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ABSTRACT
Understanding how consumers make choices is of paramount
importance, as it offers insights into consumer purchase be-
havior across multiple products, enables accurate predictions
of future demand, and informs strategic planning and policy
formulation. The examination of discrete consumer choice
models plays a central role in decoding the decision-making
process, offering a clear perspective on how individuals nav-
igate among multiple options. These models are instrumen-
tal in evaluating a wide range of consumer decisions, such
as product selection, brand preference, and the impact of
various factors on choice. With the growth of e-commerce
and the increasing emphasis on data-driven modeling and
decision-making, consumer choice models have garnered
significant attention. This rising interest underscores their
relevance in the digital marketplace and their contribution to
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a deeper understanding of consumer behavior. The objective
of this work is to present a comprehensive overview of choice
modeling, covering both the theoretical underpinnings of
widely adopted discrete choice models (e.g., the multinomial
logit model), and those integrating contemporary elements
like network externalities and ranking effects. It also dis-
cusses optimal solutions or efficient approximation heuristics
for price and assortment optimization problems, where con-
sumer choice behavior is governed by various discrete choice
models. To facilitate practical business applications, this
work offers estimation strategies and techniques to address
data-related issues. Additionally, it includes cutting-edge
advancements such as artificial intelligence and deep learn-
ing, and outlines future trends in the realm of operations
management with discrete choice models. By delving into
the intricate details and mechanisms of these models, this
work aims to shed light on the methodological foundations
and practical implementations of consumer choice modeling,
providing researchers, practitioners, and policymakers with
valuable insights into this rich and evolving field.
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1
Introduction

Discrete consumer choice models are an important aspect of decision-
making, as they help us understand how people make choices when faced
with multiple alternatives. These models can be used to assess various
consumer decisions, such as product choice, brand preference, and the
influence of various factors on consumer decision-making. They have
far-reaching implications for a variety of fields, including economics,
marketing, behavioral science, transportation, and operations. Consumer
choice models have received considerable interest in recent times due
to the growing prevalence of e-commerce and the increasing emphasis
on data-driven modeling and decision-making in academia. Researchers
are exploring the effectiveness of various consumer choice models in
predicting consumer behavior, such as the Random Utility Models, and
are also examining the impact of situational or contextual factors, such
as network externality and the presence of others, on consumer choice
behavior and firms’ operational strategy.

The objective of this review paper is to present a comprehensive
overview of the theoretical framework, model estimation techniques,
challenges, recent advances, and future directions in the area of discrete
consumer choice modeling. By dissecting these models and the me-

3
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4 Introduction

chanics behind them, this paper aims to illuminate the methodological
underpinnings and practical applications of discrete consumer choice
modeling, offering researchers, practitioners, and policymakers valuable
insights into this rich and evolving field.

This work is organized as follows. In the rest of this section, we
provide a historical overview of the evolution of discrete consumer choice
modeling and highlight key studies and models in this field. Section 2
delves into the theoretical framework of the most important discrete
choice model–the Multinomial Logit (MNL) choice model. Although
criticized by its Independence of Irrelevant Alternative (IIA) property,
MNL remains the most popular choice for modeling consumer behav-
ior. Section 3 covers interesting extensions built upon the classic MNL
model. Section 4 presents other discrete choice models including the
Nested Logit and Mixed Logit models. Section 5 focuses on the pricing
problems under the discrete choice models. Section 6 identifies and
discusses the challenges of the assortment optimization problems under
various consumer choice models. Section 7 focuses on model estimation
techniques, such as maximum likelihood estimation and expectation-
maximization (EM) algorithm. It also explores the recent advances in
discrete consumer choice modeling, including the integration of arti-
ficial intelligence and machine learning. Finally, Section 8 points out
opportunities for further research and then concludes the work with a
summary of the key points and concluding remarks.

Historical Note on the Discrete Choice Model

The origins of discrete choice modeling can be traced back to the mid-
20th century. Early developments in consumer theory were central in
proposing that consumers’ preferences could be inferred from their
purchasing habits. Samuelson (1948) developed the concept of “revealed
preference”. This was a major step forward because it provided a way
to model and predict consumer behavior based on observable data.

In the 1950s and 1960s, the field of psychology offered substan-
tial contributions to the nascent theory of choice modeling. Notably,
Thurstone (1927) proposed the Law of Comparative Judgment, which
provided a mathematical expression for how individuals make choices.

Full text available at: http://dx.doi.org/10.1561/0200000112



5

He suggested that individuals’ decisions are the result of a random
utility, an innovative concept at the time.

During the same period, Luce (1959b) developed a probabilistic
choice model, stating that the probability of choosing an item is a
function of its relative attractiveness compared to other available alter-
natives. This was a critical development as it introduced the concept
of relative decision-making, which forms the basis for modern discrete
choice models.

However, it was in the 1970s that the Random Utility Maximization
(RUM) model, as we know it today, was developed. Under the RUM, the
decision makers select the alternative that yields the maximum realized
consumption utility. McFadden (1974) made significant contributions by
developing the Multinomial Logit (MNL) Model, a specific case of RUM,
where the random components of utility are independent and identically
distributed (i.i.d.) following a Gumbel distribution. The MNL model
transformed choice behavior analysis and earned McFadden the Nobel
Prize in Economic Sciences in 2000.

Since then, RUM has continued to evolve with researchers developing
numerous variations and extensions to deal with its limitations and
better align the model with observed behaviors. These include nested
logit, mixed logit, and probit models, among others. Today, RUM models
remain a key tool in the fields of economics, marketing, transportation,
health economics, operations and more. The focus of this review paper
is on introducing the modeling, estimation and optimization techniques
under the RUM framework. In the next section, we will discuss the
most classic RUM model–the MNL in more details.

Full text available at: http://dx.doi.org/10.1561/0200000112
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