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overview paper

Recent advances on active noise control:
open issues and innovative applications
yoshinobu kajikawa1, woon-seng gan2 and sen m. kuo3

The problem of acoustic noise is becoming increasingly serious with the growing use of industrial and medical equipment,
appliances, and consumer electronics. Active noise control (ANC), based on the principle of superposition, was developed in the
early 20th century to help reduce noise. However, ANC is still not widely used owing to the effectiveness of control algorithms, and
to the physical and economical constraints of practical applications. In this paper, we briefly introduce some fundamental ANC
algorithms and theoretical analyses, and focus on recent advances on signal processing algorithms, implementation techniques,
challenges for innovative applications, and open issues for further research and development of ANC systems.
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I . I NTRODUCT ION

Acoustic noise problems have become serious with the
increased use of industrial equipment, such as engines,
fans, blowers, transformers, and compressors. It is espe-
cially prominent in transportation systems (e.g., vehicles,
trains, airplanes, and ships), manufacturing plants, electri-
cal appliances (e.g., air-conditioners, refrigerators, washing
machines, and vacuum cleaners), medical equipment (e.g.,
magnetic resonance imaging (MRI) systems, and infant
incubators), and human activities (e.g., crowded public
spaces, offices, and bedrooms). Traditional acoustic noise
reduction techniques are based on passive noise control,
such as earplugs, ear-protectors, sound insulation walls,
mufflers, and sound-absorbing materials. These passive
techniques are effective for reducing noise over a wide fre-
quency range. However, they require relatively large and
costly materials, and are ineffective at low frequencies.
Therefore, the active noise control (ANC) [1–8] proposed
in the early 20th century, has gained intensive develop-
ment in the last two decades to reduce low-frequency
noise.

The ANC technique using a loudspeaker to generate
anti-noise sound was first proposed in the 1936 patent by
Lueg [9]. ANC is an electro-acoustical technique based on
the principle of superposition, that is, an anti-noise with
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the same amplitude but opposite phase is generated by
secondary source(s) to cancel unwanted (primary) noise
acoustically, thus resulting in reduced residual noise. The
ANC system is very efficient for attenuating low-frequency
noise in environments where the passive noise control tech-
niques are expensive, bulky, and ineffective.

In practical applications, the characteristics of the noise
source and acoustic environment are changing, and thus
the frequency content, amplitude, and phase of the pri-
mary noise are also changing. The noise reduction per-
formance is mainly dependent on the accuracy of the
amplitude and phase of the anti-noise generated by a sig-
nal processing algorithm. To deal with these time-varying
issues, most ANC systems utilize adaptive filters [10–12]
to track these variations and unknown plants. The most
commonly used adaptive filters are realized using a finite
impulse response (FIR) filter with the least-mean-square
(LMS) algorithm [10].

The development of powerful, low-cost digital signal
processors (DSPs) [13–15] encourages the implementation
of advanced adaptive algorithms to achieve faster conver-
gence, increased robustness to interference, and improved
system performance for practical ANC applications.

The control structure of ANC is generally classified into
two classes: feedforward control and feedback control. In
the feedforward control case, a reference noise is assumed
to be available for the adaptive filter. Feedforward ANC
systems can be categorized as either a broadband or a nar-
rowband depending on the type of primary noise that can
be reduced. In the broadband feedforward control case, a
reference noise is detected by a reference sensor (e.g.,micro-
phone), and thus noise correlating with the reference noise
can be reduced. On the other hand, in the narrowband
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feedforward control case, a reference signal is internally
generated using information available from a reference
sensor (e.g., accelerometer) that is not affected by a con-
trol field. The feedforwardANCschemeutilizes a secondary
loudspeaker (e.g., actuator) to generate anti-noise and an
error sensor (e.g., microphone) to pick up residual noise,
which serves as the error signal for updating the adap-
tive filter. The single-channel feedforward ANC scheme,
which consists of two sensors (reference and error) and an
actuator, is widely used for industrial applications such as
reducing duct noise [16].

The feedback ANC system uses only an error sensor
and a secondary source, not using an “upstream” refer-
ence sensor. Analog feedback control based on a simple
negative feedback is widely used in headphone applica-
tions [17–20]. Unfortunately, the controllable bandwidth is
limited by the throughput of the overall control system;
thus, it is difficult to reduce broadband noise. Digital feed-
back control generally utilizes internalmodel control (IMC)
[21, 22], whichminimizes residual noise using predicted pri-
mary noise as the reference signal. Hence, the IMC-based
feedback ANC system can reduce only predictable noise
(including sinusoidal, narrowband, and color noises). The
bandwidth that can be controlled by the feedback ANC
system is limited because of the large delay due to the
analog-to-digital converter (ADC) and digital-to-analog
converter (DAC).

Today, successful real-world ANC application is still
limited owing to the effectiveness of signal processing
algorithms, physical implementation constraints, and eco-
nomical consideration. Recently, many advanced signal
processing algorithms, implementation techniques, and
successful applications of ANC have been reported. In this
overview paper, we will focus on introducing some new sig-
nal processing algorithms, discussing challenges for inno-
vative applications, and proposing open issues for further
research and development of ANC systems.

This paper is organized as follows. In Section II, the
basic structures and algorithms of ANC will be intro-
duced. ANC systems include broadband and narrowband
feedforward ANC, adaptive feedback ANC, hybrid ANC,
multiple-channel ANC, and audio-integrated ANC. Con-
vergence analysis of the filtered-x LMS (FXLMS) algorithm
including recent published works will be given. Different
algorithms and structures including nonlinear ANC will
be briefly overviewed, while citing many important recent
works. Furthermore, some new approaches including active
noise equalization, psychoacoustics, and virtual sensingwill
be introduced. In Section III, the basic principles of and
recent works on online secondary-pathmodeling, andANC
algorithms that do not require a secondary-path model will
be discussed. Finally, several real-world ANC applications
with challenging issues will be introduced in Section IV.
In this paper, we choose topics related to our works in
this field. Some important results may be omitted owing
to page limitation. Readers can therefore refer to many
recent works reported in the last decade that are cited as
references.

I I . OVERV IEW OF ANC

In this section, we briefly present basic ANC concepts, algo-
rithms, analyses, problems, solutions, and recentworkswith
focus on signal processing algorithms.

A) Broadband feedforward ANC
The single-channel broadband feedforward ANC system is
illustrated in Fig. 1 [2], where acoustic, analog, and digital
regions are clearly distinguished. Noise propagating from
the noise source is picked up by a reference sensor such
as a microphone, and then the digital (sampled-time) ref-
erence signal x(n) is obtained through a preamplifier, an
anti-aliasing filter, and an ADC. The reference signal is pro-
cessed by the control filter W(z) to generate the sampled-
time anti-noise signal y(n) that drives a secondary source
such as a loudspeaker through a DAC, a reconstruction fil-
ter, and a power amplifier. The error sensor (microphone) is
used to monitor the performance of the ANC system by the
sampled-time residual noise signal e(n), which is obtained
through a preamplifier, an anti-aliasing filter, andADC. The
primary path P (z) consists of the acoustic response from
the reference sensor to the error sensor, as shown in Fig. 1.
The adaptive filter W(z) minimizes the error signal e(n)

by adapting filter coefficients automatically using the LMS
algorithm. The use of the adaptive filter for the ANC appli-
cation shown in Fig. 1 is necessary to compensate for the
secondary-path transfer function S(z) from y(n) to e(n),
which includes theDAC, reconstruction filter, power ampli-
fier, loudspeaker, acoustic path from the loudspeaker to
the error microphone, preamplifier, anti-aliasing filter, and
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Fig. 1. Block diagram of broadband feedforward ANC system that includes
acoustic, analog, and digital regions. This block diagram shows a single-channel
feedforward ANC system with one reference microphone, one error micro-
phone, and one secondary source (loudspeaker).
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Fig. 2. Equivalent sampled-time block diagram of the broadband feedforward
ANC system shown in Fig. 1. In this figure, P (z) is the primary path, S(z) is the
secondary path, W(z) is the control filter, and Ŝ(z) is the secondary-pathmodel
in Fig. 1.

ADC. Here, Fig. 1 shows the exact block diagram includ-
ing the acoustic, analog, and digital regions. On the other
hand, the equivalent sampled-time block diagram shown in
Fig. 2 is generally used for understanding and analyzing the
system and its performance. Henceforth, we utilize equiv-
alent sampled-time block diagrams to explain other ANC
structures, unless otherwise noted.

The optimal solution of the adaptive filter W(z) is given
by the following optimal transfer function in the steady
state:

Wo(z) = P (z)

S(z)
. (1)

Therefore, the adaptive filter W(z) has to simultaneously
model P (z) and inversely model S(z). The performance of
an ANC system largely depends on the transfer function of
the secondary path S(z) [2].

As illustrated in Fig. 2, after the reference sensor picks
up the reference noise, the controller needs time to calcu-
late the anti-noise and send it to the secondary loudspeaker.
If this delay becomes longer than the acoustic delay from
the referencemicrophone to the secondary loudspeaker, the
performance of the ANC system to cancel broadband ran-
dom noise will be degraded because the action to exactly
cancel the noise would require it to be non-causal. However,
even if the causality condition is not met, the ANC system
is still capable of canceling narrowband periodic noise.

B) The FXLMS algorithm
The presence of the secondary-path transfer function S(z)
after the controller, shown in Fig. 2, will generally cause
instability of the LMS algorithm. This is because the error
signal is not correctly “aligned” in time with the refer-
ence signal owing to the presence of S(z). Morgan sug-
gested placing a secondary-path estimate Ŝ(z) to filter the
reference signal x(n) for the weight update of the LMS
algorithm, which results in the FXLMS algorithm [23]. The
FXLMS algorithm was independently derived by Widrow
and Stearns [10] in the context of adaptive control and by
Burgess [16] for ANC applications.

The block diagram of an ANC system using the FXLMS
algorithm is illustrated in Fig. 2. The secondary signal y(n)

is computed as

y(n) = wT (n)x(n) (2)

where w(n) = [w0(n) w1(n) . . . wL−1(n)]T and x(n) =
[x(n) x(n − 1) . . . x(n − L + 1)]T are the coefficient and
signal vectors of W(z), respectively, and L is the filter
length. The FXLMS algorithmupdates the coefficient vector
expressed as

w(n + 1) = w(n) + μe(n)x′(n), (3)

where μ is the step size (or convergence factor) that deter-
mines the convergence speed,

x′(n) = ŝ (n) ∗ x(n) (4)

is the filtered reference signal vector and ŝ (n) is the impulse
response of the secondary-path estimation filter, Ŝ(z).
Therefore, the ANC system using the FXLMS algorithm
requires the accurate estimation of the secondary-path
model.

Under the limitation of slow adaptation, the FXLMS
algorithm will converge within ±90◦ of the phase error
between Ŝ(z) and S(z). Therefore, the offline modeling
of the secondary path using adaptive system identification
with the LMS algorithm and white noise as an excitation
signal can be used to estimate S(z) during an initial train-
ing stage before the operation of noise control for most
ANC applications. However, for applications that have a
significant time-varying secondary path and require high
performance, online modeling during the ANC operation
may be required. Therefore, updating of the secondary-path
model is important in some ANC applications. Detailed
online secondary-path modeling algorithms [24–45] and
associated problems will be presented in Section III. More-
over, ANC systems that require no secondary-path models
[46–65] will also be introduced in Section III.

C) Feedback path
The acoustic ANC system shown in Fig. 1 uses a reference
microphone to pick up the reference noise and generates
anti-noise to cancel primary noise acoustically. Unfortu-
nately, anti-noise from a loudspeaker also radiates upstream
to the reference microphone, resulting in an undesired
acoustic feedback that may cause instability. The simple
approach to solving the feedback problem is to use a feed-
back cancellation (or neutralization) filter that models the
feedback path from the secondary loudspeaker to the ref-
erence sensor, which is exactly the same technique used in
acoustic echo cancellation [2]. Since primary noise highly
correlates with anti-noise, the adaptation of the feedback
neutralization filter must be inhibited when the ANC sys-
tem is in operation. Thus, the feedback neutralization filter
is usually obtained using an offline adaptivemodeling of the
feedback path at the training stage, which can be performed
simultaneously with the offline secondary-path modeling.
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An online feedback path modeling technique [66] is devel-
oped in [67] using adaptive predictor.Moreover, somemod-
ified techniques have recently been developed in [68], which
utilize a simultaneous equation estimation method, and in
[69–72], which utilize adaptive noise cancellation.

In the broadband feedforward ANC, when a feedback
path is present, the optimal solution is generally an infi-
nite impulse response (IIR) function with poles and zeros.
Moreover, the use of the IIR filter can be considerably more
efficient for the realization than FIR filters because an IIR
filter may require much fewer coefficients than an FIR filter
to model any resonance systems. Hence, an IIR-based ANC
is often effective for broadband feedforward control. In
[73, 74], the filtered-u recursive LMS algorithm has
been proposed to realize an IIR-based ANC system. In
[75], the full-gradient and simplified-gradient versions of
the filtered-u algorithm called the filtered-v algorithms
have been proposed to minimize the mean square error.
In [76, 77], the performance of the filtered-u LMS
algorithmhas been analyzed.Other novel adaptive IIRANC
systems have also been proposed in [78–86].

D) Narrowband feedforward ANC
A narrowband ANC system reduces periodic and nar-
row band noises using a signal generator to synthesize the
reference signal x(n). This technique has several advan-
tages: (1) prevents acoustic feedback from the secondary
loudspeaker back to the reference microphone, (2) avoids
nonlinearities and aging problems associated with the ref-
erence microphone, (3) relaxes causality constraint, (4)
can control individual harmonics independently, and (5)
is only necessary to model plants at frequencies of the
harmonics, thus, an FIR filter with a lower order may be
sufficient.

The reference signal generator is triggered by a syn-
chronization pulse from a non-acoustic sensor, such as a
tachometer signal from an automotive engine. Two types of
reference signal are commonly used in narrowband ANC
systems: (1) an impulse train with a period equal to the
inverse of the fundamental frequency of the periodic noise
[87], and (2) sine waves of the same frequencies as the
corresponding harmonics to be canceled. The first tech-
nique is called the waveform synthesis method, whereas
the second technique embodies the adaptive notch filter,
which was originally developed for the cancellation of tonal
interference [88].

The adaptive notch filter offers easy control of band-
width, an infinite null, and the capability to adaptively track
the exact frequency of narrowband noise. In practical appli-
cations, periodic noise usually contains multiple tones at
a fundamental frequency and several harmonic frequen-
cies. In general, the realization of multiple notches requires
a higher-order filter, which can be realized in direct, par-
allel, direct/parallel, or cascade form [2]. The convergence
analysis of the direct and direct/parallel forms related to
the frequency separation between the adjacent harmonics
is presented in [89]. It is shown that the convergence rate

of the direct form can be increased using the direct/parallel
form, which increases the frequency separation.

The narrowband feedforward ANC utilizes the synchro-
nization signal, which is obtained by timing signal sen-
sors such as a tachometer. However, actual sensors contain
some errors because of aging and fatigue damage accumula-
tion. These errors consequently cause frequency mismatch
between the reference signal and the primary noise to be
canceled. In [90], the noise reduction of the narrowband
feedforward ANC system degrades significantly even for a
1 frequencymismatch. Recently, some approaches consid-
ering the frequency mismatch have been proposed [91–94],
which utilize a frequency adjuster or estimate the correct
frequencies.

A convergence analysis of narrowband ANC systems has
been conducted [95–103], resulting in the development of
some novel algorithms, which can improve the convergence
property and/or the noise reduction ability.

E) Adaptive feedback ANC
Several non-adaptive feedback ANC systems have been
described in [7]. A block diagram of the single-channel
adaptive feedback ANC system is presented in Fig. 3 [2].
This technique synthesizes (or regenerates) the reference
signal x(n) using only the error signal and the adaptive filter
output filtered by the secondary-pathmodel; thus, this tech-
nique is also known as IMC [21, 22]. As shown in Fig. 3,
the primary noise estimate d̂(n) ≈ d(n), if Ŝ(z) ≈ S(z).
Because the current estimate of d(n) is used as the reference
signal for the next iteration, i.e., at time n + 1, the refer-
ence signal synthesis process is functioned as a one-step
predictor. This principle clearly indicates that the adaptive
feedback ANC can cancel predictable noise. As shown in
Fig. 3, the primary noise d(n) is generated by filtering the
original noise with the primary path P (z) so primary noise
can be predicted.

The single-channel adaptive feedback ANC algorithm
has been applied to the global control of manufacturing
plant noise generated by vibratory bowls [104] and active
headsets for noise protection [18–20, 105]. The conver-
gence property has been analyzed [104, 106]. In [107], a
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Fig. 3. Equivalent sampled-time block diagram of adaptive feedback ANC sys-
tem. In this figure, S(z) is the secondary path, W(z) is the control filter, and
Ŝ(z) is the secondary-path model. The input signal of the control filter W(z) is
internally generated in this system.
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new adaptive feedback active control structure is proposed.
This method utilizes the IMC structure to estimate peri-
odic noise, but does not require the filtering of the reference
signal with the secondary-path model; thus, this method
can achieve fast convergence and high noise reduction. In
[108], the effects of frequency separation in feedback ANC
systems are discussed.

F) Hybrid ANC
The hybrid ANC system [2] is a combination of both
feedforward and feedback ANC systems, as individually
described in Sections II(A) and II(E), respectively. The can-
celing signal y(n) is generated on the basis of the outputs
of both the reference and error sensors, as shown in Fig. 4.
The hybrid ANC system plays a dual role in canceling the
primary noise picked up by the reference sensor of the
feedforward ANC, A(z), and the residual noise compo-
nent (or plant noise) that is only picked up by the error
sensor of the feedback ANC, C (z). The hybrid ANC, there-
fore, offers better performance in terms of both narrowband
and broadband noise cancellations, and provides higher
flexibility than either the feedforward or feedback ANC sys-
tem [109–115]. The computational complexity of the hybrid
ANC can be reduced because a lower order of FIR or IIR
filters [2] can be used to achieve the same performance as
that using the feedforward or feedback ANC system alone.

G) Multiple-channel ANC
A noise field is more complicated in an enclosure or three-
dimensional space than in a narrow duct. It is generally
necessary to use a multiple-channel ANC system with sev-
eral secondary sources, error sensors, and perhaps even
several reference sensors to achieve global cancellation, or
to create a large-size quiet zone. The locations of error sen-
sors are very important to obtain the best estimate of the
total acoustic potential energy.
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Fig. 4. Equivalent sampled-time block diagram of hybrid ANC system using
FIR filters. In this figure, P (z) is the primary path, S(z) is the secondary path,
A(z) is the control filter for the feedforward part, C (z) is the control filter for
the feedback part, and Ŝ(z) is the secondary-path model.

A general multiple-reference/multiple-output ANC sys-
tem using the FXLMS algorithm has been proposed [116].
The convergence behavior of the multiple-channel ANC
system is analyzed in the frequency domain in terms of the
convergence of individual secondary signals, cost function,
and control effort [117]. This frequency-domain analysis can
be applied to narrowband ANC systems that control one or
more harmonics of periodic noise.

Suppose themulti-channel ANC system uses a single ref-
erence sensor, M secondary sources, and N error sensors.
Then, the corresponding multi-channel FXLMS algorithm
consists of M adaptive filters and M × N secondary-
path models. Therefore, the computational complexity of
the multi-channel ANC system increases significantly with
more transducers deployed, and this represents one of the
major challenges for applying multi-channel ANC systems
in large-scale applications. Recent works have suggested
more efficient realization of multichannel ANC systems
[118–123].

H) Analysis of the FXLMS algorithm
The maximum step size for the FXLMS algorithm in the
case of a white reference signal was derived by Elliott and
Nelson [7] as

μmax = 2

P ′
x(L + �)

, (5)

where P ′
x is the power of the filtered reference signal x ′(n)

and � is the number of samples corresponding to the
overall delay in the secondary path. The longer delay of
the secondary path reduces the maximum step size, thus
decreasing the convergence speed of the FXLMS algorithm.

Various methods have been proposed to analyze the
FXLMS algorithm theoretically. Feintuch et al. [124] and
Bjarnason [125] used the independence assumption to ana-
lyze the convergence behavior. It is assumed that successive
signal vectors of the tapped delay line x(n) are indepen-
dently generated at each time step. In [125], the maximum
step size in the sinusoidal reference case is derived as

μmax = π

P ′
x L(2� + 1)

. (6)

Analytical results based on the independence assump-
tion cannot precisely or generally explain the experimental
results in [126]. Tobias et al. [127] and Miyagi and Sakai
[128] assumed that the step size is small. In this case, the
theoretical results agreewith the corresponding experimen-
tal results. Analysis for the periodic signals is conducted
in [129–131]. In [132–134], the closed-form expressions of
the FXLMS algorithm are proposed, which can apply to
a relatively general case with an arbitrary secondary path,
acoustic noise with an arbitrary bandwidth, and arbitrary
(imperfect) secondary-path model. These expressions give
a more accurate maximum step size. In [135], the dynam-
ical behaviors of the FXLMS algorithm are derived using
the statistical–mechanical method. The analysis is con-
ducted without using the independence assumption, the
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small step-size condition, and the assumption of a small
number of taps.

In [136–141], the effects of secondary-path estimation
error on optimum step size and convergence rate are
discussed. The analysis shows that if the phase error of
the secondary-path model is within ±90◦, the FXLMS
algorithm can remain stable, but the step size must be set
to small values. In [142–144], a strictly positive real condi-
tion on the model error for which the FXLMS algorithm
asymptotically converges to themean is analyzed, and regu-
larizationmethods to increase the robustness of the FXLMS
algorithm are proposed.

Other analyses on the convergence behaviors of the ANC
systems include the presence of a feedback path [145], the
ANC dealing with moving noise sources [146], the modi-
fied FXLMS algorithm [147], the leaky FXLMS algorithm
[148, 149], and the filtered-x adaptive filter with an averag-
ing algorithm [150].

I) Audio-integrated ANC systems
The ANC systems using the FXLMS algorithm are effective
in reducing low-frequency noise. However, residual noise is
still present in the steady state after the ANC systems have
converged. Residual noise may be masked using audio sig-
nals such as music or nature sounds. Furthermore, in some
applications such as headphones, the secondary emitter of
the ANC system is also used to play intended audio signals
(such as speech and music) during the ANC operation. To
prevent the ANC system from canceling the desired audio
signal and to avoid the audio signal acting as interference
that degrades the ANC performance, the audio-integrated
ANC algorithm was proposed in [151–159].

The single-channel audio-integrated ANC system is
shown in Fig. 5, where the comfort audio a(n) is added to
the adaptive filter output y(n), and the mixed signal y′(n)

is output to the secondary loudspeaker to cancel the pri-
mary noise d(n). Thus, the signal e(n) picked up by the
error microphone contains both the residual noise and the
desired audio component. To estimate the audio compo-
nent picked up by the error microphone, a(n) is filtered
by the adaptive secondary-path estimation filter Ŝ(z). The
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Fig. 5. Equivalent sampled-time block diagram of integration of audio with the
single-channel ANC systems. In this figure, P (z) is the primary path, S(z) is
the secondary path, W(z) is the control filter, and Ŝ(z) is the secondary-path
model. The audio signal is combined with the anti-noise signal y(n) and used
for modeling the secondary-path model Ŝ(z).

estimated audio component a ′(n) is subtracted from e(n)

to obtain the true error signal e ′(n) if Ŝ(z) = S(z). This
audio-free error signal is then used to update the adaptive
filter W(z). Therefore, the adaptive filter Ŝ(z) performs the
online canceling of the audio component using the LMS
algorithm.

As shown in Fig. 5, the adaptive filter Ŝ(z) performs
the adaptive system identification of the secondary path
S(z) using the audio signal a(n) as the excitation signal. In
general, when the audio signal is uncorrelated with the anti-
noise y(n), a perfect model can be obtained, i.e., Ŝ(z) =
S(z). Thus, the error signal is the true residual noise used
for the FXLMS algorithm. Therefore, the performance of
the FXLMS algorithm will not degrade with the additional
audio signal, and theANC systemwill not cancel the desired
audio component because the audio component is not fed
back to the LMS algorithm. The additional benefit of using
the audio-integrated algorithm is that the adaptive filter
Ŝ(z) performs the online modeling of the secondary path
using the broadband audio signal as an excitation signal.
Because the audio-integrated ANC system uses the same
secondary loudspeaker and amplifier to play the intended
audio, it adds value to an integrated systemwithout increas-
ing the overall system cost.

This audio-integrated feedforward ANC system can be
extended to the adaptive feedback ANC system, which will
be introduced in Section IV. The application to the helmet,
snore, and incubator ANC systems will also be presented
in Section IV. The selection of audio signal depends on
the characteristics of residual noise and may be guided by
psychoacoustic principles, which require interdisciplinary
effort.

J) Active noise equalization and
psychoacoustic ANC
The goal of the conventional ANC system is to reduce
residual noise. However, in some applications, it is desired
to retain perceivable residual noise with a desired spec-
tral shape or a different signature so as to aid humans in
operating machines or vehicles safely. The use of an active
noise equalizer (ANE) [160] or active sound profiling [161],
which changes the amplitude of noise components with pre-
determined values, is a useful and important extension of
ANC. The narrowbandANE [162–166] can be implemented
to individually control each harmonic of a periodic noise,
and further extends to become a broadband ANE [167, 168]
using a shaping filter to shape the desired broadband noise
spectrum.Wang and Gan [96, 99] investigate the sensitivity
of the ANE under an imperfect secondary-path estimation.

It was found that the noise level is not the sole con-
tribution of irritation [169]. In many instances when the
low-frequency components are actively attenuated, high-
frequency noise components increase the level of irritation
as the sharpness of noise becomesmore obvious. Therefore,
a better noise control approach is to provide a mechanism
that can realize psychoacoustic considerations. A class of
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psychoacoustic ANC systems [170–172] improves perfor-
mance from a psychoacoustic point of view. For exam-
ple, noise loudness is used as the psychoacoustic criterion,
and this psychoacoustic ANC system can match the hear-
ing threshold of individuals to form a personalized ANC
system.

K) Virtual sensing ANC
In many practical applications, error microphones cannot
be placed near intended locations to achievemaximumcan-
cellation in the desired quiet zone (e.g., near the listener’s
ears). To form quiet zones away from error microphones,
a technique known as virtual sensing [173, 174] must be
deployed. The challenge is to create quiet zones at the loca-
tions of virtual sensors by placing physical sensors away
from the desired quiet zones.

Currently, two classes of algorithms have been devel-
oped. The first class [175–178] requires system models to
process data acquired from physical sensors. A training
(offline) stage is required tomeasure the systemmodel from
physical sensors to virtual sensors, which will be used in
the online operation of the virtual sensing ANC algorithm.
However, this class of algorithms is highly dependent on
the accuracy of the system model obtained offline; it is also
very sensitive to the environmental change and locations
of physical sensors. In some cases, offline modeling may
not be possible. The second class of algorithms requires no
offline training to obtain the system model, and thus can
be more flexible in its deployment. For example, Moreau
et al. [179] developed stochastically optimal tonal diffuse
field virtual sensing method for a spatially fixed target zone,
and extended it to moving targets.

In many practical ANC applications, especially in con-
sumer electronics and medical instruments, it is desired to
create quiet zones at the desired virtual locations away from
the locations of physical error sensors for optimum per-
formance. Therefore, the development of effective virtual
sensing techniques for ANC systems is a very important
and challenging work that deserves further research and
development.

L) Other ANC algorithms and structures
The FXLMS algorithm is widely used in ANC systems
owing to its simplicity and robustness. However, the con-
vergence rate of LMS-type algorithms depends on the char-
acteristics of the input signal, that is, it becomes slow for
colored signals. The slow convergence is a major concern
for fast-changing noise such as automobile noise. In ANC
systems, the original noise from a source is filtered by the
physical path before being sensed by the reference sensor;
thus, the reference signal becomes a colored noise even
if the original noise is white. Hence, the convergence rate
needs to be improved using more advanced algorithms,
such as variable step-size LMS algorithms, affine projection
(AP) algorithms, and recursive least square (RLS) algo-
rithms. The filtered-x sign LMS algorithm is proposed and

the convergence behaviors are analyzed [180]. Recently,
an AP algorithm has been proposed for ANC systems
[181]. However, AP algorithms require excessive compu-
tational cost for high projection orders. Thus, computa-
tionally efficient algorithms have been proposed [182–185].
Moreover, their transient and steady-state behaviors are
analyzed [186–188]. Multichannel filtered-x RLS, modi-
fied filtered-x RLS and adjoin-RLS algorithms, and their
low computational fast-transversal-filter-based versions are
proposed [189].

Broadband ANC often requires an adaptive FIR filter
with hundreds of taps. Subband structures [12] can reduce
the computational burden by using a large number of sub-
bands because the adaptive filter length and sampling rate
can be decimated in each subband. Moreover, the subband
structures can achieve faster convergence because the spec-
tral dynamic range is greatly reduced in each subband.
For ANC application, the processing delay must be elim-
inated because of the causality problem discussed in the
previous section. Therefore, a delayless subband ANC sys-
tem is proposed [190]. The basic idea is that wideband
anti-noise is generated by the adaptive FIR filter to elimi-
nate delay caused by (analysis and synthesis) filter banks,
whereas filter coefficients are updated by a subband adaptive
algorithm in the background to achieve faster convergence.
Various delayless subband ANC systems are proposed
[191–198].

In some practical ANC applications, non-target noise
(including intended signals such as speech and white noise
for online modeling of secondary path) often corrupts
residual noise sensed by the error sensor. Non-target noise
reduces the convergence rates of the ANC algorithm and
online modeling of the secondary path. It even leads to the
instability of the IMC-based feedback ANC in some cases.
Hence, non-target noise must be considered in order to
improve the convergence rate and system stability. In [25],
a prediction error filter is utilized to improve the conver-
gence rate in online secondary-pathmodeling. In [199, 200],
weight-constrained FXLMS algorithm and the weight-
averaged FXLMS algorithm are proposed to improve the
system stability and convergence rate, respectively. In [201],
the cascading adaptive algorithm is proposed to remove
non-target noise and improve the steady-state performance
of ANC systems. In [202], a linear prediction filter is utilized
to improve the system stability in the IMC-based feed-
back ANC systemwhen broadband noise corrupts the error
signal.

In practical ANC systems, there are several sources of
nonlinearity that can affect the system performance. For
example, the reference noise may be a nonlinear determin-
istic process, possibly chaotic. The acoustic paths involved
may also show nonlinearity, e.g., owing to the high sound
pressure and saturation in some transducers of the con-
trol system [203, 204]. Overdriving the electronics or the
loudspeakers may also cause relevant nonlinear effects,
e.g., generating unwanted nonlinear distortions. Hence,
ANC systems that can handle such nonlinearity are often
needed. Nonlinear ANC systems utilize various types of
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nonlinear filters, such as multilayer artificial neural net-
works [205–209], truncated Volterra expansions [210–215],
radial basis functions [210], functional link artificial neural
networks [216–224], adaptive bilinear filters [225], general
function expansion nonlinear filters [226], and polynomial
nonlinear autoregressive models with exogenous variables
model [227]. In [228–230], the performance of the FXLMS
algorithmwith a nonlinear secondary path in ANC systems
is analyzed.

I I I . NEW APPROACHES RELATED
TO SECONDARY -PATH MODEL

As discussed in Section II(B), the secondary-path model
can be estimated offline before the operation of the ANC
in situations where no primary noise exists. In many practi-
cal applications, however, primary noise always exists and
the secondary path may be changed, such that the phase
error between the current secondary path and its offline
model exceeds 90◦. The secondary-path modeling error
may lead to system instability, slow convergence, or subop-
timal performance [136–141]. Hence, the onlinemodeling of
a time-varying secondary path may be required to guaran-
tee the stability of the FXLMS algorithm and to improve its
noise reduction performance. In general, there are two dif-
ferent techniques for online secondary-path modeling: the
additive random noise technique and the overall modeling
technique.

A) Online modeling using additive random
noise
Figure 6 shows the online secondary-path modeling tech-
nique using additive random noise proposed in [24]. The
zero-mean white noise v(n), which is uncorrelated with the
primary noise x(n), is internally generated and added to
the secondary signal y(n) to drive the secondary source. In
this technique, the adaptive filter Ŝ(z) is added in parallel
with the secondary path S(z) to estimate it online. In the
presence of primary noise and the operation of the ANC
controller, the error signal e(n) consists of u(n) and v′(n),
where u(n) = d(n) − y′(n) is the residual noise (the error
signal) without using v(n) for the secondary-pathmodeling
and v′(n) is the filtered v(n). Because u(n) is uncorre-
lated with v′(n), the LMS solution for the secondary-path
modeling is unaffected by the presence of the interference
u(n). However, it can be shown that u(n) will degrade
the convergence rate of the adaptive filter Ŝ(z) because
u(n) is large before the convergence of the noise con-
trol filter W(z). On the other hand, the noise control fil-
ter updated by the FXLMS algorithm will be degraded by
the extra noise v′(n), which is proportional to the power
of v(n).

In summary, the true error signalu(n) becomes the inter-
ference for the secondary-pathmodeling filter Ŝ(z), and the
additive randomnoise v(n)becomes the interference for the
ANC filter W(z). These interferences must be isolated to
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Fig. 6. Equivalent sampled-time block diagram of Erikson’s method for online
secondary-path modeling [23]. In this figure, P (z) is the primary path, S(z) is
the secondary path, W(z) is the control filter, and Ŝ(z) is the secondary-path
model. Random noise is combined with the anti-noise signal y(n) and used for
modeling the secondary-path model Ŝ(z).

simultaneously improve the performance of both processes
in ANC systems with online secondary-pathmodeling. The
power scheduling of additive random noise to accurately
detect secondary-path changes and the adjustment of step
size are required. Another potential solution is to replace
annoying white noise with a wideband audio signal, as dis-
cussed in Section II. In fact, the block diagram in Fig. 6
is very similar to that in Fig. 5, which shows the audio-
integration ANC system. In Fig. 5, the additive random
noise in Fig. 6 is substituted for an audio signal. The only
difference between both systems is the purpose, that is, the
purpose of the system in Fig. 6 is to model the secondary
path online, in contrast, the purpose of the system in Fig. 5
is to deliver an audio signal to the user and to remove
the audio signal from the error signal to improve system
performance.

B) Methods for improvement
To solve the problems discussed in the previous section,
various approaches were proposed. These approaches can
be classified into three types. The first type is to intro-
duce another adaptive filter into the ANC system to remove
the interference from the secondary-path modeling pro-
cess [25, 26], or the mutual interference between the noise
control process and the secondary-path modeling process
[27]. The second type is to improve the adaptive algorithm
with the weight-averaged approach for the noise control fil-
ter [28] without introducing any extra adaptive filter into
the ANC system. The averaging of the adaptive filter, which
removes the effect of additive random noise, leads to an
increase in convergence rate. The third type is to control
the power of additive noise or/and step size in the online
modeling process [29–35]. In this approach, the power of
additive noise is initially set large for the fast convergence
of the secondary-path modeling filter and is subsequently
reduced to a small value. Moreover, the step size used for
online modeling varies according to the power of additive
noise. The convergence analysis of the ANC with online
secondary-path modeling is examined in [36, 37], and the
multi-channel ANC with online modeling of secondary
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Fig. 7. Equivalent sampled-time block diagram of Zhang’s method for online
secondary-path modeling [26]. In this figure, P (z) is the primary path, S(z) is
the secondary path, W(z) is the control filter, H(z) is the overall systemmodel,
and Ŝ(z) is the secondary-path model. The overall system model H(z) is used
for improving the convergence performance of both the control filter W(z) and
the secondary-path model Ŝ(z).

paths is proposed in [38]. In this section, we focus on the
first type, in particular, Zhang’s method [27].

Figure 7 shows the block diagram of Zhang’s method
[27] for online secondary-path modeling. This method uti-
lizes an additional filter, H(z), to remove the interference
u(n) = d(n) − y′(n) for the online secondary-path mod-
eling process as Bao’s method [25]. In this system, three
adaptive filters, W(z), H(z), and Ŝ(z), are cross-updated.
If S(n) ≈ Ŝ(n), then e ′(n) ≈ u(n). The new signal e ′(n),
which is used as the error signal for W(z) and as the desired
signal for H(z), does not include the additive random noise
v(n). Therefore, the noise control filter can converge fast.
Moreover, the convergence rate of the additional adaptive
filter can be improved. Furthermore, z(n) is subtracted from
e(n), and g (n) ≈ v′(n) if p(n) − s (n) ∗ w(n) ≈ h(n). In
this case, the new signal g (n), which is used as the desired
signal for the secondary-path modeling filter Ŝ(z), does not
include the primary and secondary noises so the secondary-
path modeling can converge fast. It has been demonstrated
in [39] that Zhang’s method gives the best performance
among the above methods.

In summary, online secondary-path modeling methods
using additive noise havemany disadvantages. Several algo-
rithms using additional adaptive filters were developed to
solve such problems with increased computational com-
plexity. They include the overall online modeling algorithm
[40–42] and simultaneous equations methods [43–45],
which do not use an additive random noise. The overall
online secondary-path modeling algorithm introduces an
additional adaptive filter for estimating the primary path.
Some simulation results demonstrated that the additional
adaptive filter and online secondary-path modeling filter
can track slow changes in both the primary and secondary
paths online [41]. In simultaneous equation methods, an
additional adaptive filter is also used like the overall online
method, but the secondary path is estimated through alge-
braic calculation [43–45].

C) ANC systems without secondary path
model
A class of algorithms that do not require secondary-
path modeling utilizes the simultaneous perturbation (SP)
method originally proposed for neural networks. The SP
method can simultaneously estimate all elements of the gra-
dient vector using only two values of the objective function
J (w(k)). The SP method is given by

�wi (k) = μ
J (w(k) + cs(k)) − J (w(k))

c
si (k), (7)

where�wi (k) is themodification at the kth iteration for the
i th element of the parameter vectorw(k), c is themagnitude
of the perturbation,μ is the step size, and s(k) is the funda-
mental vector at the kth iteration and its i th element si (k)

is either 1 or −1. The sign of si (k) is randomly determined.
Moreover, the sign of si (k) is independent of the sign of the
j th element s j (k) of the sign vector. Let us briefly consider
the SP method. If J (w(k) + cs(k)) on the right-hand side
of (7) is expanded at the pointw(k), its expectation is taken,
and the conditions of the sign vector s(k) are considered, we
obtain

E [�wi (k)] = μ
∂ J (w(k))

∂wi (k)
. (8)

That is, �wi becomes a good estimate of the true gradient
vector. In other words, the SP method is a different type of
the stochastic gradient method [46].

Next, let us consider the ANC system using the SP
method. The SP method requires two measurements in
every iteration to obtain the objective function. The objec-
tive function (mean squared error) is replaced with the sum
of squared errors defined as

J (w(k)) =
∑

e2(n). (9)

Therefore, the coefficients of the adaptive filter are updated
by two error signals in the SP method: one is the difference
between the filter output and the target noise, and the other
is the error between the filter output with perturbation and
the target noise. However, the ANC system cannot obtain
two error signals simultaneously because only one output
signal from the noise control filter with or without pertur-
bation can propagate through the physical secondary path.
Therefore, the SP method requires that the reference signal
x(n) is stationary for a short time.

Figure 8 shows the block diagram of the ANC system
using the SP method [46, 47], where Q(z) is the perturba-
tion filter that generates the perturbation o(n) and has the
same filter length L as the adaptive filter W(z), that is, Q(z)
corresponds to cs(k) in (7), thus the output o(n) is given by

o(n) = csT(k)x(n) =
L−1∑

i=0

csi (k)x(n − i). (10)

The switch in Fig. 8 is closed (so the perturbation is added)
at the first half of a given block and is opened (so the anti-
noise without perturbation) at the second half of the block
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Fig. 8. Equivalent sampled-time block diagram of the TDSP method [45, 46].
In this figure, P (z) is the primary path, S(z) is the secondary path, W(z) is the
control filter, and Q(z) is the perturbation filter. The perturbation filter Q(z) is
used for estimating the gradient vector of the objective function.

to obtain the two objective functions in (7). The sums of
squared errors for these two half blocks are calculated. If the
signal is stationary within the block, these sums are approx-
imately equal to the corresponding squared errors at the
same time. Hence, the SP method can be applied to ANC
by block processing.

The updating algorithm at the kth block is expressed as

w(k + 1) = w(k) − μ
J 1(k) − J 2(k)

c
s(k), (11)

J 1(k) =
(2k+1)N/2∑

n=kN+1

[d(n) − y(n) − o(n)]2 (12)

J 2(k) =
(k+1)N∑

n=(2k+1)N/2+1

[d(n) − y(n)]2, (13)

where N is the block length and s(k) is a sign vector whose
elements are either −1 or 1; it has the following properties:

E [si (k)] = 0, s 2
i (k) = 1, E [si (k)s j (k)] = 0,

E [si (k)si (l)] = 0,

where si (k) is the i th element of the vector s(k) and E [ ] is
the expectation operator. Thus, the elements si (k) are vari-
ables that have a zero-mean and are uncorrelated with other
elements and the same element at different times. A pseudo-
random (PN) sequence is generally used as the coefficients
for the perturbation filter because the PN sequence satisfies
the above conditions and can be easily generated. Further-
more, the same PN sequence is used for the perturbation
filter Q(z) in every block, but is shifted by one tap in every
block to satisfy the above conditions.

The computational complexity of the SP method is
similar to the FXLMS algorithm because the secondary-
path model is replaced with the perturbation filter. How-
ever, the original time-domain simultaneous perturbation
(TDSP) method converges slowly owing to the perturba-
tion and the step size. In the TDSP method, the magni-
tude of the perturbation and step size must be set small
to achieve good performance. To mitigate this problem,
the frequency-domain simultaneous perturbation (FDSP)
and frequency domain time difference simultaneous per-
turbation (FDTDSP) methods were proposed in [48, 49],
respectively. Moreover, the FDSP and FDTDSP methods

with variable perturbationwere also proposed in [50].How-
ever, the convergence rate is still lower than that in the
FXLMS algorithm. Therefore, the challenge for the use of
these algorithms for practical application is to improve their
convergence rate. In [51], the feedback ANC system using
the SP method is proposed and applied to the duct ANC
system.

Another approach that requires no secondary-path
model uses the simultaneous equation method [52]. In
the simultaneous equation method, an auxiliary adaptive
filter is utilized similarly to the overall online modeling
method. The simultaneous equations method computes a
noise control filter without requiring the secondary-path
model. In [52, 53], it was demonstrated that the conver-
gence rate of the simultaneous equation method is higher
than that of the FXLMS algorithm. However, the original
simultaneous equation method requires a higher computa-
tional cost than the FXLMSalgorithmowing to the auxiliary
adaptive filter and background system identification. To
mitigate this problem, the frequency-domain simultaneous
equation method and the simultaneous equation method
without auxiliary filters were proposed in [54, 55], respec-
tively. Moreover, they were applied to the hybrid ANC sys-
tems [56], narrowband ANC systems [57], IIR-based ANC
systems [58], and multi-channel ANC systems [59–61].

Other ANC techniques that do not require the secon-
dary-path model include methods based on the strict pos-
itive real (SPR) property of the FXLMS algorithm [62, 63],
adaptive genetic algorithm [64], and self-learning [65].
Among these algorithms, the SPR-basedmethod is themost
attractive owing to its simple implementation and good per-
formance. However, the convergence rate of this method is
lower than that of the FXLMS algorithm. Therefore, it is still
a challenge to improve the convergence rate of these ANC
algorithms without the secondary-path model for practical
applications.

I V . SOME NEW APPL ICAT IONS

In this section, some recent applications includingmotorcy-
cle helmet ANC, snore ANC, MRI ANC, infant incubator
ANC, and new attempts to use highly directional loud-
speakers for ANC are introduced to explain challenges and
suggest some open issues for further research and develop-
ment of ANC systems.

A) Motorcycle helmet ANC systems
Motorcycle noise mainly consists of engine noise, wind
noise, tire noise, and road noise. Predominantly, the low-
frequency engine noise produced from the motorcycle can
range from 80–90 dBA at 30mph to 116 dBA at 120mph
depending on the type of motorcycle and on the road con-
ditions [231]. Prolonged listening to this high-level noise
will result in hearing loss, and may even distract the con-
centration of the rider and make it difficult to hear or
communicate any emergency signal on the road, whichmay
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Fig. 9. Equivalent sampled-time block diagram of an audio-integrated ANC system with near-end noise cancellation for speech communication. In this figure,
P (z) is the primary path, S(z) is the secondary path, W(z) is the control filter, H(z) is the adaptive noise canceling filter, and Ŝ(z) is the secondary-path model.
The adaptive noise canceling filter H(z) is added to the audio-integrated ANC system in Fig. 5 to cancel near-end noise.

potentially be life threatening. In general, a motorcycle hel-
met’s liner can act as a passive barrier and provides good
noise (such as wind noise) attenuation at a frequency above
500Hz. Therefore, combining ANCwith passive noise con-
trol from the helmet liner can provide broadband noise
control for motorcycle riders.

The conventional feedforward ANC has been success-
fully applied to reduce motorcycle engine noise by 40 dB in
the frequency range up to 200Hz, and by 15 dB in the fre-
quency range from200 to 600Hz [232]. An extension of this
work has also been reported in [233], whereby a subband-
based ANE based on the psychoacoustic shaping of residual
noise spectra is proposed to better match human prefer-
ence in noise perception. The use of hybrid ANC to cancel
motorcycle noise is reported in [234].

To further add to the audio/speech listening capability
to allow motorcycle riders to listen to music/speech from
audio devices using the same loudspeakers that are installed
inside the helmet to generate anti-noise for noise attenua-
tion, the feedback audio-integrated ANC system was pro-
posed in [156, 158]. Furthermore, when communicating in a
noisy environment, there is also a need to remove near-end
noise picked up by the reference microphone before send-
ing it to the far-end. A simple adaptive noise-canceling filter
H(z) using the LMS algorithm can be added to the audio-
integrated ANC system, as shown in Fig. 9. The reference

microphone is used to pick up the near-end speech from the
speaker, but also to sense near-end noise. Correlated noise
derived from the output of the feedback active noise con-
troller W(z) can be used as the reference input to H(z).
The operation and functionality of the integrated audio
and ANC system remain the same. Experimental results
show that the acoustic noise cancellation of 30–40 dB in
the frequency range of 500Hz, and the near-end speech
enhancement of 25 dB [158] can be achieved.

B) Snore ANC systems
Snoring is an acoustic phenomenon generated by vibrating
tissue structures owing to obstruction in the upper airway
during sleep, and is a prominent problem in modern soci-
ety. The annoying intermittent nature of snoring disrupts
the sleep of the snorer’s bed partner, causing stress, excessive
daytime sleepiness, and social nuisance. For low-frequency
snoring noise, passivemethods such as earmuffs or earplugs
are either ineffective or uncomfortable to wear during
sleep.

The application of ANC to reduce snoring noise was
reported in [235, 236]. A snore ANC system installed on a
traditional headboard has potential benefits of retrofitting,
convenience, and non-obtrusiveness. As shown in Fig. 10,
two secondary loudspeakers and two error microphones
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Fig. 10. Experimental setup for the snore ANC inside an acoustic chamber.

are mounted on the headboard. A model of a human
torso called KEMAR (Knowles Electronics Mannequin for
Acoustics Research) is used as the bed partner. Two micro-
phones inside the ear cavities of KEMAR are used to
evaluate the performance of the system at the ears of the
bed partner, which mimics real performance perceived by
humans. Both single-channel and multiple-channel ANC
structures using adaptive IIR filters and FIR filters have
been developed and tested to evaluate their performance for
canceling snore.

Real-time experiments based on the 1 × 2 × 2 (which
consists of a single reference sensor, two secondary sources,
and two error sensors) FXLMS algorithm using recorded
snore samples show that the average noise reduction at
the left error microphone is about 10–20 dB. However,
the noise reduction at the left ear of KEMAR is about
5–10 dB. These results clearly suggest that better snore ANC
performance can be achieved by placing the error micro-
phones close to the ears of KEMAR, especially in the high-
frequency region with a smaller quiet zone. Therefore, one
of the challenges for practical application is to create quiet
zones at the locations of virtual sensors (i.e., ears of the bed
partner) by placing physical error sensors on the headboard
as shown in Fig. 10. This problem can be solved using vir-
tual sensing techniques [173–179], which are also critical for
many practical ANC applications that have to place error
sensors away from the desired control locations.

Another challenge is that a snore is a fast time-varying
and intermittent noise. This requires fast convergence algo-
rithms such as those introduced in Section II(L). Owing to
the broadband nature of snore, feedforward ANC with a
reference sensor is required. This may cause causality prob-
lems if the snorer and bed partner are too close to shorten
the acoustic delay. In addition, a snorer does not always
snore so a robust snore detector to turn the ANC algorithm
on and off is needed.

Furthermore, ANC systems do not completely reduce
primary noise owing to many physical limitations. In
the snore ANC application, which is often used in quiet
bedrooms, still annoying residual noise may need special
treatment. One effective solution based on psychoacoustic

principles is to mask residual noise using suitable masking
signals, such as music or nature sound. This can be done
using audio-integrated ANC algorithms [151–159]. Properly
selected audio sound for snore ANC systems can create a
very soothing atmosphere to help a person relax and sleep.
In addition, the same audio can be used as a training signal
(instead of annoying white noise) for offline secondary-
path modeling, and can continue to function in the online
secondary-path modeling shown in Fig. 6, where a ran-
dom noise generator is replaced with an audio player. Many
online secondary-path modeling algorithms introduced in
Section III may be modified to improve the performance of
audio-integrated ANC systems.

C) MRI ANC systems
Recently, MRI equipment, which is used to take images of
humanorgans, has been in use inmanymedical institutions.
Some MRI devices have also been introduced to conduct
microwave coagulation therapy using near-real-time MR
images. However, MRI equipment generates intense noise
because the gradient coil vibrates owing to Lorentz force.
Exposure to the intense noise may cause patients and med-
ical staff to suffer extreme stress and may prevent verbal
communication between them [237].

Many approaches to reducing MRI noise have been
developed. These approaches include passive noise control,
the design of silent MRI pulse sequences, and ANC. Pas-
sive noise control uses earplugs or ear protection, which is
only effective for high-frequency noise. Unfortunately, MRI
noise has a high sound pressure level (SPL) at low frequen-
cies. Moreover, passive noise control devices prevent verbal
communication among patients and medical staff during
operation. The design of silent MRI pulse sequences relies
on selecting imaging parameters to reduce related acoustic
noise, which results in an approximately 20 dB attenua-
tion of the SPL. However, this technique limits imaging
sequences and reduces image resolution.

The ANC system offers an effective technique for reduc-
ing MRI noise. The application of ANC to MRI noise
has been reported in [237–246], and an approximately
15–30 dB noise reduction has been achieved. However, these
studies have some limitations. Firstly, the experiment was
conducted using computer simulations or in a laboratory
setup, not in actual MRI rooms. Secondly, these studies
used a headset-based system that has problems of prevent-
ing verbal communication between the medical staff and
the patients, causing pressure on the user’s ears, and sepa-
rating the patient from the outside acoustical environment.
Finally, most of the studies utilized the feedforward ANC
system with the FXLMS algorithm. The feedforward ANC
system requires at least two microphones (reference and
error) and sufficient distance between the twomicrophones
to ensure causality, thus increasing the size of the system.
Moreover, the reference noise sensed at the referencemicro-
phone must highly correlate with the noise picked up by
the error microphone. In practical applications, it is very
difficult to determine the reference microphone position
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Fig. 11. Experimental setup for the MRI ANC in an MRI room and the head-mounted ANC system.

because the MRI equipment is very large and the noise
source is unknown.

A novel ANC structure that can achieve high noise
reduction regardless of the user’s movements that allows for
clear verbal communication, and that can be comfortably
mounted without pressure on the ears is proposed in [245].
The ANC structure consists of two microphones arranged
near the opening of the user’s external auditory canal and
two loudspeakers located close to the user’s ears, as shown
in Fig. 11. This structure is called a head-mounted ANC
system to distinguish it from the headset-based ANC sys-
tems. That is, the head-mounted ANC system does not
cover the user’s ears, so that the user can verbally com-
municate with other people while reducing unwanted MRI
noise. Hence, this ANC system is utilized for medical staff
working in theMRI room. The head-mounted ANC system
utilizes optical microphones and piezo-electric loudspeak-
ers to realize noise reduction in a high magnetic field and
compensate the low SPL of the piezo-electric loudspeakers
because the loudspeakers are close to the user’s ears. This
ANC system uses the IMC-based feedback system (intro-
duced in Section II(E)), which can reduce predictable noise,
is independent of the direction of arrival of noise, and is
small in physical size as compared with the feedforward
ANC system because the reference sensor is not needed.
This ANC system can effectively reduce MRI noise in the
frequency range between 500 and 2500Hz. Experimental
results demonstrated that the ANC system can reduce MRI
noise by approximately 20 dB at a high magnetic field in an
actual MRI room.

A challenging problem for MRI ANC is that the MRI
noise contains periodical and impulse-like noise. Periodic
components can be minimized by feedback ANC, but
impulse-like components cannot be minimized. This prob-
lem can be solved by means of some advanced algorithms
using the probability density function of impulse-like noise
[247–252] for canceling impulse-like noise included in MRI
noise. The second challenge is that MRI equipment gener-
ates intense magnetic fields. Therefore, it is necessary for
transducers in the ANC system to satisfy several conditions:
the transducer must work normally in an intense magnetic
field and must not affect the MR image. Hence, transduc-
ers containing magnetic materials cannot be used for the

MRI ANC system. In [245], an optical microphone and a
piezo-electric loudspeaker were used to satisfy these con-
ditions. However, a piezo-electric loudspeaker cannot gen-
erate sufficient SPL at low frequencies. Therefore, further
development of an appropriate transducer is required.

D) Infant incubator ANC systems
Medical and technological advancements including the
use of infant incubators in neonatal intensive care units
(NICUs) have significantly increased the survival of prema-
ture and ill infants. The infant incubator is an enclosure
designed to hold an infant with transparent sections for
viewing. The incubator consists of sensors and devices for
monitoring the vital statistics of a baby, and for the environ-
mental control of temperature, humidity, supplementary
gas and other parameters.However, high levels of noise gen-
erated by medical equipment and human activities inside
NICU results in numerous adverse health effects including
sleep disturbance andother forms of stress. There is also evi-
dence that NICU noise exposure has significant long-term
consequences of hearing loss. Unfortunately, there are few
developed methods that are effective in reducing incubator
noise. The performance of passive noise reduction tech-
niques in the low-frequency range is limited. Furthermore,
most passive techniques either occupy limited incubator
space or block the view of an infant to caregivers, or both.
These difficulties motivated the development of ANC sys-
tems to cancel low-frequency noise inside incubators, as
shown in Fig. 12 [253, 254].

A challenging problem for incubator ANC is that there
is a lot of impulse-like noise produced by pumps and human
activities. This problem can be solved by means of some
advanced algorithms using the probability density func-
tion of impulse-like noise [247, 248, 250–252] to cancel
impulse-like noise in infant incubators. The second chal-
lenge is that noise inside an incubator comes from mul-
tiple noise sources inside and outside the incubator. Since
NICU noise is broadband in nature, the broadband feedfor-
ward ANC system introduced in Section II(A) is needed. In
general, a reference microphone is placed outside the incu-
bator, as shown in Fig. 12, to satisfy causality constraint.
This configuration can cancel noise outside the incubator,
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Fig. 12. Experimental setup for the infant incubator ANC system.

but is ineffective for canceling noise inside the incuba-
tor. This problem may be solved using hybrid ANC sys-
tems [109–115]. Finally, the number and locations of noise
sources inside an NICU is generally unknown to achieve
effective incubator ANC; thus, it is very challenging to
determine the number and locations of reference micro-
phones and the corresponding FXLMS algorithm for such a
configuration.

In addition, intrauterine (womb-like) sound provides
infants with the ambience of the mother’s womb, which
has been proved to relieve stress and improve learning and
neurological development for preterm infants – it helps
in infant neurological development and improves infants’
understanding of rhythm and melody. Thus, it is necessary
to design audio-integrated ANC systems [151–159] that not
only cancel harmful NICU noise, but also play intrauterine
sound inside incubators to recreate the in utero experience
for infants. The audio-integrated ANC system introduced
in Section II(I) can be used for incubator ANC.

E) ANC using directional loudspeakers
Noise cancellation is generally carried out using conven-
tional omnidirectional loudspeakers. Recently, there has
been some interest to exploit the use of highly directional
loudspeakers, such as parametric loudspeakers [255]. Para-
metric loudspeakers modulate an audible sound signal onto
an ultrasonic carrier, and project the modulated signal via
special types of ultrasonic emitter to generate a nonlinear
acoustic effect in air, such that audible sound can travel in a
column of sound beams.

The main motivation in using a directional secondary
sound source is to attenuate primary noise to achieve
focused noise control at a local zone of quiet with little
spill over outside this zone. A special feature of directional
loudspeakers is their ability to project highly directional
sound sources, just like a spotlight. Furthermore, the pres-
sure decay within the Rayleigh distance of a parametric
loudspeaker is less than that of a conventional omnidirec-
tional loudspeaker. These unique characteristics of para-
metric loudspeakers allow for noise control to be confined

within the directional beamwidth of the parametric loud-
speakers. A comparison of noise control performance based
on the sound pressure distribution between an omnidirec-
tional voice coil loudspeaker and a directional parametric
loudspeaker is conducted in [256].

Another work [257] conducted by the same research
group used a steerable parametric loudspeaker, which can
electronically steer a control sound source to the target
control point. This steerable feature is useful in canceling
a moving noise source such as a vehicle; the tracking of
the noise source may be implemented using a camera and
locality information can be fed back into the system to
generate a directional and steerable control sound at the
target noise source. The current challenge is to develop
effective and low-cost tracking algorithms for moving
targets.

However, one current drawback of parametric loud-
speakers is their inability to efficiently control a low-
frequency noise source lower than 500Hz. This is due to
the poorer frequency response of the parametric acoustic
array generation of a directional sound field at low frequen-
cies [255].

V . CONCLUS ION AND FUTURE
TRENDS OF ANC

In this paper, we briefly reviewed broadband and nar-
rowband feedforward and adaptive feedback ANC sys-
tems with focus on signal processing algorithms. We
focused on the introduction of the recent research and
development in the last decade after detailed tutorial pub-
lications [1–8]. In particular, we introduced the audio-
integrated algorithm and the concepts of psychoacoustics
and virtual sensing for ANC. In this paper, we also compre-
hensively reviewed online secondary-path modeling tech-
niques and ANC without the secondary-path model, which
remain critical for some practical applications. Finally, we
highlighted some ANC applications in medical and con-
sumer electronics fields, which are important formotivating
new ANC applications in addition to traditional applica-
tions in industry and transportation. We also identified
many related difficulties and open research issues in each
section.

There are many challenges [258] in developing success-
ful ANC applications: (1) theory of associated acoustics
related to ANC algorithms and the positioning of trans-
ducers for optimum performance; (2) development of fast
convergence and robust algorithms to achieve maximum
noise reduction at desired locations in time-varying envi-
ronments; and (3) implementation considerations including
system complexity, physical constraints, and cost reduction.
In addition to these requirements, integrating value-added
functions, such as audio and communications into ANC
can further promote the development of other applications.
Finally, many consumer products may prefer ANC systems
to mask and control the spectral contents of residual noise
over simple noise reduction.
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