the basic concepts of contract theory. We give
an overview of the emerging field of “algorithmic contract
theory” and highlight work that showcases the potential for
interaction between the two areas. We also discuss avenues
for future research.
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1
Introduction

Imagine you are a website owner employing a website designer through
an online freelancing platform. The most straightforward payment
scheme for the designer’s work, i.e., contract, is offering a fixed (lump
sum) transfer t for completing the website’s design. But is this the best
in terms of incentives? Anecdotal evidence and everyday experience
suggest this is not the case. In the words of an Upwork user: “Remember,
Upwork [...] is more like a box of chocolates, you never know what you are
going to get” (upwork.com, 2018). Rigorous empirical studies confirm
the problem of low-quality, “careless” online work (Aruguete et al.,
2019), even when platforms use rating systems (as ratings are often
inflated and thus not very informative) (Garg and Johari, 2021).

This problem stems from a basic misalignment of incentives: The
designer (agent, he) is doing the hard work, while the owner (principal,
she) is reaping the rewards. This misalignment is coupled with an infor-
mation gap—the principal has no way of knowing how much effort the
agent invested in designing her website. With misaligned interests and
imperfect observability, the principal has to rely on the moral behavior of
the agent. This effect, known as moral hazard, is a fundamental obstacle
that any task delegation to human (or AI) agents must overcome.

3
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4 Introduction

Fortunately, studies also show that pay-for-performance contracts
can have a significant impact on work quality (Mason and Watts, 2009;
DellaVigna and Pope, 2017; Fest et al., 2020; Kaynar and Siddiq, 2023;
Wang and Huang, 2022). In our example, paying for performance means
paying the agent based on information the principal can track and that
determines her own rewards, such as the increase in the number of
visitors to the website, the increase in the number of conversions, or the
increase in revenue. Since the details of the payment scheme matter a
lot towards the agent’s incentives, this raises important economic design
questions such as what should the payments be contingent on, or how
high these payments should be.

The rising design challenge can thus be summarized as: compute an
optimal (or near-optimal) pay-for-performance contract, where “optimal”
is with respect to welfare and revenue implications of the cooperation.
Questions like this are studied in economics under the umbrella of
contract theory (Ross, 1973; Mirrlees, 1975; Holmström, 1979; Grossman
and Hart, 1983; Innes, 1990; Carroll, 2015). Contract theory is one
of the pillars of microeconomic theory, recognized by the 2016 Nobel
Prize awarded to Hart and Holmström (nobelprize.org, 2016). However,
unlike other well-established areas of microeconomic theory, such as
mechanism design or information design, contract design has not seen
much work from computer science until recently.

1.1 Motivation: Why Algorithms? Why Now?

We are motivated by a recent spike of interest from computer scientists in
contract theory (e.g., Babaioff et al., 2006; Feldman et al., 2007; Babaioff
et al., 2012; Ho et al., 2016; Dütting et al., 2019). This spike of interest
is caused by the fact that more and more of the classic applications
of contract theory are moving online, growing in scale, and happening
in data-rich environments. These include online labor platforms (e.g.,
Kaynar and Siddiq, 2023), delegating machine learning tasks (e.g., Cai
et al., 2015), pay-for-performance healthcare (e.g., Bastani et al., 2017;
Bastani et al., 2019), and blockchain (e.g., Cong and He, 2019).

In addition, tools from contract theory are anticipated to play a
crucial role in a world in which we increasingly rely on AI agents to
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1.1. Motivation: Why Algorithms? Why Now? 5

perform complex tasks (Hadfield-Menell and Hadfield, 2019; Wang
et al., 2023; Saig et al., 2024). This direction comes with a number
of challenges, which are not addressed by classic contract theory. For
instance, outcome and action spaces might be huge. Or, we may have
to select a group of agents from a large pool of available agents. Also,
naturally, all sides of the problem will involve (machine) learning. At
the same time, the fact that the agents are programmed, might also
open up new opportunities. For instance, it seems reasonable to assume
programmed AI agents exhibit “hyper-rationality” that is harder to
attribute to humans.

This naturally calls for a field that combines tools from contract
theory with tools from computer science (specifically algorithm design
and machine learning). Contract theory offers a well-established formal-
ism to talk about incentives, and prevent detrimental behavior (such as
shirking or free-riding). Computer science, in turn, provides a language
to talk about computational complexity, offers tools for studying the
tradeoffs between simple and optimal solutions, and has a natural focus
on (machine) learning algorithms.

Indeed, similar to other economic areas where the computational
lens has been applied (notably, mechanism and information design),
the algorithmic perspective is already providing new structural insights,
helping to map out the tractability frontiers, and leading to new tools for
data-driven contracts. Ultimately, the algorithmic approach to contracts
has the potential to inform better designs in practice, especially in
computational environments.

This survey aims to provide an introduction to contract theory that
is accessible to computer scientists and give an overview of the emerging
field of algorithmic contract theory.1 We also discuss what we see as
main directions for future work.

1Due to the large volume of recent work that takes an algorithmic approach to
contracts, we present only a sample of papers from the current main trajectories of
research.
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6 Introduction

1.2 Disambiguation: Contract Theory vs. Smart Contracts

We emphasize that the goals of the nascent area of algorithmic contract
theory are orthogonal to those behind smart contracts (Szabo, 1997).
While algorithmic contract theory, just as classic contract theory, aims
to design contracts and provide tools to assess the pros and cons between
different designs, smart contracts are a tool to implement contracts in
an automated way, often relying on blockchain technologies to enable
execution, control, and documentation. A shared theme of both is the
use of computing technology to enable more efficient contracts.

1.3 Digression: Contracts within the Wider Context

In this survey, we follow Salanié (2017) in classifying incentive problems
along two dimensions, as shown in Figure 1.1. This leads to three basic
incentive problems (because the fourth combination does not seem to
capture relevant applications). We adopt a terminology that identifies
contract design, mechanism design, and information design with the
three basic incentive problems that result from this classification.

Uninformed party Informed party
moves first: moves first:

Private information Adverse selection Bayesian persuasion
is hidden type: (Mechanism design) (Information design)
Private information Moral hazard Not studied
is hidden action: (Contract design)

Figure 1.1: Salanié (2017, Chapter 1.1) proposes to classify problems where an
informed party interacts with an uninformed party, along two dimensions: The first
distinction is whether the private information bears on who the agent is (“hidden
type”), or whether it bears on what action the agent takes (“hidden action”). The
second distinction concerns the timing of the problem, and asks who moves first: the
uninformed party or the informed party.
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1.3. Digression: Contracts within the Wider Context 7

The division into three basic incentive problems results from viewing
incentive problems as interactions between an uninformed party and
an informed party, and classifying these interactions according to two
criteria: The first is whether the private information concerns who
the agent is (“hidden type”), or whether it concerns what action the
agent takes (“hidden action”). The second is whether the uninformed
party moves first and designs the incentive scheme, or whether it is the
informed party who moves first.

This classification yields three important families of models:2

(1.) Adverse selection models: The uninformed party is imperfectly
informed of the characteristics of the informed party; the unin-
formed party moves first. A canonical example is a first-price
auction, where the auctioneer knows that the bidders’ valuations
are drawn from certain distributions, but only the bidders know
the realized valuations. The auctioneer moves first by announcing
the rules of the auction. Afterwards, the bidders submit their bids
and based on this an allocation and payments are determined.

(2.) Bayesian persuasion models: The uninformed party is imperfectly
informed of the characteristics of the informed party; the informed
party moves first. A prototypical example here is one in which
there is a hidden state drawn from a publicly known distribution,
whose realization is known by only one of the two parties. For
example, in a court case, the attorney representing a client, may
know whether the client is guilty or innocent, and may seek to
structure her arguments so as to convince the judge to acquit her
client.

(3.) Moral hazard models: The uninformed party is imperfectly in-
formed of the actions of the informed party; the uninformed party
moves first. For example, a brand may seek to hire an influencer

2The fourth case is where the uniformed party cannot observe the actions of the
informed party, and the informed party moves first. Salanié (2017, FN1 on p.4) argues
that: “It is difficult to imagine a real-world application of such a model, and I do not
know of any paper that uses it.” Of course, it is also possible to consider problems
that exhibit features of two or more of the “pure” problems, e.g., Bernasconi et al.,
2024.
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8 Introduction

on a social media platform to create sponsored content. The brand
proposes a contract that defines how the influencer shall get paid.
Payments can only be contingent on the observable but typically
stochastic outcome of the agent’s action (e.g., number of views the
content receives). After signing the contract, the influencer creates
the sponsored content and is paid according to the contract, based
on the observed outcome.

Alternative names that can be found in the literature for (1.) and
(2.) are screening and signaling, respectively. The majority of the work
in computer science has focused on mechanism design (i.e., (1.)) and
information design (i.e., (2.)). The focus of this survey is on (3.).

We note that while the division into three basic incentive problems
is fairly standard and widely agreed upon, not all authors identify
the three basic incentive problems with the terms mechanism design,
information design, and contract design as we do here. We chose to adopt
this terminology because it seems very natural from a computer science
perspective (where mechanism design and information design/signaling
are well established for (1.) and (2.), respectively), and because contracts
are the main object of study in (3.).

1.4 Organization

This survey is organized as follows. In Section 2, we introduce the
basic principal-agent model. In Section 3, we present the optimal con-
tract problem, and discuss properties of optimal contracts. Section 4
introduces linear (a.k.a. commission-based) contracts, and studies the
tradeoffs involved in choosing a simple rather than optimal contract
from a worst-case approximation angle and a max-min optimality per-
spective. In Section 5, we explore the computational complexity of
finding optimal and near-optimal contracts in complex scenarios. In
Section 6 we study scenarios where agents have private types, and
the goal is to construct contracts that incentivize agents to truthfully
reveal their types, in addition to exerting effort. A modern algorith-
mic approach to contracts would not be complete without considering
learning algorithms. In Section 7, we consider data-driven contracts,
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1.4. Organization 9

while in Section 8, we explore contracts and incentive-aware machine
learning. Section 9 explores incomplete, vague, and ambiguous contracts.
In Section 10, we discuss contract design for social good. Afterwards, in
Section 11, we discuss approaches “beyond contracts,” such as delega-
tion and scoring rule design, that tackle related problems. We mention
several open problems and additional directions throughout the survey,
and conclude with a discussion in Section 12.
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