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Optimized wavelet-domain filtering under noisy
and reverberant conditions
randy gomez1, tatsuya kawahara2, and kazuhrio nakadai1

The paper addresses a robust wavelet-based speech enhancement for automatic speech recognition in reverberant and noisy
conditions. We propose a novel scheme in improving the speech, late reflection, and noise power estimates from the observed
contaminated signal. The improved estimates are used to calculate the Wiener gain in filtering the late reflections and additive
noise. In the proposed scheme, optimization of the wavelet family and its parameters is conducted using an acoustic model (AM).
In the offline mode, the optimal wavelet family is selected separately for the speech, late reflections, and background noise based
on the AM likelihood. Then, the parameters of the selected wavelet family are optimized specifically for each signal subspace.
As a result we can use a wavelet sensitive to the speech, late reflection, and the additive noise, which can independently and
accurately estimate these signals directly from an observed contaminated signal. For speech recognition, themost suitable wavelet
is identified from the pre-stored wavelets, and wavelet-domain filtering is conducted to the noisy and reverberant speech signal.
Experimental evaluations using real reverberant data demonstrate the effectiveness and robustness of the proposed method.
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I . I NTRODUCT ION

In a real-world enclosed environment, the speech signal is
reflected and arrives at different time delays when observed
by the microphone. This effect is considered as a form
of a contamination due to channel distortion, and com-
monly known as reverberation. The degree of reverberation
depends on the reverberation time T60, which dictates the
severity of distortion. Speech contamination is one of the
most common problems in automatic speech recognition
(ASR) applications. In the perspective of ASR, any form of
contamination of the speech signal at runtime (test condi-
tion) is a mismatch to the acoustic model (AM) (training
condition). The mismatch may result in the degradation of
the ASR performance. Thus, speech enhancement is one of
the most important topics in robust ASR. In this paper, we
focus primarily on the topic of dereverberation for ASR;
since background noise is always present in a real environ-
ment, we address enhancement in reverberant and noisy
condition, and extend our dereverberation framework to
include denoising effect.

The scheme of decomposition of the reverberant sig-
nal into early and late reflections [1] simplifies the treat-
ment of reverberation. In this scheme, the late reflection
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is treated as additive noise, and the seminal works [2–5]
in denoising has been adopted. We expanded multi-band
spectral subtraction (SS) so that the multi-band weighting
parameters are optimized based on the criterion of the ASR
[6]. Similarly, the Wiener filtering (WF) approach can be
employed to the same dereverberation scheme. Originally
adopted from athe denoising work in [7], it can be extended
to suppress the late reflection by filtering the reverberant
signal with the Wiener gain. Although the filtering-based
methods (e.g. SS and Wiener) work well, they share a com-
mon problem: power estimation of the contaminant (i.e.
late reflection and background noise) and the desired sig-
nal (i.e. speech). This problem is inherent to the filtering-
basedmethods [2–5]. In real scenario, both the contaminant
and the speech signals are not available separately, instead,
we need to deal with a composite signal, and extracting
independent power estimates for each of these is not sim-
ple. Since the filtering-based methods depend primarily on
power estimation, inaccurate estimates result in artifacts in
the recovered signal. This impacts the ASR performance in
general, as it manifests as another form of mismatch to the
recognizer. Power estimation is improved through popu-
lar methods in the seminal works [8–11] coupled with the
deployment of voice activity detector (VAD).

In this paper, we address the problem through optimal
wavelet-domain filtering. WF is adopted as the enhance-
ment platform, but instead of operating in the frequency
domain, we perform filtering in the wavelet domain.
Wavelets offer more flexibility in signal representation. A
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proper choice of wavelet allows us to track the power of the
signal of interest directly from the observed contaminated
signal. This mechanism results to a more accurate instan-
taneous (frame-wise) power estimates. This is not possi-
ble using traditional VAD relying on a priori information
regarding speech/non-speech frames. Specifically, in this
paper, we present amethod in optimizing thewavelets based
on theASR criterion.We note that theASR is a complex sys-
tem and operates independently from speech enhancement
(i.e. dereverberation) module. By setting the optimization
criterion used in the dereverberation as a function of the
AM used by the ASR, we can expect that the dereverbera-
tion method is optimized to improving ASR performance.
Our previous work in [12, 13] addressed a very limited opti-
mization which only covers wavelet parameter tuning. In
the proposed method, optimization is more comprehensive
via wavelet family selection and parameter optimization
not covered in [12, 13]. Thus, optimization of the wavelet
family and parameters is conducted using AM likelihood
(Section III) for each signal of interest (i.e. speech, late
reflection, and additive background noise). Since character-
istics of these signals are different, optimizing the wavelet
for each corresponding signal improves signal representa-
tion andpower estimation for effective speech enhancement
in ASR.

The paper is organized as follows. In Section II we
present the enhancement concept of our proposed method
which includes the formulation of the reverberant model
and its expansion to include background noise, theory
of WF in the wavelet domain, and the synergy between
enhancement and the ASR system. Section III describes
the optimization via wavelet family selection and wavelet
parameter tuning. Then, the method of estimating the
reverberation time T60 and the identification of the noise
profiles using Gaussian mixture model (GMM) is discussed
in Section IV. The experimental setup and ASR perfor-
mance are presented in Section V. Finally, we conclude the
paper in Section VI.

I I . ENHANCEMENT CONCEPT

In this section, we present the concept of our enhancement
approach by introducing the reverberant model we adopted
from [1]. The formulation of the Wiener filter in the fre-
quency domain together with its expansion to the wavelet
domain is presented. Lastly, the wavelet optimization based
on acoustic likelihood criterion is discussed.

A) Model for dereverberation
The reverberant spectra R( f ,w) (short-term spectrum,
w: window frame, f : frequency) is given as

R( f ,w) ≈ S( f ,w)H( f ,w), (1)

where S( f ,w) and H( f ,w) are the clean speech signal and
the room impulse response (RIR), respectively. The RIR h
can be expressed with early hE and late hL components of

the RIR as follows:

hE (t) =
{

h(t) t < �,

0 otherwise,
(2)

hL (t) =
{

h(t + �) t ≥ �,

0 otherwise.
(3)

Equations (2) and (3) characterize both the short and long-
period effects of the reverberant signal. From equation (1),
the reverberant speech model R( f ,w) is expressed as

R( f ,w) ≈ E ( f ,w)+ L( f ,w)

≈ S( f ,w)H( f , 0)+
D∑

d=1

S( f ,w − d)H( f , d).

(4)

The first term is referred to as the early reflection denoted
as E ( f ,w), where H( f , 0) is the RIR effect to the speech
signal S( f ,w). It is due to the direct-path signal contami-
nated with some reflections that occur at earlier time (short
period). The second term L( f ,w), is attributed by late
reflection, which can be viewed as smearing of the clean
speech by H( f , d) which corresponds to the d frame-shift
effect of the RIR. D is the number of frames over which
the reverberation (smearing) has an effect. Since the late
reflection spans over frames, it can be treated as long-period
noise [14, 15]. In real environments, it is safe to assume that
some additive noise may be present. Although our main
focus in this paper is about dereverberation, we include a
simple additive noise mitigation scheme, since we experi-
ment using real data and the presence of noise impacts the
dereverberation mechanism in [6, 14].

In general, removing contaminants especially the effects
of late reflection and background noise is a difficult task.
Since the dereverberation concept in this paper was origi-
nally inspired from denoising [2–5], the treatment of noise
together with the effects of reverberation is possible as long
as the following assumptions are adopted:

• Decomposition of reverberation into early and late reflec-
tion.

• Additive property of late reflection and noise.
• Statistical independence and uncorrelatedness of the sig-
nals (i.e. speech, late reflection, and additive noise).

Following equation (4), we can include the effects of the
additive background noise B( f ,w) and the observed con-
taminated signal O( f ,w) becomes

O( f ,w) ≈ R( f ,w)+ B( f ,w)

≈ E ( f ,w)+ L( f ,w)+ B( f ,w). (5)

In equation (5), we assume that the early reflection, late
reflection and background noise are uncorrelated and sta-
tistically independent. However, this assumption may not
hold true; thus, we show later an optimization process
aimed to further strengthen the assumption in the wavelet
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Fig. 1. Overview of the enhancement model.

domain. From here, we refer to the combined effects of the
late reflection and the background noise as contaminant.
Speech is enhanced by suppressing L( f ,w) and B( f ,w).
Consequently, the recovered early reflection is processed
via Cepstral Mean Normalization (CMN) [6] prior to the
ASR. From this point onward, we assume that processing is
conducted in framewise manner, dropping the index w.

B) WF in the wavelet domain
WF is an enhancement method based on the stochastic
filter theory. Enhancement of the contaminated signal is
based on the choice of the coefficients of the Wiener fil-
ter [16], and by imposing a criterion that minimizes the
minimummean square error (MMSE) between the desired
and observed signals, the enhanced signal resembles that of
the desired signal in the MMSE sense. Consider the con-
ventional Wiener filter in Fig. 1 (top), the recovered early
reflection ê can be expressed as

ê(t) = o(t) ∗ w(t), (6)

wherew(t) is the Wiener filter impulse response. By apply-
ing the Wiener–Khinchine relation

E 2( f ) = FT {Ree(ν)}, (7)

the autocorrelation function Ree is replaced in terms of
power spectra [7]. Thus, we can formulate the Wiener filter
gain in terms of the frequency domain as

W( f ) = E 2( f )

E 2( f )+ C 2( f )

= E 2( f )

E 2( f )+ [L 2( f )+ B2( f )]
, (8)

where E 2( f ) and C 2( f ) are the power of early reflection
and the contaminant, respectively. The contaminant sig-
nal is composed of the late reflection and background
noise (L 2( f )+ B2( f )). By maximizing the discrimina-
tive property between the subspaces E and C , and by a
proper wavelet choice � (Section III), equation (8) can be
expanded in the wavelet domain as

W(�) = E 2(�E )

E 2(�E )+ [L 2(�L )+ B2(�B )]
, (9)

where E 2(�E ), L 2(�L ), and B2(�B ) are the early reflection,
late reflection and background noise power, respectively.
The wavelet domain�E ,�L , and�B are the corresponding
wavelets that enhances the discriminative property among
subspaces E , L , and B (Section III). In the context of fast
wavelet transform, we define κ from equation (9) at band
m as

κm = E 2
m

E 2
m + L 2

m + B2
m

, (10)

where band m denotes the level of the wavelet decompo-
sition. In reality, we are interested in recovering the clean
speech and not the early reflection. Although these two are
not strictly the same (i.e. waveform-wise), they are almost
the “same” as far as the ASR is concerned. We have con-
curred through experiments in [6] that the ASR is robust
to the early reflection when processed with CMN; interest-
ingly, recognition performance for CMN-processed signal
using clean AM is comparable with that of clean speech
signal. This means that the ASR makes no distinction
between clean speech and CMN-processed early reflection.
The CMN is able to compensate the mismatch caused by
short-term smearing of the speech signal. By exploiting this
behavior of the ASR, we can replace E 2(�E )with S2(�S) in
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equation (9). Thus, we can rewrite equations (9) and (10) as

W(�) = S2(�S)

S2(�S)+ L 2(�L )+ B2(�B )
(11)

and

κm = S2
m

S2
m + L 2

m + B2
m

. (12)

This assumption was also confirmed in [6, 14, 15]. The
ASR-inspired WF is implemented in the wavelet domain
after wavelet decomposition as shown in Fig. 1 (bottom).
First, the early reflection is recovered by weighting the
observed contaminated signal with Weiner gain as

Êm = κm · Om, (13)

then, the enhanced speech is recovered after CMN process-
ing expressed as,

Ŝm = CMN(Êm). (14)

The time-domain speech can be recovered through
inverse wavelet transform (IWT). It is obvious that the
enhancement ability of the system is dependent on the
Wiener gain, which is a function of the power estimates of
the signals of interest. Unfortunately, there is no straightfor-
ward solution to power estimation. The observed signal at
the microphone is a composite signal, which makes it dif-
ficult to estimate the speech power and the contaminant
power (late reflection andbackgroundnoise) independently
and accurately. Conventionally, a VAD is used to improve
power estimation as presented in [7, 17]. The contaminant
power is estimated from the non-speech parts of the utter-
ance. With the presumption that contaminant frames are
of low-power as opposed to the composite signal which
includes the speech. The speech power can be estimated
by subtracting the observed signal with the contaminant
estimate. Although this method works, estimation tends
to be inaccurate especially with shorter utterances that do
not have sufficient non-speech frames. Moreover, since the
VADmethod needs several frames for improved power esti-
mation performance, it is difficult to calculate instantaneous
power at a particular frame, resulting to poor performance
in tracking the contaminant signal.

Speech enhancement performance relies primarily on
the effectiveness of the contaminant power estimate, specif-
ically for filtering-basedmethods. It is imperative to address
the power estimation problem. In this paper, the expansion
ofWF to the wavelet domain presents a viable alternative in
improving the power estimation (Section III).

C) Optimization via AM criterion
Speech enhancement and ASR are independent and
complex processes. Originally, speech enhancement was
developed to suppress noise and improve speech intelli-
gibility for human listening, later it has been adopted for
robust ASR application. However, human andmachine per-
ceive speech differently, and by simply cascading these two

processesmay not be effective [18]. Improvement in percep-
tual objective or subjective measures does not necessarily
translate to improving ASR performance. As mentioned
earlier, enhancement also introduces artifacts whichmay be
detrimental to model-based ASR systems. Since there are
many factors affecting ASR performance, it is appropriate
to design an ASR-inspired speech enhancement method,
and adopt the ASR criterion in the enhancement process.
One of themost important features of the proposedmethod
is the intricate link between the enhancement process and
the ASR system.

The basic hiddenMarkovmodel (HMM)-basedASR sys-
tem employs AM λ and languagemodel in decoding speech
to a word sequence. λ is obtained usually by maximum
likelihood estimation

max
R∏

r=1

P (xr |w; λ), (15)

where w is the word sequence. xr is the r th training utter-
ance. Since equation (15) is an integral part of an ASR
system, it is desirable to adopt this in the speech enhance-
ment process. In conjunction with equation (15), we define
the likelihood criterion score

L(x, λ) = p(x|λ), (16)

tomeasure the similarity between the signal x and theAMλ.
For speech enhancement, x becomes the enhanced speech
while λ is the AM used by the ASR. For computational
efficiency, we adopt a GMM instead of a HMM to com-
pute the AM likelihood. The likelihood score L increases
when there is a good match between x and λ. This is a
potent measure that relates the enhanced speech with the
AM used by the ASR system. We note that w is purposely
removed in equation (16) since we are only interested in the
acoustic part of speech enhancement. Equation (16) will be
extensively used throughout this paper for the wavelet opti-
mization process (i.e. in Section III) used in our proposed
dereverberation scheme.

I I I . WAVELET OPT IM IZAT ION FOR
ENHANCEMENT

In this section, we discuss the optimization of the wavelet
family and parameters using AM, which is the major con-
tribution of this paper. A wavelet is generally expressed as

�(υ, τ , t) = 1√
υ
�

(
t − τ

υ

)
, (17)

where t denotes time, υ and τ are the scaling and shifting
parameters, respectively. � ([t − τ ]/υ) is often referred to
as amotherwavelet. Assuming that we deal with real-valued
signal, the wavelet transform (WT) is defined as

F (υ, τ) =
∫

z(t)�(υ, τ , t)dt, (18)

where F (υ, τ) is a wavelet coefficient and z(t) is a time-
domain function. With a proper choice of wavelet family
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coupled with a training algorithm, τ and υ are optimized,
so that the wavelet captures the characteristics of the signal
of interest. The resulting wavelet is sensitive to detecting the
presence of the said signal. Specifically, in the wavelet fil-
tering method, we are interested in detecting the power of
speech, noise, and late reflection, given the observed signal
at the microphone. Thus, we optimize the wavelet to detect
these signals separately.

A) Wavelet family selection
likelihood criterion
There exist different types of wavelets, bearing different
waveforms (e.g. Daubechies and Morlet) referred to as
wavelet family ( f ), and it is desirable to find an optimal
match between the signal of interest and the correspond-
ing wavelet family. We note that a particular wavelet family
has a unique characteristic (i.e. waveform and frequency
response) and may not be appropriate to represent a partic-
ular signal of interest. For example, Daubechies wavelet has
the property which is more suitable to represent a speech
signal than representing a background noise. We develop a
process to quantify the distinction ofwhichwavelet family is
best suited for the signal of interest. The process is achieved
by selecting a wavelet family� among ( f = 1 : F ) denoted
as �( f =1:F ) that best represents the signal of interest for
speech S , late reflection L , and background noise B using
the likelihood criterion given as

ψS = arg max
f

p(s(�( f ))|λS), (19)

ψL = arg max
f

p(l(�( f ))|λL ), (20)

and
ψB = arg max

f
p(b(�( f ))|λB ), (21)

where s(�( f )), l(�( f )), and b(�( f )) are the speech, late
reflection, and backgroundnoise processedwith thewavelet
family �( f ). λS , λL , and λB are AMs trained from clean
speech, late reflection, and background noise database,
respectively, using Mel-frequency cepstrum coefficients
(MFCC) features. Equations (19)–(21) calculate the likeli-
hood scores for the clean speech, late reflection, and back-
ground noise when decomposed using different wavelet
family ( f = 1 : F ) against the corresponding AM. Thus,
the corresponding wavelet family that results to the best
decomposition of the signal of interest is selected based on
the likelihood criterion.

likelihood ratio criterion
The likelihood criterion in Section III-A searches for the
correspondence between the signal of interest and the col-
lection of wavelet families. In this subsection, we introduce
another optimization criteria focusing on the late reflection
and background noise, so they are better separated from the
speech signal.

In particular we search for the corresponding wavelet
that maximizes the likelihood ratio between the speech

model λS and the corresponding signal, given as

ψL = arg max
p(l(ψL )|λL )

p(l(ψL )|λS)
(22)

and

ψB = arg max
p(b(ψB )|λB )

p(b(ψB )|λS)
. (23)

Then, equation (11) becomes

W(ψ ) = S2(ψS)

S2(ψS)+ L 2(ψL )+ B2(ψB )
. (24)

B) Wavelet parameter optimization
Awavelet family is characterized by its parameters (i.e. scal-
ing v and shifting τ ) as described in equation (18) which can
significantly impact its response. Thus, we perform wavelet
parameter optimization after the optimized wavelet family
selection discussed in Section III-A. Optimizing both v and
τ will further refine the optimization process. The process of
optimizing the wavelet parameters for each corresponding
signal in the form of training as shown in Fig. 2 is discussed
as follows:

speech
Figure 2 (Top) shows the process of tuning the wavelet
parameters for the speech signal. To conform with the
model in Fig. 1 (bottom), the clean speech estimate ŝ is syn-
thesized by generating the early reflection using the the early
components hE of the RIR. The RIR can be synthetically
generated as described in [6]. The RIR can be set as a func-
tion of reverberation time T ( j)

60 based on room acoustics
model in [19]. Thus, physical measurement inside the room
is not required. The theory behind the use of synthetic RIR
stems from the fact that the HMM’s description of speech
is of low resolution compared with the RIR, with respect to
time and frequency. Thus, for ASR applications, it may be
sufficient to use an approximation of it [20]. And, its effec-
tiveness in ASR is verified in [6]. Moreover, we have devised
a method to effectively identify the early hE and late hL

reflections boundary of the RIR in [6]. Thus, for a partic-
ular reverberation time j (i.e. T ( j)

60 ); h( j)
E and h( j)

L are readily
available.

The early reflection estimate ê is generated using
the speech database and the corresponding early reflec-
tion coefficient hE of the RIR. Then, CMN is applied
resulting to ŝ . Wavelet coefficients Ŝ(υ, τ) is extracted
through equation (18) using the optimized wavelet family
in Section III-A. Likelihood scores are computed using the
clean speech AM λS , a GMM of 256 components. λS is a
text-independentmodel which captures the statistical infor-
mation of the speech subspace. A greedy search process is
iterated by adjusting υ and τ . The correspondingυ = a and
τ = α that result in the highest score are selected. Since we
are interested in the speech subspace in general, optimizing
a single wavelet to capture the general speech characteristics
is sufficient.
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Fig. 2. Wavelet parameter optimization scheme for speech, late reflection and background noise.

additive background noise
The same procedure is applied to the additive background
noise as shown in Fig. 2: (Bottom), except for the creation
of multiple noise profiles (i), representing different types
of background noise. After decomposing the time domain
signal b(i) through wavelet decomposition to B(υ, τ)(i),
likelihood scores are computed using the corresponding
noise model λB (i) (same model structure as that of λS). This
model is trained using a noise database. The correspond-
ing υ=p(i) and τ=β(i) thatmaximize the likelihood score are
stored and associated with the corresponding noise profile.

The noise database is originally composed of differ-
ent background noise recordings referred to as base noise
(i.e. Mall, Hall, Crowd, Office, Vacuum, and Computer). To
generalize to a variety of noise characteristics, additional
entries are made by combining different types of the base
noise. First, a simple piece-wise combination is performed
and the resulting noise combination is further combined
in the next level. To remove redundancy and suppress the
increase of the entries, we measure the correlation of the
resulting combinations and select the ones that are less
correlated with existing noise entries. Thus, the expanded
noise database referred to as noise profiles will providemore
degree of freedom in characterizing various noise distribu-
tions. More detailed explanation regarding noise profiles is
found in [12].

late reflection
In the case of the late reflection, wavelet parameter tuning
is shown in Fig. 2: (Middle). The late reflection l ( j) for the
corresponding reverberation time j (i.e. T ( j)

60 ) is generated
using the clean speech database and the predetermined late
reflection coefficients h( j)

l of the RIR. The late reflection
boundary is predetermined experimentally as discussed in
[6, 21]. Next, wavelet coefficients L(υ, τ)( j) are extracted

through WD. In order to make L(υ, τ)( j) void of speech
characteristics, thresholding is applied to L(υ, τ)( j). Speech
energy is characterized with high coefficient values [17, 22]
and thresholding sets these coefficients to zero as,

L̄(υ, τ)( j) =
{

0, | L(υ, τ)( j) |> thr,

L(υ, τ)( j), | L(υ, τ)( j) |≤ thr,
(25)

thr is calculated similar to that in [22]. The thresholded sig-
nal L̄(υ, τ)( j) is evaluated against a late reflection model
λL̄ ( j) . D templates for every reverberation time T ( j)

60 are
to be optimized for both scale (υ1, . . . υD)( j) and shift
(τ1, . . . , τD)( j). These correspond to D preceding frames
(refer to equation (4)) that cause smearing to the current
frame of interest. We note that the effect of smearing is not
constant, thus D templates are created and experimentally
identified. The parameters υ and τ are adjusted and the
corresponding υ={e1, . . . , eD}( j) and τ={ξ1, . . . , ξD}( j) that
result in the highest likelihood score are selected. We note
that λL̄ ( j) is trained using the synthetically generated late
reflection data (during training) with thresholding applied.

C) Optimized wavelet-domainWF
The general expression of the conventional Wiener gain
(un-optimized) at band m is expressed as

κm = S(υ, τ)2m
S(υ, τ)2m + L(υ, τ)2m + B(υ, τ)2m

,

where S(υ, τ)2m, L(υ, τ)2m, and B(υ, τ)2m are the wavelet
power estimates for the clean speech, late reflection, and
background noise, respectively. Using the optimized values
for υ and τ as described in Section III-B, we can compute
the respective power estimates directly from the observed
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Fig. 3. Noise profile and reverberation time identification.

contaminated signal O(υ, τ)m. Thus, the speech power esti-
mate becomes

S(υ, τ)2m ≈ O(a,α)2m, (26)

the background noise power estimate B(υ, τ)2m as

B(υ, τ)2m ≈ O(p(i),β(i))
2
m, (27)

and the late reflection estimate L(υ, τ)2m as

L(e( j)
d , ξ ( j)

d )
2

m ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(e( j)
1 , ξ ( j)

1 )2m, d = 1∑d−1
k=1 O(e( j)

k , ξ ( j)
k )2m

d − 1
+

O(e( j)
d , ξ ( j)

d )2m, otherwise,

(28)

WF is conducted by weighting the contaminated wavelet
coefficient O(υ, τ)m with the Wiener gain as

O(υ, τ)m(enhanced) = O(υ, τ)m.κm. (29)

In equation (29), the Wiener weight κm dictates the degree
of suppression of the contaminant to the observed signal at
band m. If the contaminant power estimate is greater than
the estimate of the speech power, then κm for that bandmay
be set to zero or a small value. This attenuates the effect of
contamination. On the other hand, if the power of the clean
speech estimate is greater, the Wiener gain will emphasize
its effect. Equation (29) is further processedwithCMNprior
to input to the ASR system.

I V . I DENT I FY ING NO ISE PROF I LE
AND REVERBERAT ION T IME

In Fig. 3 (Top A) we show the training of GMMs μ. Each
GMM is composed of 256 mixture components. In this
work, we experimentally set the step size of T60 to 20ms.
covering from 100 to 600ms (each step size corresponds
as a discrete entry ( j ). We use the RIR generator in [6]

to synthetically create reverberant data x( j). In the case of
the noise profiles in (Bottom A), we generated different
background noise entry x(i) through synthetic superim-
position using the speech database and the noise profiles.
GMM architecture and training mechanism is the same as
that used in the reverberant GMMs where μ(i)b GMMs are
trained for each noise profile i .

The reverberation time ( j) has a corresponding opti-
mized wavelet parameters {e1, . . . , eD}( j) and {ξ1, . . . , ξD}( j)

while the noise profile (i) has (p(i), β(i)). During ASR use, it
is necessary to identify the profile that corrupts the speech
signal to retrieve the appropriate parameters. To identify
reverberation time (j), a GMM-based classifier is employed
in Fig. 3 (Top B) using the pre-trained reverberant mod-
els μ( j)

T60
. Subsequently, the profile (j) that leads to the best

likelihood is selected. The same procedure is applied to the
identification of noise profile (i) shown in (Bottom B).

V . EXPER IMENTAL EVALUAT IONS

A) Experimental setup
training
We evaluate the proposed method in large vocabulary con-
tinuous speech recognition (LVCSR). The training database
is the Japanese Newspaper Article Sentence (JNAS) cor-
pus with a total of approximately 60 h of speech. The test
set is composed of 200 sentences uttered by 50 speakers.
The vocabulary size is 20K and the language model is a
standard word trigram model. Speech is processed using
25ms-frame with 10ms shift. The features used are 12-order
MFCCs,
MFCCs, and
Power. The AM is a phonetically
tied mixture (PTM) HMMs with 8256 Gaussians in total.

testing
For testing, we used seven types of noise in the NAIST
database [23]: mall, hall, crowd, office, vacuum cleaner, and
computer noise. As a result of combining different types of
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Fig. 4. Combined noise and late reflection power tracking.

noise from the noise database, 20 noise profiles are gen-
erated. We considered reverberation time T60 of 400 and
600ms. with SNR of 20, 10, and 0 dB.

wavelet family
In our work, we considered several wavelet families
as shown in [24, 25]. Based on our experiments, the
Daubechies wavelet was selected to better represent the
speech signal. In the case of different noise types, the Sym-
let, Coiflet, andMeyer wavelets were selected in most cases.
Lastly, the Gaussian derivative wavelets was selected for
the late reflection. Wavelet selection is based primarily on
the likelihood score between the actual signal and the AM,
respectively. Hence, a noise type recorded at a particular
environment condition may have a unique wavelet.

B) Noise and late reflection tracking
performance
The advantage of optimizing the wavelets in estimating the
signal of interest is shown in Fig. 4. In this experiment, noise
and late reflectionwere super-imposed to the speech to syn-
thesize the model in equation (5). The contaminant power
was variably adjusted along the time axis to recreate a vary-
ing effect of contamination (i.e. amplitude). For simplicity,
only the amplitude variability is shown.We note that for the
oracle, we used the actual contaminant data for the power
measurement while the observed signal (composite) is used
for others. In this graph, the power envelope estimated using
the proposed optimized wavelet parameter closely tracks
the actual power of the contaminant. Obviously, the pro-
posed wavelet optimization outperforms the other power
estimation techniques.

C) GMM classification performance
The identification of the noise profile (i) and reverbera-
tion time ( j) during recognition is vital in selecting the

Table 1. GMM classification performance.

No. of mixtures (mix) Noise profile () Reverberation time ()

2 5.0 10
4 14 22
8 26 35
16 38 42
32 47 55
64 62 75
128 85 94
256 93 98
512 94 98

optimal wavelets. The overall performance of the proposed
method depends on the accurate identification of these two.
Given an observed reverberant and noisy data, we show in
Table 1 the classification rate of theGMMclassifier as a func-
tion of Gaussian mixtures. We have dyadically increased
the mixture size in each training from 2 up to 512. With
a smaller mixture, the classifier is unable to discriminate
the the inherent characteristics of noise profiles and T60,
resulting to poor identification rate. As the mixture size is
increased, the identification rate improves and saturates at
256mixtures. Thismeans that with a sufficientmixtures, the
classifier is capable of resolving signal characteristics. We
have found out that the identification of the noise profile
and the reverberation time as discussed in Section IVworks
well even with only a few frames of data.

D) Comparing ASR performance with other
methods
We compare the proposed method against the following
methods:

• A) No processing: Reverberant and noisy data processed
with reverberant and noisy model;
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Fig. 5. ASR performance in word accuracy (averaged over all types of noise : Mall, Hall, Crowd, Office, Vacuum cleaner, and Computer noise.

• B) Based on LP residual signals: Reference technique
based on Linear Prediction-based (LP) dereverberation
analysis [26];

• C) Improved wavelet-based speech enhancement: Tech-
nique that incorporates VAD and contaminant-specific
profiles for improved contaminant power estimation and
improved performance [9, 17];

• D)Wavelet extrema clustering: Technique based on linear
predictive coding (LPC) in the wavelet domain [27];

• E) Multi-band SS: Technique that employs suppression
of the late reflection; optimization criterion is based on
MMSE [21];

• F) Multi-band SS (ASR-optimized): Technique that sup-
presses the late reflection and at the same time maximizes
the AM likelihood [6];

• G) Wavelet filtering (un-optimized): Technique that
employs WF in the wavelet domain [7, 14, 28];

• H) Optimized wavelet filtering (Proposed method):
Wavelet filtering is optimized using the AM.

While (C), (D), and (G) are wavelet-based techniques, (B),
(E), and (F) are implemented in domains other than the
wavelet. For the methods in (B)–(G), processing using the
ETSI advanced front-end (AFE) [29] is applied to mitigate
the effects of background noise.

The summary of the recognition performance com-
paring the proposed method and other existing methods
described is shown in Fig. 5. In this figure, we show the
word accuracy for reverberation time T60 = 400 and 600ms.
Each of the reverberant condition is also corrupted with
background noise with SNRs 0 , 10, and 20 dB, respectively.
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Table 2. Performance in word accuracy () attributed to the series of optimization.

400ms 600ms

20 dB (%) 10 dB (%) 0 dB (%) 20 dB (%) 10 dB () 0 dB ()

Mall noise
(G) Wavelet filtering (un-optimized) 47.1 38.3 17.4 26.3 11.2 8.0
(H) Proposed wavelet filtering:
Likelihood criterion (Section III-A.1) 49.5 41.4 21.8 28.7 15.9 11.5
Likelihood ratio criterion (Section III-A.2) 51.2 44.9 23.7 31.6 18.2 13.8
Optimized wavelet family and parameter (Section III-B) 53.9 47.5 27.7 36.8 24.6 15.8

Hall noise
(G) Wavelet filtering (un-optimized) 52.6 39.0 20.3 28.8 14.0 7.50
(H) Proposed wavelet filtering:
Likelihood criterion (Section III-A.1) 54.9 42.1 24.2 31.6 19.2 11.7
Likelihood ratio criterion (Section III-A.2) 56.6 44.8 26.8 34.7 22.9 14.6
Optimized wavelet family and parameter (Section III-B) 58.6 48.9 31.6 38.4 25.9 17.4

Crowd noise
(G) Wavelet filtering (un-optimized) 61.1 49.7 29.5 34.4 27.8 14.5
(H) Proposed wavelet filtering
Likelihood criterion (Section III-A.1) 63.5 53.4 33.7 37.3 31.7 18.4
Likelihood ratio criterion (Section III-A.2) 65.2 56.5 35.9 39.9 34.2 20.1
Optimized wavelet family and parameter (Section III-B) 67.5 60.2 40.8 44.2 38.9 24.3

Office noise
(G) Wavelet filtering (un-optimized) 58.7 44.1 27.6 31.6 26.5 8.7
(H) Proposed wavelet filtering:
Likelihood criterion (Section III-A.1) 61.8 47.6 31.3 36.8 29.2 13.9
Likelihood ratio criterion (Section III-A.2) 63.7 50.3 34.8 40.5 32.3 14.1
Optimized wavelet family and parameter (Section III-B) 65.1 54.2 38.9 49.4 35.7 19.2

Vacuum cleaner noise
(G) Wavelet filtering (un-optimized) 63.9 53.1 32.9 37.6 30.8 19.1
(H) Proposed wavelet filtering:
Likelihood criterion (Section III-A.1) 65.7 55.9 36.2 40.5 34.3 23.4
Likelihood ratio criterion (Section III-A.2) 67.3 58.5 40.4 43.1 37.2 25.0
Optimized wavelet family and parameter (Section III-B) 70.4 62.6 44.9 48.1 41.7 28.7

Computer noise
(G) Wavelet filtering (un-optimized) 67.6 56.4 37.3 41.8 31.5 21.3
(H) Proposed wavelet filtering:
Likelihood criterion (Section III-A.1) 69.2 59.7 42.7 43.5 35.2 24.6
Likelihood ratio criterion (Section III-A.2) 71.6 61.7 45.3 46.6 38.1 26.8
Optimized wavelet family and parameter (Section III-B) 74.2 65.3 49.6 51.6 43.4 30.5

Recognition performance is averaged over all types of noise
(i.e. Mall, Hall, Crowd, Office, Vacuum cleaner, and Com-
puter noise).

The results in Fig. 5 show that the proposed method out-
performs existing wavelet-based methods in (C), (D), and
(G). The main difference between the proposed method
and these methods is the nature in which the wavelets are
employed. While the latter indiscriminately use the same
generic wavelet to represent both the contaminant and the
desired signal, the proposed method uses a wavelet suitable
for each of the signal via optimization in Section III-B. This
results to an improved correspondence between the wavelet
and the signal of interest.

The SS methods in (E) and (F) are based on Fourier
transform processing. For these methods, the same basis
function is used to process all of the signals of interest,
while the proposed method in (H) employs wavelets
that are optimized for a particular signal via training in
Section III-C. Moreover, in the methods (E) and (F) there
is no mechanism of improving the discrimination property

among signal subspaces. As a result, the proposed method
outperforms methods (E) and (F). The LP-based derever-
beration scheme (B) is also based on the Fourier trans-
form principle and this method is not tuned to the ASR.
Moreover, it is very sensitive to the effects of the back-
ground noise. We note that at the very severe condition
(T60 = 600 ms and SNR=0 dB), word accuracy becomes
negative due to a large number of insertion errors together
with substitution errors for unprocessed speech.

E) Effectiveness of the proposed wavelet
optimization
In Table 2, we show the detailed recognition performance
in word accuracy, when optimizing the wavelet family
based on the likelihood criterion (Section II-A.1) and
the likelihood ratio criterion (Section III-A.2). The for-
mer only deals with the correspondence matching between
the wavelet family and the signal of interest, while the
latter includes a mechanism to improve the subspace



wavelet-based dereverberation optimized for asr 11

Fig. 6. Robustness to noise that are not enrolled in the profile database (averaged results of 20, 10, and 0 dB SNR).

discrimination among the signals of interest. In this table,
we also show the effect of the proposed method (H)
which includes both maximizing the likelihood ratio crite-
rion (Section III-A.2) and optimizing the wavelet param-
eter (Section III-B). The existing wavelet-based filter-
ing method (un-optimized) [7, 14] (G) is also provided.
The effectiveness of the proposed method is confirmed in
Table 2. For reference, both methods (C) and (G) use the
Daubechies wavelet while method (D) uses a Quadratic
spline wavelet.

F) Robustness to new noise types
The notion of expanding the original base noise into noise
profiles is to find a representative of an unknown noise. We
investigate the robustness of the proposed method in the
event that a particular noise during testing is not covered
in the noise profile database. To simulate this scenario, we
held out the base noise together with its derivatives and
compare its performance when it is not being held-out. The
noise types that were excluded constitute as a new set of
test data representing the new noise type. The comparative
results are shown in Fig. 6. The difference in word accuracy
between held-out (open test) and noise-enrolled, averaged
over 20, 10, and 0 dB is negligible as shown in the figure,
which means that the system is robust to noises that may
not be present during enrolment. This may be attributed to
the expansion of the noise database (i.e. noise profiles). The
combination of different types of base noise as discussed in
[12] has generated some noise profiles similar in character-
istics to that of the held-out noise types. This renders the
system to be robust. Moreover, the ability to select appro-
priate wavelet for different noise-types may have a positive
impact as well.

V I . CONCLUS ION

In this paper, we have presented the methods of opti-
mizing the wavelet family and parameters using AM. The

resulting optimized wavelets effectively estimate the power
of the clean speech, late reflection, and background noise,
respectively, from a contaminant signal. Thus, WF in the
wavelet domain is improved. Since the optimization pro-
cess is carried out using the AM, the enhanced speech
signal is more likely to improve recognition performance.
Currently, we deal with simple additive background noise
since our method is primarily focused on dereverberation.
In the future, we will further investigate a more sophis-
ticated treatment of both dereverberation and denoising
(combined); including the convolutive effect of noise. Fur-
ther investigation in enhancing the current contaminant
model to effectively address both reverberation and back-
ground noise will be a challenging task in our future work.
Lastly, since the proposed method is a waveform enhance-
ment technique, it can also be employed to train deep neural
network-based ASR systems.
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