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overview paper

Voice conversion versus speaker verification:
an overview

zhizheng wu1,2,† and haizhou li1,3

A speaker verification system automatically accepts or rejects a claimed identity of a speaker based on a speech sample. Recently,
a major progress was made in speaker verification which leads to mass market adoption, such as in smartphone and in online
commerce for user authentication. A major concern when deploying speaker verification technology is whether a system is
robust against spoofing attacks. Speaker verification studies provided us a good insight into speaker characterization, which has
contributed to the progress of voice conversion technology. Unfortunately, voice conversion has become one of the most easily
accessible techniques to carry out spoofing attacks; therefore, presents a threat to speaker verification systems. In this paper, we
will briefly introduce the fundamentals of voice conversion and speaker verification technologies. We then give an overview of
recent spoofing attack studies under different conditions with a focus on voice conversion spoofing attack. We will also discuss
anti-spoofing attack measures for speaker verification.
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I . I NTRODUCT ION

A large number of physical or behavioral attributes,
which are distinctive,measurable characteristics to describe
human individuals, have been investigated for biometric
recognition. Speaker verification, also called voice biomet-
rics, is among the most popular biometrics in smartphone
[1] or telephony applications where voice service is pro-
vided. The task of speaker verification is to automatically
accept or reject an identity claim based on a speech sample
provided by a user.

Just like any other means of biometrics, an automatic
speaker verification (ASV) system is not only expected to
be accurate for regular users, but also secure against spoof-
ing attacks. As discussed in [2], possible spoofing attack
happens at two points: sensor level and transmission of a
sensed signal. At the sensor level, an adversary, that we call
an impostor, could deceive the system by impersonating a
target speaker at the microphone, or replace the acquired
voice signal by a synthetically generated signal or imitated
voice at the transmission time. In general, spoofing attack is
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to use a falsifying speech signal as system input for feature
extraction and verification; therefore, presenting a threat
to speaker verification systems. In this paper, an impostor
means a zero-effort impostor who spoofs a system without
relying on any technology, while we call a non-zero-effort
impostor as attacker, who uses voice conversion or other
technique to mimic the target speaker.

As digital recording has become widely accessible, replay
attack is the simplest way to deceive a speaker verification
system. Replay attack involves repetition of a pre-recorded
speech sample or a sample created by concatenating basis
speech segments from a given target speaker. Indeed, replay
attack has been shown to be an effective way to spoof text-
independent speaker verification (TI-SV) systems which do
not impose constraints on linguistic content [3, 4]. How-
ever, if the replayed content is different from the specific
pass-phrase required by a text-dependent speaker verifica-
tion (TD-SV) system, it does not pose a threat unless the
attack is able to acquire the target speaker’s voice for that
specific pass-phrase as assumed in [5].

Aside from replay attack, human voice mimicking or
impersonation has also received considerable attention
[6–8]. As impersonation requires special skills, it is difficult
to judge its effectiveness as a general spoofing technique.
Partial evidence, however, suggests that humans are most
effective in mimicking speakers with “similar” voice char-
acteristics to their own, while impersonating an arbitrary
speaker appears challenging [6]. Professional voice mimics,
often voice actors, tend to mimic prosody, accent, pronun-
ciation, lexicon, and other high-level speaker traits, rather
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than spectral cues used by automatic systems. Therefore,
human voicemimicking is not considered as a cost-effective
adversary to speaker verification systems.

Speech synthesis represents a much more genuine threat.
Owing to the rapid development of unit selection [9], sta-
tistical parametric [10], and hybrid [11] methods, speech
synthesis systems are now able to generate speech with
acceptable quality as well as voice characteristics of a given
target speaker, such as spectral cues. In early studies [12–
14], vulnerability of text-prompted hidden Markov model
(HMM)-based speaker verification was examined using a
small database of 10 speakers. More recently, [15] used a
flexible adapted HMM-based speech synthesis system to
spoof TI-SV systems on a corpus of around 300 speak-
ers. Although HMM-based synthesis poses a threat espe-
cially to TD-SV system, usually hours of training speech
are needed to train a speech synthesis system of reasonable
quality. Even an adapted HMM-based speech synthesis sys-
tem requires a significant amount of speakers’ data to train
an average voice model for target speaker adaptation [16].
Therefore, it is not as straightforward as people think to use
HMM-based speech synthesis to impersonate someone’s
voice.

Different from replay attack, human voice mimick-
ing and speech synthesis, voice conversion transforms one
speaker’s (source) voice to sound like that of another
speaker (target) without changing the language content.
Keeping the language content unchanged, the conversion
technique works in two ways, one is to change the source
voice to sound differently – to disguise oneself; the other is
to change the source voice to sound like a target voice – to
mimic someone else. As real-time voice conversion not only
is possible, but also offers voice quality and characteristics
that even human ears cannot distinguish easily, it presents a
genuine threat to both text-dependent and TI-SV systems.

In summary, human voice can be seen to have three
attributes, language content, spectral pattern, and prosody.
The individuality of human voice is described by the spec-
tral patterns, called voice quality or timbre, and by the
prosodic patterns carried by the speech. Human voicemim-
icking typically modifies the prosodic patterns while voice
conversionmodifies both spectral and prosodic patterns. As
it is more reliable to characterize speakers by their spectral
cues [17], most of the state-of-the-art speaker verification
systems are built to detect the difference of spectral patterns.
In this paper, we will focus on the voice conversion spoof-
ing attacks, and review the most recent research works on
voice conversion, speaker verification, spoofing attack, and
anti-spoofing attack techniques. A general review on spoof-
ing and anti-spoofing for speaker verification can be found
in [18].

The rest of this paper is organized as follows. In
Section II, an overview of voice conversion techniques is
presented, and in Section II, we will briefly review the state-
of-the-art speaker verification techniques and discuss the
weak links of speaker verification. Spoofing attack and anti-
spoofing attack studies are reviewed in Sections IV and V,
respectively. The paper is concluded in Section VI.

I I . VO ICE CONVERS ION
TECHN IQUES

Human voice conveys not only language content but also
speaker individuality. From the perspective of speech per-
ception, speaker individuality is characterized at three
different levels: segmental, supra-segmental, and linguis-
tic information. The segmental information relates to the
short-term feature representations, such as spectrum and
instantaneous fundamental frequency (F0). The supra-
segmental information describes prosodic features such
as duration, tone, stress, rhythm over longer stretches of
speech than phonetic units. It is more related to the signal
but spanning a longer time than the segmental informa-
tion. The linguistic information is encoded and expressed
through lexical words in a message. Since each speaker has
his/her own lexical preference, the choice of words and sen-
tence structures, the same linguistic information can be
conveyed by different people in different ways.

Voice conversion technology is to deal with the seg-
mental and supra-segmental information while keeping the
language content unchanged. In particular, the objective of
voice conversion is to modify one speaker’s voice (source)
to sound like another speaker (target) without changing the
language content.Mathematically, voice conversion is a pro-
cess to learn a conversion function F(·) between source
speech Y and target speech X, and to apply this conversion
function to a source speech signal Y at runtime in order
to generate a converted speech signal X̂. This process is
formulated as follows:

X̂ = F(Y). (1)

Figure 1 presents a typical voice conversion framework,
which consists of off-line training and runtime conversion
processes. During off-line training, features, which charac-
terize the speaker individuality, in the form of parameter
vectors are first extracted from source and target speech
signals. Then, each source feature is paired up with one tar-
get feature, which is called frame alignment, to establish
the source–target correspondence. The frame alignment is
usually achieved through dynamic time warping for paral-
lel data [19], or through some advanced frame alignment
techniques for non-parallel data [20]. Finally, a conversion
function is estimated from the source–target feature pairs.

At runtime, the conversion function is employed to the
features extracted from source speech, and then the con-
verted feature vector sequence is passed to a synthesis filter
to reconstruct an audible speech signal. Next we discuss fea-
ture extraction and the estimation of conversion function in
a greater detail.

A) Feature extraction
In voice conversion, we consider two levels of features,
namely short-term spectral and prosodic features, that cor-
respond to the segmental and supra-segmental information.

Short-term spectral features are to represent the spec-
tral attributes that relate to voice timbre. Mel-cepstral
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Fig. 1. Diagram of a typical voice conversion system.

coefficients (MCCs), linear predictive cepstral coefficients
(LPCCs), and line spectrum frequency (LSF) are the pop-
ular short-term spectral features to represent the spectral
envelope for voice conversion. The dynamic features, such
as delta and delta–delta features, can also be employed to
capture the speech dynamics to generate converted speech
of better quality. Formant feature is another kind of short-
term feature representation to describe the vocal tract, and
has been employed in some voice conversion systems.

Prosodic features also include significant speaker indi-
vidualities. Intonation, duration, and intensity are typical
prosodic features. Intonation represents the fundamental
frequencies contour over a longer time, and describes the
tones of syllables as well as the accent of a speaker.

B) Conversion function
Spectral mapping and prosodic conversion map the seg-
mental and supra-segmental information, respectively,
from one speaker to another. We next discuss these two
forms of conversion functions.

1. Spectral mapping
The spectral mapping methods can be roughly grouped
into three categories: statistical, frequency warping, and
unit-selection methods.

In the statistical methods, the relationship between
source and target features is established through parametric
models. They are used to implement the conversion func-
tion to map source feature into target feature space. Vector
quantization (VQ) is a simple and straightforward map-
ping method, which was proposed in [21]. This method
implements a codebook from the paired source–target fea-
tures. The codebook is used to find the corresponding tar-
get vector for each source feature vector. Some statistical
models have been proposed to improve the VQ method.

The Gaussian mixture model (GMM) [22–24], partial
least-squares regression [25], and trajectory HMM [26] are
good examples that assume a linear relationship between
the source and the target features. Assuming a non-linear
relationship between the source and target speech features,
researchers studied another group of methods, such as arti-
ficial neural network [27–31], support vector regression [32],
and kernel partial least-squares regression [33].

In the statistical methods, the conversion function is
formulated from the parametric representations of the spec-
trum without following a physical principle. Therefore,
the statistical averaging effect, which reflects the central
tendency of speech features, could introduce oversmooth-
ing [24, 34, 35]. Frequency warping methods take the
physical principles into consideration and aim to warp the
frequency axis of the amplitude spectrum to the source
speaker to match that of the target speaker [36–41]. In this
way, the frequency warping methods are able to keep more
spectral details and produce high-quality converted speech.
The basic frequency warping methods only consider shift-
ing the frequency axis without taking the amplitude into
consideration. To bridge this gap, an amplitude scaling tech-
nique was proposed in [39] to enhance the conversion per-
formance. Although frequency warping methods are able
to produce high quality converted speech, the similarity
between converted and target speech of frequency warping
methods is not as good as generative methods as reported
in [40].

Generally speaking, the statistical parametric and fre-
quency warping methods attempt to modify the speaker
characteristics. Unlike these methods, unit-selection meth-
ods utilize original target speaker’s feature vectors to con-
struct the converted [42–44]. This idea is inspired by the
unit-selection for speech synthesis [9]. In voice conversion,
as training data are limited, the basic unit generally spans
only one [42, 43] or several frames [44].
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2. Prosodic conversion
Prosodic conversion relates to the prosodic features, such as
fundamental frequency, intonation, and duration. Themost
simple and common approach is to normalize themean and
variance of the (log-)F0 distribution of the source speaker
to those of the target speaker. This approach operates on
instantaneous F0 value and only changes the global level
of the F0 as well as the F0 range. However, the target voice
takes the sameduration and intonation pattern as the source
voice.

Some attempts have been made to extend the mean-
variance normalization (MVN) approach, such as higher-
order polynomial [45], piecewise linear transformation [46],
and GMM-based mapping [47, 48]. These approaches also
operate on the instantaneous F0, and work well if the source
and target speakers have “similar” intonation patterns.
Instead of operating on instantaneous F0, more advance
methods were proposed in [45, 47, 49, 50] to convert into-
nation patterns directly at syllable level or even longer seg-
ments. These methods usually require manually labelling
the intonation boundaries.

In addition to the F0/intonation conversion, duration
conversion was proposed in [51–54]. Duration is related
to the rhythm and tempo in a speech signal, and is one
of the important factors to describe speaker individuality.
In [51], duration-embedded Bi-HMMs were proposed to
convert spectral attributes and duration simultaneously. Bi-
HMMs mean parallel source-target HMMs capturing the
source and target features. In [52], a probabilistic model
was proposed to deal with two different length utterances,
where the frame alignment between source and target fea-
ture sequences was represented through hidden variables. A
similar idea was presented in [54] to simultaneously convert
duration and spectrum. In [53], the syllable-level duration
was converted through maximum-likelihood linear regres-
sion (MLLR), and relaxed the requirement of parallel data.

3. Summary
In general, spectral/prosodic mapping techniques are to
match the spectral/prosodic attributes of the target speaker
given the source speaker’s spectral/prosodic features. As
discussed above, a large number of approaches have been
proposed aiming to improve the quality of voice conversion.
Here we are more interested in the effectiveness of voice
conversion methods for spoofing attacks.

From the perspective of spectral mapping, both statis-
tical and frequency warping methods are flexible when
the training data are limited, while unit-selection methods
are expected to achieve better performance when sufficient
data, for example 30 min speech, are available. In the sta-
tistical methods, the maximum-likelihood Gaussian mix-
ture model (ML-GMM) with dynamic feature constraint
method [24] and the dynamic kernel partial least-squares
method (DKPLS) [33] are two popularmethods that achieve
stable performance with different amount of training data.
In particular, the ML-GMM method is a well-established
baselinemethod in the voice conversion research. In the fre-
quency warping methods, the weighted frequency warping

with amplitude scaling (WFW-AS) has been reported to
achieve comparable performance to ML-GMM in terms
of speaker similarity [39]. Hence, ML-GMM, DKPLS,
and WFW-AS could be good choices to simulate voice
conversion spoofing attacks when the training data are
limited, although not all of them have been applied to
spoofing attacks.

In prosodic conversion, the conversion of intonation pat-
tern requires manually labeling of intonation boundaries
and patterns as well as a large amount of training data. The
most practical way is to do mean and variance normaliza-
tion on F0 values.

I I I . SPEAKER VER I F ICAT ION
TECHN IQUES

The objective of a speaker verification system is to automat-
ically accept or reject a claimed identity S of one speaker
based on just the speech sampleX = {x1, x2, . . . , xt , . . . , xT }
[17]. This verification process is illustrated in Fig. 2 and is
formulated as a hypothesis test:

�(X) = p(X|λH )

p(X|λ
˜H )

, (2)

where λH is the model parameters of hypothesis H that the
speech sample X is from speaker S , and ˜H is an alternative
hypothesis that the speech sample is not from the claimed
identity S . The likelihood ratio (or likelihood score) �(X)

is used to decide which hypothesis, H or ˜H , is true based a
pre-defined threshold.

In this section, we will briefly describe the state-of-the-
art techniques in speaker verification systems that relate to
voice conversion spoofing attacks. The techniques include
feature extraction to obtain representations for the speech
sample X and the speaker modeling for the models λH

and λ
˜H . More general overviews or tutorials on speaker

verification can be found in [17, 55–60].

A) Feature extraction
In Section II, we consider three levels of information,
namely segmental, supra-segmental, and linguistic infor-
mation that describe speaker individuality, correspond-
ingly, there are three level of features to characterize the
individuality of speakers: spectral, prosodic, and high-level
features [17]. All the three levels of features are generally
used in ASV.

Fig. 2. Diagram of a speaker verification system.
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As speech signals are not stationary, shiftingwindows are
generally applied to divide speech signals into short-term
overlapping segments with about 20–30ms. The short-term
spectral features, such as mel-frequency cepstral coeffi-
cient (MFCC), LPCC, LSF, and perceptual linear predic-
tion (PLP), are generally extracted from the short-term
speech segments. The short-term dynamic features, such
as delta and delta–delta coefficient of these short-term fea-
tures, are usually computed to take the speech dynamics
into account. Different from short-term spectral features,
temporal modulation features are another types of spectral
features that extracted from multiple consecutive spectral
segments [61, 62].

Prosodic features, such as intonation, intensity, and
duration, are corresponding to the supra-segmental infor-
mation. Prosodic features have been adopted in speaker
verification in [63–66]. Although these features are usu-
ally more robust than short-term features in face of
channel variations, the extraction of these features are
also affected by noise. For example, the fundamental fre-
quency cannot be well estimated in noise environment,
and as such the accuracy of intonation pattern will be
affected.

High-level features, such as phoneme, pronunciation,
and the choice of words in conversation, are more related to
lexical information. These features are more robust against
noise comparing with other levels of features. However,
they rely on other sophisticated techniques such auto-
matic speech recognition, thus they are more difficult
to use.

Recognizing the high effectiveness of short-term spec-
tral features, most of the speaker verification systems adopt
short-term spectral features in the implementation.

B) Speaker modeling
There are two kinds of speaker verification systems: TI-SV
and TD-SV systems. TD-SV assumes cooperative speakers
and requires the speaker to speak fixed or spontaneously
prompted utterances, whereas TI-SV allows the speaker to
speak freely during both enrolment and verification. Both
TI-SV andTD-SV systems share the feature extraction tech-
niques, while differ in the speaker modeling.

1. Text-independent modeling
The modeling techniques for TI-SV can be grouped into
three categories: generative, discriminative, and fusion
models. Generative models focus on modeling the feature’s
distribution of a target speaker. The GMM [67], joint factor
analysis (JFA) [68, 69], and probabilistic linear discrimi-
nant analysis (PLDA) [70] are typical generative models.
GMMhas been used intensively to model the feature distri-
butions, and GMM with the universal background model
(UBM) is the classic method in building speaker verifi-
cation systems [67]. In the GMM–UBM method, speech
samples from a large number of non-target speakers are first
employed to build a speaker-independent UBM, and then
the target speaker’s samples are adopted to adapt the UBM

to estimate a speaker-dependent GMM. During runtime,
the target GMM and the UBM are used as hypothesized
speaker model λH and the alternative speaker model λ

˜H,
respectively.

JFA and PLDA, a latent variable model, are more
advanced generative models, explicitly model the chan-
nel and speaker variabilities jointly. The JFA works within
the GMM mean supervector space, whereas PLDA models
the channel and speaker variabilities within i-vector space.
An i-vector is a low-dimensional set of factors to repre-
sent speaker and channel information via factor loadings,
also called total variability [71]. In both JFA and PLDA,
a large number of additional data are required for esti-
mating the speaker and channel variabilities, or the total
variability.

Unlike generative models, discriminative models do not
attempt to model the feature distributions, but to focus
on the difference between the hypothesized speaker model
and the alternative speaker model. Support vector machine
(SVM) is a type of discriminative model that can be used
together with the GMM–UBM or the i-vector framework.
In [72], GMM mean supervectors are used as features to
estimate an SVM classifier, and in [73], SVM is combined
with the i-vector framework. Other SVM-based approaches
were also proposed, such as SVM with score-space ker-
nels [74]. In the context of SVM modeling, nuisance
attribute projection (NAP) [75, 76] and within-class covari-
ance normalization (WCCN) [77] techniques are proposed
for channel compensation. Other discriminative models
such as neural networks [78–85] have also been employed
in speaker verification.

The fusion approach is trying to fuse multiple sub-
systems into one to benefit from multiple “experts”. In the
generative and discriminative models, they attempt to build
an individual system, and in practice it is not enough to
build just one single strong system. Such a fusion model
assumes that individual systems are able to capture differ-
ent aspects of a speech signal, and provide complimentary
information for each other. Each individual system can
involve different kinds of features or different level of fea-
tures, and can also employ different modeling techniques.
Although fusion usually takes place at the score level across
subsystems [86–88], there are also ways to fuse the features
or speaker models [88].

2. Text-dependent modeling
Different from the text-independent speaker modeling,
text-dependent systems not only model the feature’s dis-
tribution, but also model the linguistic information such
as phonetic and prosodic patterns. For example, text-
dependent systems use HMMs and other techniques that
are developed in automatic speech recognition to cap-
ture the supra-segmental and linguistic features in the
pass-phrases. In terms of decision strategy, text-dependent
systems share the similar system architecture with that
of text-independent systems (see Fig. 2). More on text-
dependent modeling or classifiers can be found in [60].
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C) Vulnerability of speaker verification to
voice conversion
As discussed above, a speaker verification system makes a
decision based on the feature distributions through speaker
modeling. The feature extraction and speaker modeling
modules are hence the two most important components.
Accordingly, there are two classes of weak links, one in
feature extraction and the other in speaker modeling.

From the perspective of feature representation, it is
known to the public that speaker verification systems use
spectral, prosodic, and linguistic features. Thus, speaker
verification systems may be vulnerable to the attackers that
can manage to mimic those features. On the other hand,
voice conversion can modify or mimic all the three levels
of features that are also used in speaker verification. Given
a sequence of features Y from an attacker, voice conver-
sion technology can project the attacker’s features to the
target speaker’s feature space through themapping function
X̂ = F(Y), and in this way, the speaker verification systems
can be deceived by the generated target features X̂.

The spectral and prosodic features are popular fea-
tures used in speaker verification. In particular, due to
the simplify and robust performance, the spectral features
are widely used in practical implementation. As discussed
in Section A, MFCCs, LPCCs, and LSFs are the popu-
lar features to describe the spectral attributes, while F0,
intensity, duration, and intonation are shared by a large
range of speaker verification systems to represent prosodic
attributes. On the other hand, those spectral and prosodic
features are also involved in voice conversion. Therefore,
knowing how spectral or prosodic features are used in a
speaker verification system, one is able to devise a spec-
tral prosodic mapping that generates spectral or prosodic
features to deceive a speaker verification system.

There are also weak links from the linguistic or high-
level feature aspects. In the TD-SV case, it is possible for
the attacker to obtain the exact pass-phrase information in
advance, while for the TI-SV case, the attacker can either
familiarize the choice of words and speaker style of the
target speaker in advance or speak freely, as TI-SV sys-
tems do not have any constraint in the language content for
verification.

From the perspective of speaker modeling, most of the
systems use a GMM as the basis to model feature dis-
tributions. Such an implementation ignores the temporal
structure of speech, which also reflects the speaker indi-
viduality. On the other hand, voice conversion systems are
good at performing frame by frame conversions. In this
way, the loss of temporal structure modeling in speaker ver-
ification is a weak link to spoofing attacks. Studies have
shown that HMM-based speaker verification systems that
capture the temporal structure are more resilient than those
without temporal constraint in the face of voice conver-
sion spoofing attacks [89]. But we need to note that the
latest voice conversion systems, such as duration embed-
ded HMM [51] and trajectory HMM [26]-based systems,
are designed to transfer the temporal structure of speech
from source to target speaker. Hence, whether temporal

Fig. 3. Illustration of a voice conversion spoofing process, in which an attacker’s
voice is modified by a voice conversion system and then passed to a speaker
verification system for verification.

modeling techniques can provide some protection to voice
conversion spoofing remains an open question.

I V . SPOOF ING ATTACK STUD IES

With voice conversion as in equation (2), we modify the
source speech Y to sound like that of a target speaker
X , and this presents a threat to speaker verification sys-
tems. Figure 3 illustrates a general voice conversion spoofing
attack process.

As a spoofing attack study involves both voice conversion
and speaker verification, we look into three areas:

(a) The practicality and effectiveness to use voice conver-
sion to make a spoofing attack.

(b) The vulnerability of speaker verification systems under
voice conversion attacks.

(c) The design of a realistic data set for voice conversion
attack experiments.

A) Evaluation metrics
In speaker verification, the decision of a test sample or a
trial belongs to one of the four categories as presented in
Table 1. If the speaker identity of the test sample matches
that of the hypothesizedmodel or the claimed speaker, then
we call it a genuine test; otherwise, an impostor test. If a
genuine test is rejected as an impostor, then it is a miss
detection or false rejection decision; similarly, if an impos-
tor test is accepted as a genuine speaker, then it is a false
alarm or false acceptance. The equal error rate (EER) is a
common evaluationmeasure to balance the false acceptance
rate (FAR) and the false rejection rate (FRR). The EER is
one of the popular criterion to optimize speaker verification
systems.

In the voice conversion spoofing scenario, an attacker
attempts to use voice conversion technology to modify
his/her voice to sound like a target genuine speaker in order
to deceive a speaker verification system. The purpose of
voice conversion spoofing is to fool speaker verification
systems as a result to increase FARs. Thus, the FAR is a
good vulnerability indicators of speaker verification sys-
tems under voice conversion attacks. In the experiments,
if the genuine trials are kept the same, the increase in the
FARs will result in an increase in the EERs. Therefore, it
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Fig. 4. Illustration of the vulnerability evaluation framework used in the past studies. The figure involves three kinds of trials: (a) genuine speech; (b) impostor
speech; and (c) converted speech. (c) is a converted version of (b). (a) and (b) make a standard speaker verification test, whereas (a) and (c) make a spoofing test.

Table 1. Four categories of trial decisions in speaker
verification.

Decision

Accept Reject

Genuine test Correct acceptance Miss detection
Impostor test False alarm Correct rejection

is easy to understand that the majority of the past studies
use both EER and FAR as evaluation metrics to measure
the vulnerability of speaker verification system against voice
conversion spoofing.

B) Database design
In the past studies, several different datasets have been used
to provide an objective assessment of system performance
under voice conversion attacks. There are some similari-
ties in the design of datasets and the experimental protocols
among them. In this paper, we use the dataset in [90] as
a case study to show the common protocol in designing
the spoofing dataset. This dataset is based on the National
Institute of Standards and Technology Speaker Recognition
Evaluation (NIST SRE) 2006 core task, namely 1conv4w-
1conv4w.

The common framework used in the majority of the
past studies is represented in Fig. 4. Different from a stan-
dard speaker verification experiments, the spoofing attack
experiments generally have three kinds of trials: genuine,
zero-effort impostor, and spoofing trials.

The genuine and zero-effort impostor trials are directly
selected from the original core task, 1conv4w-1conv4w. The
training data for each target speaker model are also a sub-
set of the core task. To generate the spoofing trials, the
attackers and their corresponding target genuine speak-
ers are first selected. Then, the data from the 3conv4w
and 8conv4w training sections in the NIST SRE 2006
database are employed to estimate the conversion func-
tion for each impostor–target speaker pair. Finally, each
zero-effort impostor trial is passed through the conversion
function to generate its corresponding spoofed trial. It is
noted that the number of spoofed trials is exactly the same
as that of the zero-effort impostor trials, and the genuine
trials are kept unchanged as in the original test.

Table 2. Subset of NIST SRE 2006 core task in the spoofing attack
experiments [90] (VC= voice conversion).

Baseline test Spoofing test

Unique speakers 504 504
Genuine trials 3978 3978
Impostor trials 2782 0
Spoofed trials (impostor trials via VC) 0 2782

In the experiment, the genuine trials and the zero-effort
impostor trials are mixed as a baseline test, while the same
genuine trials and the spoofed trials are mixed as a spoof-
ing test. In this way, the baseline results in terms of EERs
and FARs are comparable with the spoofing results; further-
more, with such a comparison, the vulnerability of speaker
verification under voice conversion attacks can be assessed
and predicted. The statistics of trial used in the case study
is presented in Table 2. This setup may be different from
an actual real-world scenario where live impostor trials and
spoofed trials aremixed together, but it allows us to conduct
an analytical study under an extreme adverse condition.

C) Experiments
A number of studies have been conducted to evaluate the
vulnerability of speaker verification systems under voice
conversion attacks. The earlier work involves GMM–UBM
speaker verification systems. The vulnerability of a GMM–
UBM speaker verification system was assessed in [95] for
the first time. The YOHO corpus consisting of 138 speakers
was employed to design the spoofing dataset. The exper-
iments showed that the baseline FAR increased from 1.45
to 86.1 as a result of voice conversion attack. In [96],
the vulnerability of a GMM–UBM speaker verification sys-
tem was evaluated using the NIST SRE 2004 dataset. The
experimental results showed that the baseline EER and FAR
increased from both 16 to 26 and over 40, respectively,
as a result of voice conversion spoofing.

The work in [97] evaluated the vulnerability of a GMM–
UBM system under voice conversion attack, and the spoof-
ing attack was simulated by a Gaussian-dependent filtering
voice conversion approach, which shift the spectral shape
of the attacker toward that of the target genuine speaker.
The experimental results reported on the NIST SRE 2005
database showed that the baseline EER and FAR increased
from both 8 to over 60 and 100, respectively. Note the
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Table 3. Summary of voice conversion spoofing attack studies (TI, text-independent recognizer; TD,
text-dependent).

Spoofing

Conversion method Database TI or TD System Baseline EER () EER () FAR ()

Filtering [91] NIST SRE 2005 TI GMM–UBM 8.54 35.41 N. A.
Filtering [91] NIST SRE 2006 TI GMM–UBM 6.61 28.07 N. A.
Filtering [92] NIST SRE 2005 TI GMM–UBM 8.50 32.60 N. A.
Filtering [92] NIST SRE 2005 TI JFA 4.80 24.80 N. A.
JD-GMM [93] NIST SRE 2006 TI GMM–UBM 7.63 24.99 N. A.
JD-GMM [93] NIST SRE 2006 TI VQ–UBM 7.56 22.62 N. A.
JD-GMM [93] NIST SRE 2006 TI GMM–SVM 3.74 12.58 41.54
JD-GMM [93] NIST SRE 2006 TI JFA 3.24 7.61 17.33
Unit-selection [90] NIST SRE 2006 TI JFA 3.24 11.58 32.54
JD-GMM [90] NIST SRE 2006 TI PLDA 2.99 6.77 19.29
Unit-selection [90] NIST SRE 2006 TI PLDA 2.99 11.18 41.25
Filtering [89] WF corpus [94] TI I-vector 1.60 8.80 29.00
Filtering [89] WF corpus [94] TI GMM–NAP 1.10 3.40 38.00
Filtering [89] WF corpus [94] TD HMM–NAP 1.00 2.90 36.00

full knowledge, for example feature extraction and speaker
modeling, of the speaker verification systemwas assumed in
the experiments. Using the same voice conversion method,
the authors in [91] evaluated the GMM–UBM verifica-
tion system on both NIST SRE 2005 and NIST SRE 2006
databases. The EERs increased from 8.54 and 6.61 to 35.41
and 28.07 on NIST SRE 2005 and 2006 databases, respec-
tively. Different from [97], the work in [91] did not assume
any prior information of the speaker verification system.

In addition to the GMM–UBM systems, in [93] and [90],
the vulnerabilities of six state-of-the-art speaker verifica-
tion system were assessed under the same voice conversion
attack. The spoofing attack was simulated by the joint-
density Gaussian mixture model (JD-GMM) voice conver-
sion method. The experimental results showed that the
EERs increasedmore than two times over those of the base-
lines for all the text-independent systems. The EER and
FAR of the JFA system increased from both 3.24 to 7.61
and 17.33, respectively, and the EER and FAR of the most
robust PLDA system increased from both 2.99 to 11.18
and 41.25, respectively. Such increase in EER and FAR is
due to the shift of classifier score as a result of voice con-
version attack, as presented in Fig. 6. It is clearly observed
that after voice conversion attack, the impostor trials’ score
distribution moves toward that of the genuine trials.

Still in the context of text-independent ASV, other work
relevant to voice conversion includes attacks referred to as
artificial signals. It was noted in [92] and [98] that certain
short intervals of converted speech yielded extremely high
scores or likelihoods. Such intervals are not representative
of intelligible speech but are nonetheless effective in over-
coming ASV systems which lack any form of speech qual-
ity assessment. Artificial signals optimized with a genetic
algorithm were shown to provoke increases in EER from
8.5 to almost 80 for aGMM–UBMsystemand from4.8
to almost 65 for a factor analysis (FA) system.

The work in [89] examined the vulnerability of several
state-of-the-art text-dependent systems, namely, i-vector,
GMM–NAP, and HMM–NAP systems. Among the three

systems, HMM–NAP employed a speaker-independent
HMM instead of a GMM to capture temporal informa-
tion. The results showed that voice conversion provoked
increases in the EERs and FARs of all the three systems.
Specifically, the FAR of themost robust HMM–NAP system
increased from both 1–36.

Table 3 presents a summary of spoofing studies described
above. Even though some approaches to voice conversion
produce speech with clearly audible artifacts [24, 34, 99],
Table 3 shows that all provoke significant increases in the
FAR across a wide variety of different ASV systems. Figure 5
presents a comparison of spectrograms and formant tract
of impostor speech, impostor speech after voice conversion,
and genuine speech. It shows that as a result of voice con-
version, the impostor speech is shifted toward that of the
genuine speaker. Such speech or feature shifting explains
the score shifting and FAR increasing as a result of voice
conversion spoofing.

V . ANT I - SPOOF ING ATTACK
STUD IES

As shown in Section IV, the EER performance of most
speaker verification systems degrades considerably under
voice conversion spoofing attacks. It is hence necessary to
develop anti-spoofing measures to enhance the security of
speaker verification systems. The key to develop a spoofing-
proof speaker verification system is two folds. One is to
characterize speakers with unique features and models that
voice conversion techniques cannot reproduce easily [26,
51]. The other one is to detect artifacts that come along
with voice conversion [100], that is to design a countermea-
sure for anti-spoofing. In this section, we review the past
effort on designing countermeasures in the form of con-
verted speech detectors for speaker verification systems in
the face of voice conversion spoofing.

We have seen successful techniques that detect arti-
facts introduced during the voice conversion or synthesis



voice conversion versus speaker verification 9

Time (s)

F
re

qu
en

cy
 (

H
z)

Impostor speech

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

Time (s)

F
re

qu
en

cy
 (

H
z)

Impostor speech

Time (s)

F
re

qu
en

cy
 (

H
z)

Impostor speech after voice conversion

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

Time (s)

F
re

qu
en

cy
 (

H
z)

Impostor speech after voice conversion

Time (s)

F
re

qu
en

cy
 (

H
z)

Genuine speech

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2 2.5 3 3.5
0

1000

2000

3000

4000

5000

Time (s)

F
re

qu
en

cy
 (

H
z)

Genuine speech

Fig. 5. An illustration of voice conversion spoofing. An attacker attempts to use voice conversion to shift his/her voice (top) toward the target genuine speaker’s voice
(bottom), and generates a modified voice (middle). From the spectrograms (left column) and the formant tracks (right column), it shows that after voice conversion,
the impostor’s speech is much closer to the target genuine speaker’s speech. This explains the phenomenon of score shifting as a result of voice conversion spoofing.

process. In [100], Cosine normalized phase (cos-phase) and
modified group delay phase (MGD-phase) features were
proposed to detect converted speech. They are motivated
by the fact that most vocoders use minimum-phase rather
than original phase to reconstruct a speech signal. We note
that most vocoders assume that human auditory is not sen-
sitive to the phase information, and hence the original phase
information is discarded when synthesizing speech signals.
As MGD-phase feature not only contains phase informa-
tion, but also the magnitude information, it is sensitive to
vocoder outputs. Figure 7 presents an example of the MGD
spectrogram. It is clearly observed that the MGD spectro-
grams between the original and converted speech signals
are different. The experiments on NIST SRE 2006 database
were reported to obtain a detection EER of 5.95 and 2.35
using cos-phase and MGD-phase, respectively, confirming
the effectiveness of the phase-based detectors.

The MGD-phase-based detector was integrated with
speaker verification systems, in particular GMM–JFA and
i-vector PLDA systems, in [90] for anti-spoofing. Figure 8
presents an example of incorporating a converted speech
detector as an explicit countermeasure against spoofing
attacks. Two GMMs were trained from the natural and
the converted speech, respectively, and the natural or con-
verted speech decision was made based on log-likelihood
ratio. The experimental results reported on the NIST SRE
2006 confirmed the effectiveness of the MGD-phase-based
detector. The converted speech detector can reduce the
FARs from 17.36 and 19.29 to both 0.0 for GMM–JFA
and PLDA systems, respectively, under GMM-based voice
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Fig. 6. Score distribution before and after voice conversion attack.

conversion spoofing, and reduce the FARs from 31.54 and
41.25 to 1.64 and 1.71 for GMM–JFA and PLDA systems,
respectively, in the face of unit-selection-based voice con-
version attacks. Interestingly, such a detector works well in
the face of spoofing attacks, and it also does not affect the
speaker verification performance in the face of non-zero-
effort spoofing or normal genuine tests.

In [98], a long-term dynamic feature, which was
extracted at the utterance-level, was proposed to capture
the utterance-level speech variation for detecting converted
speech. The experimental results reported on the NIST SRE
2005 showed the effectiveness of such a long-term feature
in distinguishing the converted or the so-called artificial
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Fig. 7. An example of the MGD spectrogram. The MGD phase feature is extracted from such a spectrogram instead of a magnitude spectrogram. Top: MGD
spectrogram of the original speech signal. Middle: MGD spectrogram of the corresponding converted speech signal. Bottom: the difference between the original
and converted MGD spectrograms.

Fig. 8. Diagram of speaker verification with an anti-spoofing converted speech detector [90] (MGD = modified group delay).

speech from the natural human speech. More specifically,
an EER of 0.0was achieved in the converted speech detec-
tion task. It is true that speech variation becomes small if
voice conversion systems suffer over-smoothing. However,
the global variance (GV) enhancement as proposed in [24]
is able to recover the speech variation for better speech qual-
ity. It would be interesting to re-evaluate the effectiveness of
such a long-term dynamic feature on GV enhanced speech.

Currently, the analysis–synthesis techniques for extract-
ing feature representation and reconstructing audible
speech signals operate on the short-term feature level,
for example 5–15 ms; hence some artifacts are intro-
duced in the temporal domain. In the wake of such arti-
facts, temporal modulation features, magnitude and phase
modulation features, were proposed in [101] to detect the

converted speech which is generated through vocoding
techniques. This work assumes that no specific voice con-
versionmethod is required to design the detection, only uti-
lizing the copy-synthesis speech. A copy-synthesis speech
is obtained using a speech analysis module to extract fea-
ture representations from a natural speech signal, and then
passing these feature representations through a matched
vocoder to reconstruct an audible speech signal. The exper-
iments conducted on the Wall Street Journal (WSJ0+WSJ1)
database showed that the modulation feature-based detec-
tion achieved an EER of 0.89 in the synthetic speech
detection task, while the baseline MGD-phase feature gave
an EER of 1.25.

Figure 9 illustrates a way to extract modulation features.
The spectrogram, which can be a power spectrogram or an
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Fig. 9. Illustration of one way to extract modulation features from a spectrogram. The figure is adopted from [101].

MGD spectrogram, is first divided into overlapping short
segments, for example a 50-frame segment with 20-frame
shift. Then, filter-banks are applied to the spectrogram
segments to obtain filter-bank coefficients. After that, the
segment-level MVN is applied to the filter-bank trajecto-
ries to normalize the mean and variance to zero and unit,
respectively. Next, fast Fourier transform (FFT) is adopted
to transform the filter-bank trajectories into modulation
spectra. The modulation spectrum from each filter-bank
trajectory is stacked into a supervector, which undergoes
principal component analysis (PCA) for dimensionality
reduction. Finally, the low-dimensional compressed feature
is used as the modulation vector. Meanwhile, modulation
compensation is being investigated in speech synthesis for
better quality [102]. Hence, the modulation feature-based
detector might be countered if the modulation compensa-
tion techniques work well. Further attention is required to
fully understand the effectiveness of modulation features in
the context of more advanced synthesis techniques.

In [103], a local binary pattern (LBP) analyzed feature
was proposed for anti-spoofing. The LBP analysis has been
widely used in face recognition for texture analysis [104],
and liveness detection [105]. The LBP feature is a kind
of spectrotemporal feature, taking into account the local
dynamics in the sequence of speech feature vectors. The
experimental results reported on the male subset of the
NIST SRE 2006 database showed that the LBP feature
achieves an EER of 8 in the converted speech detection
task. By integrating the LBP-based countermeasure with the
FA speaker verification system, the FAR decreases from 54

to 4.3 in the face of voice conversion attacks. Note that the
baseline performance is 1.

The LBP-based countermeasure proposed in [103] was
extended to one-class classifier in [106]. In the work, the
LBP featureswere extracted from thenatural human speech,
and then using a one-class SVM to train a one-class classifier
to distinguish natural and converted speech. The experi-
ments conducted on the NIST SRE 2006 database showed
that the LBP-based one-class classifier is able to achieve an
EER of 5 in the converted speech detection task, while
the corresponding two-class SVM classifier gives an EER
of 0. The one-class countermeasure reduces the FAR of
the i-vector speaker verification system from 55 to 4.1 in
the face of voice conversion spoofing. The LBP-based coun-
termeasure assumes the natural texture is distorted during
the conversion process; however, if multiple-frame-based
speech segments are directly used in the converted speech,
the original spectral texture might be preserved, in which
scenario the LBP-based countermeasures might not be
effective.

Different from above approaches focusing on discrim-
inative features, a back-end spoofing detection approach
was proposed in [107] for anti-spoofing at the model level.
In the method, an integrated PLDA system is used to
jointly operate anti-spoofing and speaker verification in i-
vector space. This allows us to use the same front-end for
feature extraction for both speaker verification and anti-
spoofing. The experimental results reported on NIST SRE
2006 database suggest that the proposed method general-
izes well for unseen voice conversion attacks. However, only
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two kinds of voice conversion attacks are considered in the
work.

V I . SOFTWARES AND DATABASES

Voice conversion spoofing and anti-spoofing studies involve
both voice conversion and speaker verification technolo-
gies. To conduct such studies, a broad techniques are
required. To this end,we point out several software packages
and databases that can be used in the anti-spoofing studies
for further research purpose.

For speaker verification, ALIZE [108] is one of the
most popular toolkits for speaker verification. The toolkit
includes speaker modeling and score normalization
techniques. The speaker modeling techniques include the
classic GMM–UBM modeling technique as well as the lat-
est state-of-the-art speaker modeling techniques, such as
FA, i-vector and PLDA modeling. Bob, a signal-processing
and machine-learning toolbox, also provides a number of
speakermodeling techniques similar to that inALIZE [109].
The MSR Identity Toolbox is a MATLAB toolbox for
speaker recognition research [110]. This toolbox imple-
ments both the classic GMM–UBMmodeling and the state-
of-the-art i-vector with PLDA techniques. In addition, it
also provides some feature normalization and performance
evaluationmodules. Aside from speaker modeling, the hid-
denMarkovmodel toolkit (HTK) [111] can be used as a com-
plementary toolbox for feature extraction to above speaker
modeling toolboxes.

From the side of voice conversion, there are few tool-
boxes. There is an implementation of the JD-GMM voice
conversion in the Festvox project1. The voice conver-
sion MATLAB toolbox [112] implements several voice
conversion techniques, such as frequency warping and unit
selection. It also provides feature extraction and speech
reconstruction modules. In addition, the speech signal pro-
cessing toolkit (SPTK)2 provides a number of feature extrac-
tion and speech reconstruction techniques. This toolbox
can be used with other voice conversion toolboxes as front-
end for speech analysis and reconstruction.

The NIST speaker recognition evaluation (SRE)
databases are the most popular corpora in the past spoofing
and anti-spoofing studies. The NIST SRE databases are the
benchmarking databases for TI-SV research. For the TD-
SV research, the RSR2015 [60, 113] database has been used
and is found to be suitable for spoofing and anti-spoofing
research [114], as it simulates the real application scenario.

V I I . CONCLUS ION

In this paper, we present an overview of voice conversion
spoofing and anti-spoofing for speaker verification. Due
to the rapid development of speaker verification technol-
ogy, speaker verification systems have been deployed into

1http://festvox.org/
2http://sp-tk.sourceforge.net/

real applications, such as smartphone [1]. At the same time,
voice conversion technology also progresses tremendously.
Therefore, the countermeasures for voice conversion spoof-
ing attacks become an important part of speaker verification
deployment. In INTERSPEECH 2013, a special session on
“Spoofing and countermeasures for ASV”was organized for
the first time, which shows the increasing importance and
attention of this research topic given by the academia and
industry.

The current studies on anti-spoofing are very prelim-
inary because the results are reported only on selected
techniques. Comprehensive studies on the effects of inter-
action between different voice conversion techniques and
different speaker recognition regimes are expected in the
near future. The comprehensive studies between voice
conversion and speaker verification need a standard
database consisting of various voice conversion spoofing,
which requires the two research communities to work
together.

The voice conversion and anti-spoofing studies can
improve one another. For example, the techniques/features
developed for anti-spoofing might be used to identify the
weakness of voice conversion, which could be investigated
to improve voice conversion techniques. On the other hand,
the improved voice conversion techniques will drive the
improvement of speaker verification. This could be another
direction to be explored in the future work.

In practice, an attacker might also use other techniques
to implement spoofing, such as replay and speech synthesis.
Hence, in the future study, development of countermea-
sures need to take other forms of spoofing into account.
This kinds of generalized countermeasures will be useful for
practical anti-spoofing.
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