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Dark and low-contrast image enhancement
using dynamic stochastic resonance in discrete
cosine transform domain
rajib kumar jha1, rajlaxmi chouhan2, kiyoharu aizawa3, and prabir kumar biswas2

A novel technique based on dynamic stochastic resonance (DSR) in discrete cosine transform (DCT) domain has been proposed
in this paper for the enhancement of dark as well as low-contrast images. In conventional DSR-based techniques, the perfor-
mance of a system can be improved by addition of external noise. However, in the proposed DSR-based work, the intrinsic noise
of an image has been utilized to create a noise-induced transition of a dark image to a state of good contrast. The proposed tech-
nique significantly enhances the image contrast and color information without losing any image or color data by optimization
of bistable system parameters. The performance of the proposed methodology has been measured in terms of relative contrast
enhancement factor, perceptual quality measure, and color enhancement factor. When compared with the existing enhance-
ment techniques, such as adaptive histogram equalization, gamma correction, single-scale retinex, multi-scale retinex, modified
high-pass filtering, multicontrast enhancement with dynamic range compression, color enhancement by scaling, edge-preserving
multi-scale decomposition, automatic control of imaging tool, and various spatial/frequency-domain SR-based techniques,
the proposed technique gives remarkable performance in terms of contrast and color enhancement while ascertaining good
perceptual quality.
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I . I NTRODUCT ION

Conventionally, noise is thought to be a nuisance that dete-
riorates a system. Stochastic resonance (SR), on contrary,
is a phenomenon in which noise can be used to enhance
rather than hinder the system performance. SR is a counter-
intuitive phenomenon where the presence of noise in a
non-linear system is essential for optimal system perfor-
mance. Here, this approach has been extended to use SR
to enhance contrast of an image. The first experimental
work on visualization of SR was reported by Simonotto
et al. [1]. Recently, some of the works on application of SR
for image enhancement that have been reported in literature
are [2–13]. In this paper, an contrast enhancement technique
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based on dynamic stochastic resonance (DSR) and scal-
ing of discrete cosine transform (DCT) coefficients using
bistable potential double-well model has been proposed.
The unique feature of this technique is the use of internal
noise instead of externally added noise, and an adaptive pro-
cessing to reach target optimal performance. Performance
parameters have been computed to assess contrast enhance-
ment, perceptual quality and color enhancement of output
image. Here, it is observed that the DSR-based enhance-
ment technique surpasses some of the conventional tech-
niques of image enhancement in both spatial and frequency
transform domains.

Many images have very low dynamic range of the inten-
sity values due to insufficient illumination, and therefore,
need to be processed before being displayed. Enhance-
ment of images is required for better visualization of dark
images so as to improve visual perception.Many techniques
for contrast enhancement that operate in spatial domain
exist in literature [14–18]. Tone mapping methods [19, 20]
attempt to avoid halos by manipulating gradients. Farbman
et al. [18] propose the use of an edge-preserving smoothing
operator, based on the weighted least-squares optimization
framework, which is particularly well-suited for progressive
coarsening of images and for multi-scale detail extraction.
Recently, novel techniques that exposure fusion [21, 22]
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have been reported. Mertens et al. [21] have proposed a
novel technique for fusing a bracketed exposure sequence
into a high-quality image without converting to HDR first,
by blending multiple exposures in multiresolution fash-
ion. Song et al. [22] have reported a technique to handle
HDR scenes by integrating locally adaptive scene detail cap-
ture and suppressing gradient reversals introduced by the
local adaptation.

Many algorithms found in the literatures have been
designed for both colored and grayscale images in block
DCT domain [23–26]. However, there are some disadvan-
tages in processing images using block DCT. Owing to
independent processing of blocks, as in most of the cases,
the presence of blocking artifacts may become more visi-
ble in the processed data. Sometimes superfluous edgesmay
appear at the image boundaries due to the sharp discontinu-
ities of the intensity distribution.

The display of a color image depends on three impor-
tant factors, namely: (i) brightness, (ii) contrast, and (iii)
original color composition. Interestingly, most of the pre-
vious works have considered either the brightness (such
as adjustment of dynamic ranges) or the contrast (such as
image-sharpening operations), and in some cases a combi-
nation of both attributes. But little consideration was made
toward preservation of colors in the enhanced image. In
this paper, all these three important factors have been con-
sidered while designing a simple computationally-efficient
algorithm that enhances a dark or low contrast image. Per-
formance parameters have been computed to assess contrast
enhancement, perceptual quality, and color enhancement of
output image.

The concept of SR was invented in 1981–1982 in the con-
text of the evolution of the earth’s climate. Statistical data
show that interglacial transitions are random variables dis-
playing average periodicity of around 106 years. Since the
only-known time scale in this range is that of the changes in
time of the eccentricity of the Earth’s orbit around the Sun,
as a result of the perturbing action of the other bodies of the
solar system. This perturbation modifies the total amount
of solar energy received by the earth but the magnitude of
this astronomical effect is exceedingly small, about 0.1. To
explain this phenomenon, the concept of SRwas introduced
with the assertion that it is not the periodic eccentricity
alone, but eccentricity in resonance with weak disturbance
that causes this colossal change in temperature. In a model
of Benzi et al. [27, 28] to explain recurrence of ice age on
Earth, the global climate is represented by a double-well
potential, where one minimum represents a small temper-
ature corresponding to a largely ice-covered Earth. The
small modulation of the earth’s orbital eccentricity is repre-
sented by a weak periodic force. Short-term climate fluctua-
tions, such as the annual fluctuations in solar radiation, are
modeled by Gaussian white noise. At some optimal tuned
amount of noise, synchronized hopping between the cold
and warm climate could significantly enhance the response
of the earth’s climate to the weak perturbations caused by
the earth’s orbital eccentricity, according to arguments by
Benzi et al. [27]. Specifically, glaciation cycles are viewed as

transitions between glacial and interglacial states that some-
how manage to capture the periodicity of the astronomical
signal, even though they are actually made possible by the
environmental noise rather than by the signal itself. Start-
ing in the late 1980s the ideas underlying SR were taken
up, elaborated, and applied in a wide range of problems in
physical and life sciences [29–31].

First experiment of SR for image visualization was
reported in [1]. They reported the outcome of a psy-
chophysics experiment, which showed that the humanbrain
can interpret details present in an image contaminated with
time-varying noise and the perceived image quality is deter-
mined by the noise intensity and its temporal characteris-
tics. Piana et al. [32] described two experiments related to
the visual perception of noisy letters. The first experiment
found an optimal noise level at which the letter is recognized
for a minimum threshold contrast. In the second exper-
iment, they demonstrated that a dramatically increased
ability of the visual system in letter recognition occurs
in an extremely narrow range of noise intensity. Qinghua
et al. [4] have used SR phenomenon for image enhance-
ment of low contrast sonar images. They have reported the
image enhancement technique that showed that an addi-
tional amount of noise besides the noise of the image itself
would be helpful to enhance low contrast images. Peng et al.
[5] reported a novel preprocessing approach using SR to
improve the low-contrast medical images. The contrast is
improved by adding some suitable noise to the input image.

Recently, SR-based techniques in wavelet and Fourier
domain for the enhancement of unclear diagnostic ultra-
sound andMRI images, respectively, have been reported [6,
7]. These methods can readily enhance the image by fusing
a unique constructive interaction of noise and signal, and
enable improved diagnosis over conventionalmethods. The
approach illustrates the potential of using a small amount
of Gaussian noise to improve the image quality. Ryu et al.
[8] have developed a new approach for enhancing feature
extraction from low-quality fingerprint images using SR.

In this paper, we have used internal stochastic fluctuation
to enhance an image. The objective of this investigation is to
neutralize the noise due to lack of illumination, and enhance
the dark regions of an image in a double-well model analo-
gous to that developed by Benzi et al. [27]. Our approach is
to maximize the performance of our algorithm in terms of
contrast and color enhancement while assuring good per-
ceptual quality (visual information). Noise itself is used to
counter the effect of noise. In other words, in DSR-based
enhancement, a small amount of extra noise rearranges the
intrinsic noise that is already present in the image. The
outcome of the process is both image enhancement and
reduction of noise. DSR-based technique works effectively
for images that are dark as well as those which have an
overall dull appearance.

The display of a color image depends on three impor-
tant factors, namely: (i) brightness, (ii) contrast, and (iii)
original color composition. In this paper, we have chosen
to work on Hue-Saturation-Value (HSV) color model and
have computed performance parameters to assess contrast
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enhancement, perceptual quality, and color enhancement
of output image. We have observed that the DSR-based
enhancement technique surpasses the conventional meth-
ods of image enhancement in both spatial and frequency
transform domains. As previous studies [30, 31] have shown
that bistable SR can enhance weak one-dimensional (1D)
noisy signals, here we extend this approach to use SR to
enhance contrast of a 2D signal or image.

I I . KEY CONTR IBUT ION

The work proposed in this paper is uniquely different from
the state-of-the-art SR-based techniques in the aspectsmen-
tioned as follows. The technique reported in [3] deals with
edge detection using vibrating noise. Also, the technique
reported in [5] used non-dynamic SR to improve the perfor-
mance of adaptive histogram equalization by using SR. The
technique proposed byYe et al. [4] for sonar image enhance-
ment suggests addition of externally added noiseonbileveled
images. Both [5] and [8] use the concept of non-dynamic SR
and that adds N-parallel frames of independent and iden-
tically distributed (i.i.d.) Gaussian noise and uses addition
of externally added noise. All these techniques are in spa-
tial domain. Our earlier work on suprathreshold SR [9] used
addition of external noise in spatial domain, where random
noise was added repeatedly to an image and is successively
hard-thresholded followed by overall averaging. By varying
the noise intensities, noise-induced resonance was obtained
at a particular optimum noise intensity. This approach is
different from the one used in this paper, as the type of non-
linearity introduced in the former is due to thresholding,
while that introduced in the latter (proposed here) is due to
barrier height of double-well. Our other DSR-based inves-
tigations [10, 12] were based in spatial and wavelet domains,
respectively, while the concept of DCT-based enhancement
was introduced in [11].

The major difference between earlier SR-based tech-
nique and the present approach is as follows: the focus of
earlier SR-based work was centered about edge detection
[3] or increasing feature interpretability [4, 5, 8]. How-
ever, the aspect of contrast enhancement of dark images
using Dynamic SR, particularly in DCT domain was not
addressed and the suitability of frequency domain for induc-
ing the same was unexplored. Unlike earlier techniques
[6, 7] that were based on addition of external noise and
experimental selection of parameters, the parameter selec-
tion in this work has been done by maximization of
signal-to-noise-ratio (SNR) and imposition a condition of
subthreshold nature on input image. The focus of the inves-
tigation is on dark real-life dark images and it is here that
a novel noise-enhanced dynamic SR-based application in
DCTdomain has been proposed.Applicability ofDSRusing
intrinsic noise due to low illumination and preservation and
enhancement of color has been tested. A major and novel
aspect of our approach is to maximize the performance of
our algorithm in terms of contrast and color enhancement

alongside assuring good perceptual quality (visual infor-
mation). Here, noise itself is used to counter the effect of
noise. In other words, in DSR-based enhancement, a small
amount of extra noise rearranges the intrinsic noise that is
already present in the image. The proposed approach has
been explored to exploit the nature of DC and AC coeffi-
cients of a DCT block, and was found to implicitly enhance
and preserve color accurately. By scaling of DCT coeffi-
cients using DSR in a discrete iterative equation, it has been
observed the overall contrast and luminance of an image
is increased.

In the technique, an analogy to Benzi’s double-well
model for recurrence of ice ages [27] has been presented
treating one state (minima) as the poor contrast state and
the other one as the enhanced state. The low-contrast
image is treated as a sum of weak subthreshold signal and
noise (due to lack of adequate illumination). A transition
of the image from the low-contrast state to high-contrast
state is induced by a “noise-induced” resonance between the
internal noise and subthreshold signal after certain number
of iterations following the dynamics of motion of a parti-
cle in a double-well. Oscillation about the mean (minima)
of the double-well are considered analogous to iterations
of the discrete DSR equation. The proposed technique fol-
lows an iterative algorithm and selects best output when
performance metrics are maximized. The proposed tech-
nique selects parameters by maximization of SNR and also
further relates a DSR parameter with the statistical proper-
ties of the low-illuminated image itself. The applicability of
DSR has been extended on a low-contrast image (to make
it a subthreshold signal) by imposing condition on another
parameter so that the coefficients of low-contrast image can
be accepted as an input to the SR system (Section VI).

I I I . DYNAMIC STOCHAST IC
RESONANCE

The word noise in general understanding is associated with
the term hindrance. It was traditionally believed that the
presence of noise can onlymake the systemworse.However,
recent studies have convincingly shown that in non-linear
systems, noise can induce more ordered regimes, which
cause the amplification of weak signals and increase the
SNR [27, 31, 33]. In other words, noise can play a construc-
tive role in enhancing weak signals.

The general behavior of SR mechanism shows that at
lower noise intensities, the weak signal is unable to cross the
threshold, thus giving a very low SNR. For large noise inten-
sities, the output is dominated by the noise, also leading to
a low SNR. But, for moderate noise intensities, the noise
allows the signal to cross the threshold giving themaximum
SNR at some optimum noise levels. Thus, a plot of SNR as
a function of noise intensity shows a peak at an optimum
noise level as shown in Fig. 1(a).

The bistable-SRmodel conventionally used by the physi-
cists shall be explored and elaborated in its application to
contrast enhancement of a digital image. The image pixel
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Fig. 1. SR in double-well-potential valley.

would transform if mean-zero Gaussian fluctuation noise is
added, so that the pixel is transferred fromweak signal state
to enhanced state. Such a change of state of pixel under noise
can be modeled by Brownian motion of a particle placed in
a double-well-potential system shown in Fig. 1(b).

A classic 1D non-linear dynamic system that exhibits SR
is modeled with the help of Langevin equation of motion
[34] in the form of Equation (1) given below.

m
d2x(t)

dt2
+ γ

dx(t)

dt
= −dU (x)

dx
+

√
Dξ(t). (1)

This equation describes the motion of a particle of mass
m moving in the presence of friction, γ . The restoring
force is expressed as the gradient of some bistable or mul-
tistable potential function U (x). In addition, there is an
additive stochastic fluctuation (noise) ξ(t)with intensity D.
If the system is heavily damped, the inertialmd2x(t)

dt2 term can
be neglected. Rescaling the system in Equation (1) with the
damping term γ gives the stochastic overdamped Duffing
equation [35] which is frequently used to model non-
equilibrium critical phenomena as given in Equation (2).

dx(t)

dt
= −dU (x)

dx
+

√
Dξ(t), (2)

where U (x) is a bistable quartic potential (Fig. 1(b)) given
in equation (3).

U (x) = −a
x2

2
+ b

x4

4
. (3)

Here, a and b are positive bistable double-well parameters.
The double-well system is stable at xm = ±√ a

b separated
by a barrier of height �U = a2

4b when the ξ(t) is zero.
Addition of a periodic input signal [B sin(ωt)] to the

bistable system makes it time-dependent (as given in
equation (4)) whose dynamics are governed by equation 5.

U (x, t) = U (x) − Bx sin(ωt)

= −a
x2

2
+ b

x4

4
− Bx sin(ωt), (4)

dx(t)

dt
= −dU (x)

dx
+ B sin(ωt) +

√
Dξ(t), (5)

where B and ω are the amplitude and frequency of the
periodic signal, respectively. It is assumed that the sig-
nal amplitude is small enough so that in the absence of
noise it is insufficient to force a particle to move from one
well to another. Substituting U (x) from equation (3) into
equation (5).

dx(t)

dt
= [

ax − bx3
] + B sin(ωt) +

√
Dξ(t). (6)

In the absence of periodic force, the particle fluctuates
around its local stable states. The rate of transition of par-
ticle (rk) between the potential well under the noise-driven
switching is given by Kramer’s rate [34] as in equation (7).

rk = a√
2π

exp

[
−2�U

D

]
. (7)

When a weak periodic force is applied to the unit mass par-
ticle in the potential well, noise-driven switching between
the potential wells takes place. When the average wait-
ing time, Tk(D) = 1

rk
, between two noise-driven inter-well

transitions satisfies the time-scale matching between signal
frequency, ω, and the residence times of the particle in each
well [31, 36], that is the condition when resonance occurs.
In other words,

2Tk(D) = Tω, (8)

where Tω is the period of the periodic force.
One way of measuring how well the position of the par-

ticle represents the frequency of the input is to measure the
power spectral density (PSD) of the position, and determine
the SNR at ω. This will have a peak at a non-zero value of
D, and hence SR occurs. The optimal value of D is the one
that provides the best time-scale matching between ω and
the residence times of the particle in each well. The most
common quantifier of SR is SNR. For a symmetric bistable
system, SNR is obtained from [31, 36].

S N R = π

(
Bxm

D

)2

rk . (9)

Substituting the value of rk from equation (7) to equation (9)
we get.

S N R =
[

a√
2π

π

(
Bxm

D

)2
]

exp

(
− a

2σ 2
0

)
. (10)
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Fig. 2. (a)–(d) show the probability density function (pdf) of DCT coefficients of a dark image after 100, 250, 400, and 500 iterations, respectively.

The SNR expression for dynamic SR as derived in [4] is
given below.

S N R =
[

4a√
2(σ0σ1)2

]
exp

(
− a

2σ 2
0

)
. (11)

Here σ1 is the standard deviation of the added noise in
the SR-based system and σ0 is the internal noise standard
deviation of the original bistable system.

I V . CHO ICE OF DSR FOR IMAGE
ENHANCEMENT

It has been observed in 1D signals that at an optimum
“resonant” value of noise, the signal crosses the threshold
and transits into another (enhanced) state. An analogy to
Benzi et al.’s double-well model for global climate in the
context of image enhancement has been developed in this
paper. Here double-well represents the contrast of an image.
The position of particle is analogous to the state of the
coefficient magnitude. The weak periodic forcing is consti-
tuted by the DCT coefficients while the noise is constituted
by the noise inherent in the DCT coefficients due to lack
of illumination. Each of the two stable states are repre-
sented by a low-contrast state and enhanced state, respec-
tively. The state at which performance metrics are found
to be maximum can be considered as enhanced state from
input state.

The quartic potential system is of particular interest
because it represents the simplest bistable system. Under
random periodic forcing, a particle will spend most of its
time near the minima of the double-well oscillating about
the mean position with progressively increasing excur-
sions along the x-axis, Fig. 1(b). Each of these oscillations
corresponds to iteration in our iterative DSR equation.
At optimum intrinsic noise density (or optimum num-
ber of oscillations) the particle makes a transition into the
other well. In the proposed analogy, this optimum amount
of noise is reached by a corresponding discrete iterative
equation because the number of iterations are directly pro-
portional to the internal noise.

Dynamic SR is exhibited by a double-well-potential val-
ley denoted by parameters a and b that govern the shape of
the valley Fig. 1(b). The transform coefficients (here, DCT)
of a low-contrast image are in a weak state in the sense that
their distribution becomes random due to inherent noise in
the form of lack of proper illumination. The application of

DSR involves correlation of parameters a and b with these
randomcoefficients.When content of each frequency is cor-
related with optimum bistable DSR system parameters, the
DCT coefficient distribution spread increases, and so does
the overall contrast of an image. The result is that an image
in poor contrast state transits into an enhanced contrast
state after certain optimumnumber of oscillations about the
poor state.

A) Choice of DCT domain
The nature ofDCT coefficients within a block and in totality
is observed to be following normal distribution.When both
DC and AC coefficients are tuned using iterative dynamic
SR equation, the variance of the DCT coefficient distri-
bution is found to increase with iterations. It is known
that the DC coefficient represents the average brightness
of an image while the sum of squares of the normalized
AC coefficients gives variance of an image. Thus, modifi-
cation of DC coefficient of each block would increase the
local brightness (this would be very useful for enhancement
of dark images). Owing to block-wise operation, local con-
trast and brightness can be adjusted accordingly. Different
algorithms have been reported for both color and graylevel
images in the block DCT domain, such as multicontrast
enhancement [26], alpha rooting [37], by processing the AC
coefficients and its modified form by processing both DC
and AC coefficients [25, 38].

B) Distribution of DCT coefficients of image:
mechanism of DSR for contrast enhancement
For a low-contrast input image, the histogram of the image
as well as of its transformed coefficient distribution is
observed to be of low spread. Since squared magnitude of
the coefficients imply energy, a low-variance distribution
implies that the energy distribution is concentrated in only
certain areas, confirming that the image in question is of low
contrast.

Now if DSR is applied to these DCT coefficients, its
variance is observed to increase with iterations (Figs. 2(a)
and 2(d)). This is because the coefficients are being tuned
by certain bistable system parameters. The sum of square
of normalized AC coefficients provides the variance of the
image. Hence, any change in the DC component does not
have any bearing on its standard deviation. So under scal-
ing or modification of the DCT coefficients, the mean and



6 rajib kumar jha et al.

standard deviation of the processed image become some
multiple of original mean and standard deviation, respec-
tively. As a result the contrast of the processed image
becomes proportionally certain multiple of that of the orig-
inal image [25]. Another way of interpretation is that, the
value of DCT coefficient denotes the amount of a partic-
ular frequency being present. An increase in variance of
coefficients means that now a greater range of amount of
frequencies are occupied. In other words, there is signifi-
cant variation in amount of different frequencies present in
the signal. This would ensure that the balance between low-
and high frequencies is restored and the image gets a bet-
ter andmore uniformly spaced graylevels, thus implying on
high-contrast output image. This is the basic mechanism of
how DSR works toward improving contrast.

V . MATHEMAT ICAL FORMULAT ION
OF THE DCT -BASED DSR

Mathematical formulation of DSR for enhancement of very
dark image is discussed here. 2DDCT is applied to the input
image. Let us consider the 2D spatial representation of an
M × N image, I (x, y), in an actual physical space (x, y)

where the function will be image pixel value. After applying
the 2D DCT, I ′(u, v) is obtained [15].

I ′(u, v) =
√

2

M

√
2

N

M−1∑
x=0

N−1∑
y=0

αuαv I (x, y)

× cos
(2x + 1)uπ

2M
cos

(2y + 1)vπ

2N
,

where

αu =
⎧⎨
⎩

√
1

2
for u = 0,

1 for u = 1 . . . .M − 1,

αv =
⎧⎨
⎩

√
1

2
for v = 0,

1 for v = 1 . . . .N − 1,

where u and v are theDCT frequency pair corresponding to
spatial coordinate x, y. Now DSR is applied to the I ′(u, v)

coefficients, thereby obtaining the stochastically enhanced
set of DCT coefficients given as

I ′(u, v)DS R =
√

2

M

√
2

N

M−1∑
u=0

N−1∑
v=0

DS R

×
[
αuαv I ′(u, v)cos

(2x + 1)uπ

2M

× cos
(2y + 1)vπ

2N

]
,

where the DSR operation can be shown in differential
equation form and in discrete equation form as given in
equation (6) and equation (12). Here the noise term

√
Dξ(t)

and the input term B sin(ωt) is replaced by DCT coeffi-
cient of I (x, y), that is, I ′(u, v). In equation (6), the DSR
is produced by the noise term

√
Dξ(t), whereby the maxi-

mization of the SNR occurs at double-well parameters a =
2σ 2

0 (as described in Section VI). We need to solve the
stochastic differential equation given in equation (6) using
the stochastic version of Euler–Maruyama’s method using
the iterative discretized method as follows [39].

x(n + 1) = x(n) + �t
[
(ax(n) − bx3(n)) + Input

]
.
(12)

Note that Input = B sin(ωt) + √
Dξ(t) denotes the

sequence of input signal and noise. This notation can be
done keeping in view that the low-contrast image is a noisy
image containing internal noise due to lack of illumination.
This noise is inherent in its DCT coefficients and therefore,
the DCT coefficients can be viewed as containing signal
(image information) as well as noise. The final stochastic
simulation is obtained after number of iterations. Finally,
the image is reconstructed in the spatial domain by applying
inverse DCT operation given below:

I (x, y)enhanced

=
√

2

M

√
2

N

M−1∑
x=0

N−1∑
y=0

αuαv I ′(u, v)DS R

× cos
(2x + 1)uπ

2M
cos

(2y + 1)vπ

2N
.

V I . SELECT ION OF PARAMETERS
FOR IMAGE ENHANCEMENT

This section describes one of our key contributions – the
approach for selection of double-well parameters a and b.

A) Selection of a

DSR is defined by equation (12) after proper selection of the
double-well parameters a and b. These double-well parame-
ters can be obtained bymaximization of the SNR expression
of DSR.

For SNR maximization, we differentiate equation (11)
with respect to a and equate to zero. Out of two parame-
ters a and b of the DSR, any one can be selected for proper
discussion of DSR. We have selected parameter a here for
our discussion.

d(S N R)

d(a)
=

[
1√

2(σ0σ1)2

]
exp

(
− a

2σ 2
0

)

−
[

a√
2(σ0σ1)2

](
1

2σ 2
0

)

× exp

(
− a

2σ 2
0

)
= 0.

This gives a = 2σ 2
0 formaximumSNR.Thus SNRhasmaxi-

mumvalue at an intrinsic property a of the dynamic double-
well system. The other parameter b can be obtained using
parameter a.
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B) Selection of b

To ensure that the low-contrast signal is subthreshold, we
have derived a condition for the value of parameter b. As
shown in equation (1), the restoring force is expressed as
the gradient of some bistable potential function U (x). The
periodic force alone is not responsible for the transition
of the particle from one well to another. The maximum
possible value of the a periodic force on the particle by
which the bistable potential well does not change its state
due to this force alone. Let R = B sin ωt be the periodic
forcing signal.

R = −dU (x)

dx
= −ax + bx3,

d R

dx
= −a + 3bx2 = 0

implying x = √ a
3b . Finding R at this value gives maximum

force as
√

4a3

27b . This is the maximum possible force at which
the bistable system would become stable. For a force larger
than this, the system would become unstable. Therefore,

B sin ωt <

√
4a3

27b
.

Since our desire is to obtain amaximal signal, we let the sine
term attain its maximum value, that is, unity, B = 1.

1 <

√
4a3

27b
. (13)

Hence, for a weak input signal b < 4a3

27 .
Thus, the values of these parameters formaximizing con-

trast enhancement or SNR (in a general sense) are taken to
be a = 2σ 2

0 and b < (4a3)/27.
However, it has been found experimentally that for the

purpose of contrast enhancement, best results are obtained
by introducing a factor-denoting image region dullness (k)
in the determination of a.

V I I . PROPOSED DSR -BASED
ALGOR ITHM FOR CONTRAST
ENHANCEMENT

The proposed algorithm performs contrast enhancement
on colored images by applying DSR iteratively on the
DCT coefficients of the image in question. The algorithm
addresses requirement of dark and low-contrast images.
The procedure comprises three basic steps.

In the first step, a block-wise DCT of input image is
computed. By using block DCT space, the localized infor-
mation can bemodified or enhanced in successive steps.We
have therefore adopted an adaptive selection of blocksize.
This step ensures that blocking artifacts are suppressed in
the output.

In the second step, areas that need different extent of
enhancement are segregated using a threshold value in the
neighborhood (blocksize) determined in the first step.

The third step is the most crucial one: the application
of DSR selectively on DCT coefficients. For example, in

a very dark image or a dull (low dynamic range) image,
enhancement operator (DSR) will be applied to the entire
image whereas in an image with high dynamic range, the
enhancement operator would be applied on selected areas
where the local brightness is below a certain threshold. This
is to accentuate features that were not visible in the input
image, without making the bright areas too bright. On such
an image, the underilluminated areas should be iterated
more than those areas that were overilluminated. This step
ensures that background illumination is adjusted and local
as well as global contrast is improved.

In order to investigate the ways in which DSR operator
modifies the transformed coefficients, and to study its effect
on preservation and enhancement of color in the enhanced
image, the algorithm, in its current form, is designed to
operate on each color band (R, G, B). The same approach
can also be extended to Y–Cb–Cr or H–S–V color spaces.
The DSR operator also works on each DCT block indepen-
dently, and therefore, can be considered suitable for imple-
mentation in parallel configuration. Optimized tuning of
parameters of DSR bistable system have been done.

A dark image has a narrow histogram (intensity distri-
bution) concentrated at the lower (darker) end of intensity
axis. A low dynamic range image also has a narrow his-
togram but may be centered anywhere across the entire
available intensity axis. An image with high dynamic range
is expected to have very dark areas along with some very
bright areas. Enhancement of such images is challenging as
most of the available algorithms enhance dark areas but at
the cost of making bright areas too bright leading to loss of
information. This aspect is dealt with remarkable efficiency
by the proposed DSR-based technique.

A) Quantitative performance metrics
For measuring the efficiency of the proposed DSR-based
technique, we need to compare its performance with other
conventional methods. For this comparison, there is a
need to quantify the quality of enhanced image. Since we
need to gauge the performance of our technique in terms
of contrast, perceptual quality as well as degree of color
enhancement while being preserved, we have chosen three
metrics F , PQM, andCEF, respectively, to characterize each
of them.

Metric of contrast enhancement (F ) is based on global
variance and mean of original and enhanced images. It
can be stated that when an image is enhanced and clearer
heterogeneity in its structure is obtained, the value of
enhancement can be characterized by variation of Michel-
son contrast index (which is given by ratio of spread and
mean image intensity) [7].Wehave therefore used a descrip-
tor called image contrast quality index, Q, such that

Q = σ 2

μ
, (14)

where σ and μ are, respectively, the standard deviation
and mean of the image. An estimate of relative contrast
enhancement factor, F , by computing ratio of values of
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contrast quality indices post-enhancement (Q B ) and pre-
enhancement (Q A). Therefore,

F = Q B

Q A
. (15)

For evaluation of perceptual quality, we have used a no-
reference metric for judging the image quality recon-
structed from the block DCT space to take into account
visible blocking and blurring artifacts, which we shall refer
to as perceptual quality metric (P QM) [38].

P QM = α + βBγ1 Aγ2 Zγ3 , (16)

where α, β , γ1, γ2, and γ3 are model parameters that were
estimated with the subjective test data as described by [40].
B is the average blockiness, estimated as the average dif-
ferences across block boundaries for horizontally and verti-
cally. A is the average absolute difference between in-block
image samples and Z is the zero-crossing rate. Accord-
ing to [25], the P QM value should be close to 10 for best
perceptual quality. Since, we are also interested to observe
the quality in terms of color enhancement, we have used
a no-reference metric called colorfulness metric (CM) as
suggested by [41]. If R, G and B be the red, green and
blue components respectively of an image, I, and let α =
R − G and β = (R + (G/2)) − B , then the colorfulness of
the image is defined as follows.

CM(I ) =
√

σ 2
α + σ 2

β + 0.3
√

μ2
α + μ2

β ,

where σα and σβ are the standard deviations of α and β .
Similarly, μα and μβ are their means. The CEF has been
defined as follows.

C E F = C M(Output)

C M(Input)
. (17)

For good color and contrast enhancement, respective values
C E F and F should be greater than 1. Codes obtained from
[42] were used to compute P QM and C E F .

B) Algorithm
The proposed DSR-based iterative algorithm for contrast
enhancement consists of the following steps.

1) Step-1 block DCT
An input image of dimension M × N is considered, and its
8 × 8 block-wise DCT is calculated. Small block size is pre-
ferred to preserve continuity in the enhanced output image
because DCT, when processed in blocks, is known to pro-
duce blocking artifacts in the processed data. However, in
areas where there is little change in luminance as well as no
sharp transitions, a larger blocksize could be used to reduce
computation. Since blocking artifacts aremore visible in the
regions where brightness values vary significantly, specially
near the edges of sharp transitions of luminance values, an

adaptive selection of blocksize has been adopted. To sup-
press the effect of artifacts, here, the DCT blocks have been
decomposed into smaller blocks, if necessary, and compu-
tations are performed on them. Later these smaller blocks
are merged into the original block size.

Adaptive blocksize forDCT: In this case, the blocks hav-
ing significant variations have been identified by examining
the standard deviations of the normalizedAC coefficients. If
the standard deviation is beyond a threshold, an 8 × 8 block
is decomposed into four 4 × 4 subblocks, and so on. This
step also creates a non-uniform grid for creating of mask
in Step-2 because the blocksize is not fixed for the entire
image. Later, the four enhanced subblocks can be combined
again to an 8 × 8 block.

2) Step-2 selection of areas for enhancement
The entire image might or might not need contrast
enhancement. There are various practical images in which
certain portions are already bright enough but certain areas
require accentuation of features that are lost due to insuf-
ficient illumination. In such images where some areas are
bright, DSR is applied to greater extent to those areas that
are dark. To locate those areas, local intensity in eachm × n
block of the image is observed and those blocks where local
brightness (mean) and contrast (variance) is observed to be
above a certain threshold are separately processed. The DC
coefficient of DCT could be used to denote average bright-
ness. These blocksizes (or neighborhood of analysis) have
been determined by the adaptive process in Step-1. Using
the bilevel thresholding technique (proposed by Chao et al.
[43]), a threshold in each neighborhood can be determined
and pixels having intensity values greater than the threshold
are separated from those below it using a binary mask. This
way, for each color band, a binary mask for separating dark
and bright regions is created. Depending on the require-
ment of the image, the bright areas have been iterated using
DSR but fewer times than the dark ones to achieve a mod-
erate overall contrast. A case of very dark image can be
considered as a special case of the above selection where the
local mean of all the blocks is below threshold and requires
enhancement.

Note: For a very dark low dynamic range image, where
maximum intensity level in the image is below graylevel 128
(in 8-bit representation) for each band, the threshold can be
taken as the maximum graylevel in each color band. This
would mean all the DCT coefficients will be processed. For
an image with under- and overilluminated areas, selection
of coefficient can be done as stated above.

3) Step-3 application of DSR
Assuming an initial value of bistable parameters �t, k, and
m, the selected DCT coefficients are tuned using DSR as
follows.

Assuming �t = 0.001-s, ai = k × 2σ0i
2, bi = m ×

(4a3
i )/27. Bistable parameters, a and b, are computed for

each block using its local variance (σ0i ).
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Here, k is a factor denoting image region dullness (given
by inverse of (var iance × dynamic range)) and m is a fac-
tor much less than 1 (to ensure that b is less than its max-
imum value, so that input is weak signal and eligible for
application on DSR).

Initializing a matrix of dimension M × N as zero.
x(0) = 0. Using the bistable DSR parameters tune the DCT
coefficients according to equation (12) as

x(n + 1) = x(n) + �t[ax(n) − bx3(n)

+ DC Tcoefficients],

where x denotes the set of tuned coefficients and n is the
iteration count. It is important to note here that the assign-
ment of DCT-block variance in computation of parameter
a follows the assumption that DCT coefficients of a low-
contrast image contain both signal information and noise
due to insufficient illumination. Since noise is inherent in
DCT coefficients, therefore, the standard deviation of inter-
nal noise can be equated to standard deviation of DCT
coefficients. Since the algorithm is framed in a block DCT
scenario, local DCT variance is considered as local noise
variance. InverseDCT is computed for the tuned set of coef-
ficients. Optimization of performance of this intermediate
output is performed with respect to bistable parameters as
follows.

4) Step-4 optimization of parameters
Optimization of parameters is done with respect to all
the performance metrics F , PQM, and CEF to make the
algorithm reach target performance. This is to ensure that
output is not only of good contrast, but also has better visual
perception along with color enhancement.

There are four main parameters controlling the DSR
operation – a, b – governing shape of double-well, �t, and
n-governing the DSR difference equation.

Value of parameter a depends on k (of the image region)
and standard deviation of DCT coefficients in local neigh-
borhood (as derived by maximization in Section VI. In
otherwords, its value is obtained from the image (and image
transform) statistics and is therefore fixed. Values of m, �t,
and n are initialized as m = 10−10, �t = 0.001, and n =
500. Initial value of F , PQM, andCEF is assumed to be 0.01.
To make enhancement algorithm give optimal results, each
of the performance metric for individual output enhanced
image is calculated and each parameter is analyzed for the
value at which maximum performance metric (F , PQM,
and CEF) is reached. As stated in Section VIIa), for best
performance, F and CEF should be as large as possible,
while PQM should be nearly 10. With these conditions on
F and CEF, and the constraint on PQM, the optimum value
of the particular parameter is chosen by linear maximiza-
tion of F and CEF, in the vicinity of PQM = 10. Then
each other parameter is optimized similarly keeping the
remaining three parameters constant.

The steps can be understood as described below:
(a) Optimize m keeping �t and n as constant (initial values
as stated above); that is, calculate F and CEF for enhanced

outputs obtained by varying values of m. Optimum value
of m is the one at which F (m) + CEF(m) is maximum for
PQM(m) ∼ 10 (say, 10 ± 1).

(b) With this value of optimum m and initial value of n,
the value of �t is then similarly optimized.

(c) With these obtained optimized values of m and �t,
the iteration count n is then similarly optimized.

Please note that though F , PQM, or CEF are not func-
tions of m, n, or �t, the notation F (m), PQM(n) etc has
been used to denote the metric value for the particular
parameter. For example, F (m) denotes that value of F
obtained from the enhanced image obtained for parameter
value of m.

The final enhanced output is the one with optimized
values ofm,�t, and n ensuring that it has best possible con-
trast enhancement, perceptual quality, and color enhance-
ment. With the above optimization process, optimized val-
ues of bistable parameters are calculated per image. The
parameters that maximizes all the performancemetrics and
minimizes trade-off are used to display final outputs.

Note: There are two regions in the image after creation
of binary mask – one that needs serious enhancement and
the other that needs to be preserved. This optimization
procedure is followed independently for both the regions.
So for each image, there are two values of k correspond-
ing to two masked regions each depending on inverse
of (variance × dynamic range) of that region. This would
ensure that the two regions are optimized differently and
enhanced as per requirement. The issue of selectively iter-
ating areas of different illumination is therefore taken care
of by the optimization. In this way, the final output image is
maximally enhanced.

V I I I . EXPER IMENTAL RESULTS

The proposed method has been tested on around forty dif-
ferent types of dark and low-contrast grayscale and colored
images. The outputs have been compared with many dif-
ferent existing contrast enhancement techniques and have
been found to give noteworthy and better contrast enhance-
ment. Performance metrics have been calculated and dis-
played for evaluation of output image quality. The best
outputs are selected by optimal values of the three perfor-
mance metrics relative contrast enhancement factor (F ),
PQM, and CEF.

Some of the test images are naturally low-contrast and
have been captured by Sony DSC H9 camera in very poor
illumination (Figs. 5(a) and 5(c)), while others have been
made low contrast by manipulation (Figs. 3(c), 6(a) and
10(a)). Some images with already dark background have
been obtained from Internet (Figs. 3(a) and 4(a)).

A) Enhancement results
It can be observed that Figs. 3(a), 4(a), 6(a) and 7(a) are low-
contrast images with certain well-lit areas in the foreground
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Fig. 3. Input image is a partially dark image with underilluminated background. Output image shows enhanced background without losing information in the
already lit area.

Fig. 4. Input is a dark and low-contrast image, (c) image is taken directly from Farbman et al. [18]. The DSR-enhanced output shows reasonable improvement in
darker regions without any artifacts.

Fig. 5. Two very dark input images taken in poor illumination: (a) colored, (c) grayscale. The DSR-enhanced output shows remarkable improvement in image
information.

but totally dark and indistinguishable features in the back-
ground. E.g. the buildings in the background of Fig. 3(a)
and trees in Figs. 7(a). Figs. 5(a) and 5(c) are dark and low-
contrast range images with dull appearance (where Fig. 5(c)
is a grayscale image). Figs. 4(c) and 3(c) are low-contrast
dull images.

For such images, by selecting a mask for each color
band after analyzing the average brightness in local neigh-
borhood, coefficients on which processing is needed are
selected and shown in Fig. 7. It is apparent that after certain
number of iterations using optimized bistable parametric
values, the dark portions are enhanced drastically while the
bright portions are affected little. It has been observed that
the enhanced output is smooth and devoid of any kind of
artifacts.

Fig. 7 shows input and enhanced images for a test image
along with the respective histograms of their color bands.
The histograms that have amajor portion toward the darker
end are found to be shifted and broadenedwith littlemodifi-
cation in the regions near the brighter end. This implies that
the local dynamic range in dark and dull areas is expanded
while that in bright areas are not greatly disturbed.

Figs. 6(c) and 6(d) show zoomed in area of Figs. 6(a) and
6(b), respectively. It can be clearly seen that many details
of the dark portions are observed to appear in the DSR-
enhanced output. Fig. 5(a) shows a naturally dark image,
captured in a dark room, that is, in very poor illumination.
Since the image is dark and its maximum intensity is less
than graylevel 128, no selectivity is required and the entire
image is processed.

Table 1 show the metrics relative contrast enhancement
factor (F ), Perceptual Quality Measure (PQM) and Color
Enhancement Factor (CEF) for three different types of input
images – dark, low-contrast and one with both over and
underilluminated areas. It is apparent that the most optimal
performance metrics are achieved by the proposed DCT-
based DSR technique in terms of visual quality, contrast
enhancement, and color enhancement.

B) Computational complexity
On an Intel Core 2 Duo CPU 3.25GB of RAM, on a
general 512 × 512 colored image, 100 iterative steps take
approximately 1.5 s. Since parameter a is derived from
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Fig. 6. (a) and (c) Input image, and zoomed-in input image. (b) and (d) enhancement image of (a) and (c).

Fig. 7. (a) Input image. (b) Enhanced output using proposed algorithm. (c)–(e) Masks formed by analysis of local neighborhood for regions. The white mask is
iterated more than the black region. (f)–(h) Histogram of RGB bands respectively of input image. (i)–(k) Histogram of RGB bands respectively of enhanced image.

Table 1. Comparative performance of the proposed technique with various existing techniques using three
performance metrics F [7], PQM [40] and CEF [25] on four input images. Fig. 3(a) has both dark and bright areas;

Fig. 4(c) is a low-contrast image while Fig. 5(a) and 10(a) are very dark images.

Dark and bright areas Low-contrast image Dark image 1 Dark image 2
(Fig. 3(a)) (Fig. 11(a)) (Fig. 5(a)) (Fig. 10(a))

Methods F PQM CEF F PQM CEF F PQM CEF F PQM CEF
DCT-based DSR 1.97 10.12 1.94 2.99 9.86 2.72 8.72 9.73 6.64 2.6 8.0 2.6
EPMD [18] 1.23 8.75 0.75 2.28 8.58 1.12 1.16 8.57 0.71 1.3 8.8 0.95
Photoshop 0.87 10.96 1.08 6.7 11.03 2.7 7.05 8.52 7.86 4.69 8.69 4.75
CLAHE [44] 0.81 10.22 1.12 2.18 10.49 1.26 2.55 9.71 3.38 1.98 7.85 2.73
Gamma 0.92 10.82 1.36 1.22 10.95 1.48 5.00 8.59 11.53 5.92 6.92 5.01
Retinex [16] 1.18 9.22 1.93 0.09 12.37 0.27 7.80 8.16 17.03 4.78 6.96 8.37
MSR [45] 0.74 10.46 1.06 0.37 11.67 0.72 1.84 9.51 7.10 1.68 7.18 2.77
MHPF [46] 1.23 9.27 1.87 0.60 11.55 0.84 8.41 8.21 16.79 5.02 9.01 7.21
MCE [26] 1.22 9.87 0.86 1.2 12.2 0.3 1.32 12.24 1.00 1.18 8.77 0.96
MCE-DRC [38] 0.98 10.40 1.00 0.7 11.9 0.3 0.94 12.37 1.02 0.97 9.01 7.21
CES [25] 1.00 10.12 1.34 1.5 11.3 0.35 1.56 11.33 1.75 1.13 8.32 1.58
DSR-SVD [10] 0.29 10.09 .029 3.08 9.71 3.09 2.41 9.89 3.22 5.23 8.40 4.62
SSR [9] 0.03 10.09 1.75 2.47 9.61 3.71 2.35 9.74 6.63 2.51 7.95 6.00
Fourier-SR [7] 1.34 13.92 1.35 0.93 10.31 1.26 1.68 1.27 11.35 0.4 8.2 0.74
Wavelet-SR [6] 3.93 12.32 2.62 2.7 8.12 1.95 5.4 8.6 5.75 5.3 7.1 5.8

the statistics of the coefficient distribution, the other two
parameters, b and �t, are calculated by linear maximiza-
tion of performance metrics. This total optimization of two
parameters takes around 40 s. In general, 100 simple DSR
iterations take around 1.5 s. If average number of optimal
iterations is around 250, then cost of computation, when

optimal parameters are known is (1.5/100) × 250 = 3.75 s.
The computation time may be reduced by defining a logi-
cal relationship between all bistable parameters (including
b and �t) and input statistics, as this may eliminate the
iterative optimization of each parameter as appears in the
current state of the algorithm.
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[9]

Fig. 8. Enhancement results on an overilluminated input image using the proposed technique and other existing enhancement techniques.

After optimized performance metrics have been com-
puted, the general computational complexity of the SR-
based algorithm on an M × N image may be stated in
terms of iteration count,n, needed for optimal performance.
The complexity of the algorithm is guided by two factors –
the iteration count and complexity of transformation. For
each iteration from 1 to n, the computation for DSR step is
O(MN), whereas that of inverse DCT step is O(MNlg N).
Since inverse transformation is done after each iteration,
total complexity including one-time DCT is O(MNlg N) +
n · O(MN + MNlg N). Although the complexities of gen-
eral histogram equalization (O(aL + bMN), where a, b:
constants, L is the number of graylevels), gamma correc-
tion (one exponentiation operation), and many other tech-
niques are relatively less than the SR-based algorithm, the
superior and optimal overall performance of the SR-base
algorithm makes it suitable for applications to dark image
enhancement.

C) Comparison with other techniques
The response of the proposed technique has been com-
pared with other image enhancement techniques and has

been shown in Figs. 8, 9, 10 and 11. In spatial domain,
comparisonwith contrast limited adaptive histogramequal-
ization (CLAHE) [44], gamma correction (Gamma), single-
scale retinex (Retinex) [16], multiscale retinex (MSR) [45],
modified high-pass filtering (MHPF) [46], edge-preserving
multiscale decomposition (EPMD) [18] has been done.
Additional comparison for SR-based techniques in spatial
domain, using suprathreshold SR (SSR) [9], and dynamic
SR on singular values (DSR-SVD) [10] has also been made.
In transform (DCT) domain, multicontrast enhancement
(MCE) [26], multicontrast enhancement with dynamic
range compression (MCEDRC) [38], color enhancement by
scaling (CES) [25], SR in Fourier domain (Fourier-SR) [7],
and SR in wavelet domain (Wavelet-SR) [6] have been used
for comparison. Since the proposed technique is an auto-
matic algorithm, a comparison has been made with outputs
of “Auto Contrast” control of Adobe Photoshop C S2. The
medium detail of edge-preserving multiscale decomposi-
tion [18] was used as obtained from [47]. Out of the many
outputs of CES [25], the one obtained using mapping func-
tion τ(x) with suppression of blocking artifacts was chosen
for comparison from the code obtained from their web-
site [41]. Techniques reported by [6, 7] have been designed
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Fig. 9. Enhancement results on a low-contrast input image using the proposed technique and other existing enhancement techniques.

for only grayscale images, and selects parameters by experi-
mentation in a range of values of a and b. Here, the same
approach has been applied to value vector of HSV color
model. Implementation of this experimental selection is
computationally extensive and there is no clear mention of
values of other parameters �t and added noise variance.
Therefore, we cannot claim that this is the best possible
output of the techniques reported in [6, 7].

• The proposed DCT-based DSR technique has been found
to give noteworthy contrast enhancement when com-
pared with enhanced output using other existing tech-
niques. In the output obtained from existing enhance-
ment techniques, the brighter portions are observed to
be brightened beyond sensible enhancement and there is
loss of information in those areas. This loss is not sig-
nificant in the output of the proposed technique. When
compared with the results of edge-preserving multiscale
decomposition, the color vectors are observed to be

more enhanced although the details are only moderately
enhanced (Fig. 11(n)).

• One of the most striking property of the proposed DSR-
based technique is the enhancement of very dark images
(Fig. 5). The grayscale values of even very dark regions
(nearly zero) can be modified to remarkably enhance the
details of the image. This leads to very high F and CEF
values. This property is not observed in any other existing
techniques.

• The performance values have been tabulated in Table 1.
It is clear from the values that the proposed DSR–DCT
technique reaches contrast enhancement factor (F ) val-
ues higher than most of the techniques for all types of
images. Similarly, as stated in Section VIIA), PQM should
be close to 10 for best perceptual quality. On darker images
and images with bright and some very dark areas also,
the DSR–DCT technique keeps its value closest to 10 sig-
nifying better perceptual quality than most of the other
techniques. Among the compared techniques, DSR–DCT
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Fig. 10. Enhancement results on a very dark input image using the proposed technique and other existing enhancement techniques. Input image (a) has beenmade
low-contrast by contrast/brightness reduction in the original image.

clearly gives better or comparative color information than
others on all types of images especially for dark images.
The poor performance of DSR–SVD and SSR (for dark
images) on Fig. 3(a) is primarily due to the fact that these
algorithms have not been designed to operate on local
neighborhood and therefore cannot process images with
both dark and bright areas with high efficiency. DSR–
DCT is also observed to reach much higher contrast and
CM than most of the other SR-based techniques. For
dark images, although greater values of color enhance-
ment are observed for retinex and modified HPF, but the
corresponding perceptual quality is low. The DSR-based
DCT technique is found to give remarkably high value
of all performance metrics. The DFT and DWT-based
approaches presented by Rallaban di et al. [7] seems to
introduce a useful concept formedical imaging, but donot
appear to work very well for real-life dark-colored images.
Proposed DCT-based DSR technique gives performance

comparable to that obtained bywavelet-based SR [7]mak-
ing certain modifications in the reported algorithm.

It may, therefore, be observed that though some of
other techniques reach higher values of F , and/or CEF,
they lack in the quantitative PQM. An optimal combi-
nation of all three metrics is required for considering
a technique more suitable for image enhancement. The
limitations of DCT-based algorithm, as observed in its
underperformance against some of the techniques, may
be improved by a more suitable selection of parameters,
the research forwhich is still in progress. The performance
metrics, F and CEF, from the algorithm may further
be increased if the constraint on PQM is made more lax
(but at the cost of quantitative loss of visual quality). How-
ever, if the PQM calculation model is suitably modified
for its applicability only to dark and low-contrast images,
even a strict constraint on its value might lead to better
overall performance.
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Fig. 11. Enhancement results on a very dark input image using the proposed technique and other existing enhancement techniques.

I X . GENERAL D ISCUSS ION

Various aspects of the proposed technique and their impli-
cations have been discussed in this section.

A) Optimization characteristics of bistable
DSR parameters
An example of characteristics of m, �t, and n (initially
assumed value of m = 10−10, �t = 0.001, and n = 500)
w.r.t. contrast enhancement factor (F ) (as explained ear-
lier in the algorithm) has been displayed in Fig. 12 for
three kinds of test images. Similarly, the corresponding
graphs for other performance metrics were also obtained.
It is important to note here that optimized selection of any
parameter can be done only after corresponding character-
istics of the parameter with respect to CEF and PQM have
been obtained. The values of the bistable system parameters
play a crucial role in the process of contrast enhancement
using DSR. The local contrast of local neighborhood is also
enhanced by taking block DCT since bistable parameters a
and b are obtained for each block independently from the
block’s local variance. The expression for SR on any data
set contains additive terms of multiples of k and subtractive
term of multiples of m (equation (12)). From the DSR itera-
tive equation (12), it is apparent that for an image that is very
dark and has low dynamic range require larger values of k
to reach sensible contrast quality in fewer iterations while
those that are relatively less dark and cover an appreciable
graylevel range require smaller values of k for the proper
enhancement. The opposite is true for m.

Therefore, it can be suggested that k is inversely pro-
portional to overall variance (signifying contrast of input
image) and dynamic range of the input image. It can be

shown by observing the statistics of transformed coeffi-
cients of input image that value of k is a non-linear inversely
proportional function of variance and dynamic range. We
therefore consider value of k as the inverse of variance ×
dynamic range relation.

Optimization of m has been done on a logarithmic scale
due to a large range of experimental values, so that it is
comparable with k. The objective is to obtain an optimized
value of a factor with which b should be multiplied, so that
it is less than 4a3/27 (to ensure subthreshold condition).
Fig. 12(a) shows that for a dark image optimum m lies in
the lower end, whereas for low-contrast image it lies in the
middle range.

Values of�t have been observed to affect number of iter-
ations similar to that of k. It plays the role of an initial step
size for tuning. If �t is chosen to be large, it would take
fewer iterations but it would limit the refinement leading to
poor tuning. This is why a very small value of �t is desired
and so it has also been optimized. Range of optimum value
of �t is 0.01–0.055.

B) Role of internal noise
Additive noise can be used in the DSR iterative equation
but it increases the ambiguity of the system as the system
already consists of noise in the form of low illumination.
The nature of DCT coefficients is itself Gaussian-like and
hence can be considered to be having nature of white Gaus-
sian noise [48]. Externally added noise could also be used
but it increases the ambiguity of the system as the system
already contains noise in the form of low illumination. It
is also known that the two types of noises – internal and
additive – in an SR system should be similar in distribu-
tion [49]. Now since investigation of additive gaussian noise
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Fig. 12. (a)–(c) Variation of relative contrast enhancement factor F w.r.t. parameters m, �t and iteration count n. Similar graphs for CEF, and PQM are also
obtained. The value of parameter near P QM ∼ 10 at which maximum F + CEF is obtained is chosen as optimum parameter value.

has been performed on fourier coefficients (that themselves
have a mixture of Gaussian distribution) by [7], it indi-
cates that internal noise inherent in frequency coefficient
distribution too has a near Gaussian nature. Similarly, for
DCT coefficients, the internal noise can be considered to
be inherent in the coefficients and can be scaled iterative
instead of adding external noise of similar distribution.
Owing to inherent noisy nature of the frequency transform
coefficients of a low contrast image, we preferred to pur-
sue behavior of DSR on these coefficients. The nature of
performance metrics is observed to be analogous to SNR
of a bistable system. Iterative processing increases (scales)
the internal noise inherent in the image. The performance
metrics are observed to reach amaximumafter certain opti-
mum number of iterations and start decreasing as iteration
increases beyond optimum. This is because the iteration
count is directly proportional to the internal noise. This
behavior is similar to addition of external noise in a gen-
eral DSR bistable system where SNR is maximum at some
optimum amount of additive noise.

C) Suppression of blocking artifacts
The adaptive selection of blocksize addresses two problems.
The first is to suppress blocking artifacts introduced due
to DCT. The second is related to preserving the continu-
ity between the dark and bright portions after processing.
Since selection of areas for enhancement is done based on
per block intensity and contrast, this can create a problem
of boundary continuity between the more processed and
less processed blocks in the output. To reduce this problem,
block size needs to be adaptively reduced in areas of sharp
discontinuities. Thus, it serves a twofold purpose.

D) Preservation of color information
Preservation of colors implies that in the RGB color space
the color vector of a pixel in the processed image has the
same direction as that in the original. As we know that
the DCT transform has a property of energy compaction.
Therefore, most of the energy resides within a small range
of the coefficients. The variation in coefficient values in each

Table 2. Color preservation metrics
showing similarity between Hue, P S N RHue

(db), Saturation, P S N RSat (db), and
subjective visual score, MO S .

Image P S N RHue P S N RSat MO S

Fig. 3(b) 17.7 21.2 8.5
Fig. 3(d) 14.9 4.9 9.5
Fig. 4(b) 19.6 21.6 9.5
Fig. 4(d) 13.7 7.2 9.0
Fig. 5(b) 10.7 8.7 9.3
Fig. 6(b) 15.7 10.7 9.0
Fig. 7(b) 12.35 6.4 8.8

band with successive iterations is such that the processed
color vector is parallel to original RGB vector.

The color preservation is implicit in the algorithm
and has been validated by calculating the peak-signal-to-
noise ratio (P S N R) of Hue, (P S N RHue), and saturation,
(P S N RSat), respectively for each of the test images. A sub-
jective score based on visual appearance, mean opinion
score (MO S), on a scale of 1–10 obtained from ten peo-
ple, was also computed. It can be seen in Table 2 that values
of P S N R for almost all the outputs is greater than 12 dB,
indicating less mean-square error between hue of enhanced
images and original images. The subjective score for images
that are very dark is low owing to difficulty in perceiving the
hue of an object from a dark image. It has been observed to
be high for all the other images.One important thing to note
from this data is that the saturation mean-square error is
found to be more, implying significant modification of sat-
uration vector of the images. This is precisely why there has
been noteworthy color enhancement in the images due to
DSR processing, as the colors have been slightly more sat-
urated displaying increased colorfulness. For all the color
bands (RGB), iteration count is same and large. So the aver-
aged pixel value corresponding to RGB bands gives true
color information due to this proportionate increment in
coefficient value. Thus, there is no color-shift in the out-
put color-vector. Similar results can be obtained by appli-
cation of DSR only on luminance and leaving chromatic
vectors untouched.
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X . CONCLUS IONS

In this paper, a novel technique using DSR in DCT domain
for the enhancement of low contrast and dark images has
been proposed. The unique feature of this technique is
that it tunes the DCT coefficients according to the bistable
double-well system parameters a and b and utilizes internal
noise due to lack of illumination of a low-contrast image.
The DSR iterative process on the noisy (low contrast) coef-
ficients enhances the image energy, that is, low-contrast
image transits into enhanced state, in analogy with inter-
well transition of a particle in a bistable double-well system.
The performance of the proposed technique has been eval-
uated after optimization of the bistable parameters so that
the output has maximum enhancement and least iteration
count. The DCT-based DSR technique is found to enhance
very dark as well as low-contrast images very effectively
with negligible loss of information at the already bright
areas (unlike most of the existing image enhancement tech-
niques). It is an automatic process that not only adjusts
background illumination, but also improves the contrast
while preserving and enhancing color information. There-
fore, it can be inferred that the proposed DCT-based DSR
technique gives remarkable performance over the exist-
ing image enhancement techniques in terms of contrast
enhancement, visual information, color enhancement, and
preservation. It can be considered highly suitable on colored
as well as grayscale images of varying dynamic ranges.
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