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Change-point detection-based power quality
monitoring in smart grids
xingze he1, man-on pun2, and c.c. jay kuo1

The enormous economic loss caused by power quality problems (more than $150 billion per year in USA) makes power quality
monitoring an important component in power grid.With highly connected fragile digital equipment and appliances, Smart Grid
has more stringent timeliness and reliability requirements on power quality monitoring. In this work, we propose a change-point
detection theory-based power quality monitoring scheme to detect the most detrimental power quality events, such as voltage
sags, transients and swells in a quick and reliable manner. We first present a method for single-sensor detection scenario. Based
on that, we extend the scheme to multi-sensor joint detection scheme which further enhances the detection performance. A
group of conventional power quality monitoring schemes (i.e. Root-mean-square, Short-time Fourier transform, MUSIC, and
MBQCUSUM) are compared with the proposed scheme. Experimental results assert the superior of the proposed scheme in
terms of detection latency and robustness.
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I . I NTRODUCT ION

It has been estimated by the U.S. Department of Energy that
more than $150 billion economic loss is caused by power
quality problems each year in the USA [1, 2], and this num-
ber is expected to continue increasing as the power demand
increases much faster than the power system capacity.
In addition, power quality problems are main threats to
normal functioning of system equipments and end-user’s
devices. Even small voltage variations caused by power
quality problems (within one cycle, i.e. 1/60 s) are detri-
mental enough to crash servers, computers, life-support
machines and other microprocessor-based devices. To mit-
igate these risks, modern smart grid systems distribute a
large amount of phasor measurement units throughout the
entire power system for power quality monitoring. The sys-
tem so-called Wide Area Measurement System is designed
to provide real-time situational awareness which is essential
for safe and reliable smart grid operations [3, 4]. How-
ever, the real-time measurement system only is insuffi-
cient to meet the power quality monitoring requirements.
Advanced measurement data-processing techniques must
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be designed to detect power quality problems in a fast and
reliable manner.

The power quality monitoring generally consists of three
steps: detection, characterization, and classification. The
detection step takes the measurement data as input and
triggers alarm when power quality problems are detected.
The characterization step analyzes and extracts features
from power quality problems data. Finally, the classification
process classifies power quality problems into predefined
categories based on the features extracted in the charac-
terization step. According to the classification result, corre-
sponding amending operations are then taken to solve the
problem and mitigate the loss. Our focus in this work is on
the first step, power quality problem detection.

Based on the deviation magnitude, power quality prob-
lems are generally classified into two categories, namely
power quality variations and power quality events [5]. The
power quality variation is characterized by small deviations
from the nominal power line signal while the power quality
event typically has large deviations with approximately mil-
lion dollars damage per event. Major power quality events
are voltage sags, swells, and transients. In this work, we
mainly focus on the power quality events detection.

To meet the stringent timeliness requirement, we pro-
pose a novel detection scheme based on the change-point
detection theory in this work. We first study the sta-
tistical properties of normal power line signals and sig-
nals of all power quality event types. Then, a detection
scheme based on the Cumulative Sum (CUSUM) approach
is developed by exploiting the statistical properties. Finally,
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amulti-sensor joint detection scheme is proposed to further
improve the detection speed.

The rest of the paper is organized as follows. Section II
briefly discusses the previous work of power quality mon-
itoring. Section III presents the single-sensor detection
scheme. The multi-sensor scheme is then discussed in
Section IV. Section V provides experimental results and,
finally, Section VI concludes this paper.

I I . REV I EW OF PREV IOUS WORK

Root-mean-square (RMS) voltage is a most widely used
approach for power quality event detections in power sys-
tem. The detector keeps track of the RMS value of the
voltage signal over a sliding window with size typically as
1 cycle or 0.5 cycle. The likelihood of the power quality
event is then evaluated according to the deviations from the
nominal RMS value.

Another type of approaches utilizes either high-pass or
bandpass filters, like Short-time Fourier transform [6, 7]
and Wavelet filters [8, 9]. Since the normal power signal
waveform is only composed of harmonics of low-frequency
components, high-frequency components usually indicates
occurrence of power quality events, e.g. transients.

The third type of methods decomposes the power line
waveform into a sum of damped sinusoids using super-
resolution spectral analysis techniques (e.g., ESPRIT or
MUSIC) [10–12]. Power quality events are then detected
by decomposing the measured signal and comparing with
those decomposed from normal signals.

Note that a sliding window is required by all of the three
types of methods above to segment the power line signal
waveform into blocks before any transformation or decom-
position. As a result, the time resolution of all thesemethods
is restricted.

Without the sliding window, Tartakovsky and Pol-
unchenko [13] discussed a decentralized change-point
detection scheme in distributed sensor network. The
scheme so-called MBQCUSUM using the binary quantiza-
tion technique is proven to be asymptotically optimal at the
reference points and rather efficient elsewhere.

I I I . S INGLE -SENSOR DETECT ION
SCHEME

A) Problem formulation
The single-sensor detection problem is to detect the power
quality events as quickly as possible with only one sensor
deployed in the target area. As shown in Fig. 1, given a
sequence of power line sensor measurements {Vi , i ≥ 0},
where Vi is either voltage measurement in volts or current
measurement in ampere, the power quality event detection
module outputs di ∈ {0, 1} where 0 indicates the absence of
power quality events while 1 indicates the detection of cer-
tain type of power quality event. For simplicity, we consider
the single power quality event in our analysis.

Fig. 1. Single-sensor power quality event detection.

Given event occurrence time te and event detection time
td , the detection latency is then expressed as D = td − te ,
where td ≥ te . The primary goal of the single-sensor detec-
tion is to minimize the detection latency under constraints
such as a given false alarm rate (FAR).

B) Proposed scheme
1. Overview
The proposed detection scheme is based on the change-
point detection theorywhich provides optimal detection. In
the scheme, we first model both of the pre-event (normal)
and post-event power line signals. In the post-event signal
modeling, we consider all types of power quality events, i.e.
voltage sags, swells, transients and interruptions. By setting
up these models, the probability density function (PDF) of
both pre-event and post-event signals are derived. Finally,
the CUSUM-based detection algorithm is proposed.

2. Signal modeling
According to the presence of the prior knowledge about
the potential power quality event types, two power qual-
ity event modeling methods can be used: generic modeling
and event-specific modeling. As the name suggests, generic
modeling uses a single generic formula to model all types
of power quality events by taking into account both addi-
tive and multiplicative distortion. In contrast, the event-
specific model is proposed to further simplify the modeling
of specific power quality events.

a. Generic modeling

• Pre-event signal
The kth sample of the pre-event signal can be modeled as

y[k] = sθ0 [k] + n[k], t ≤ te , (1)

where n[k] is the additive white Gaussian noise with zero-
mean and variance σ 2

n , denoted byN (0, σ 2
n ), and

sθ0 [k] = a0 · sin (2π f0Ts k + φ0) , (2)

is the pure power line waveform signal with Ts being the
sampling duration, θ0

def= [a0, f0, φ0]
T , where a0 = 1 is the

signal amplitude gain, and f0 and φ0 are the fundamental
frequency and the initial phase of the power waveform,
respectively.

• Post-event signal
As a genericmodel, the kth sample of the post-event signal
can be modeled as

y[k] = sθ1 [k] + n[k], t ≥ te , (3)

where sθ1 [k] consists of both additive and multiplicative
distortion terms in an approach commonly employed in



change-point detection based power quality monitoring in smart grids 3

the literature of time-series analysis [14]. sθ1 [k] has the
following form:

sθ1 [k] = a1 · sin (2π f1Ts k + φ1)︸ ︷︷ ︸
Multiplicative

+ ξϕ[k]︸ ︷︷ ︸
Additive

(4)

and θ1
def= [

a1, f1, φ1, ϕT
]T .

The above generic model can be used to model all
types of power quality events with appropriate parameter
adjustments. For instance, a voltage sags signal could be
modeled as a sudden drop in thewaveformamplitude gain
with a1 < a0, while setting f1 = f0, φ1 = φ0, ξϕ[k] = 0.
In contrary, transient signal can be modeled with rela-
tively large and fast-changing ξϕ[k].

b. Event-specific modeling

• Pre-event signal
Event-specific modeling adopts the same method of
generic modeling for the pre-event signal, as shown in
equation (1).

• Post-event signal
Different from the generic modeling, the post-event sig-
nal is modeled according to the specific type of the power
quality event. We divide the three types of power quality
events into two categories: sags/swells and transients.

For sags/swells, the voltage changes with possible phase
deviation, but the frequency during the event keeps same.
Therefore, the kth sample of the post-event signal is
modeled as

y[k] = sθ0 [k] + ess [k] + n[k], t ≥ te , (5)

where ess [k], sample from the difference of two sinusoidal
signals with the same frequency but different phase, is uni-
formly distributed in [−b, +b] where b is an unknown
parameter. The uniform distribution assumption was
made by assuming the two sinusoidal signals are strongly
correlated. ess < 0 indicates a voltage sag event, while
ess > 0 indicates a voltage swell event.

For transient, considering its damped oscillation dur-
ing the event, the kth sample of the post-event signal is
approximately modeled as

y[k] = sθ0 [k] + eth[k] + n[k], t ≥ te , (6)

where eth[k], is a normal distribution random variable
with mean 0 and unknown variance σ 2

th . Note that, the
normal distribution is assumed by modeling the transient
as sum of multiple sinusoidal signals [15].

3. PDF derivation
With the above statistical models, we are able to derive the
PDF of both pre-event and post-event signals for further
analysis based on the change-point detection theory.

a. Pre-processing
To facilitate the PDF derivation, we first subtract the pure
power line signal sθ0 [k] from the measured samples y[k].
After the one-step pre-processing, the output signal is
derived as

z[k] = y[k] − sθ0 [k], for all t. (7)

b. PDF derivation of generic modeling
After pre-processing, the pre-event signal becomes

z[k] = n[k]. (8)

Therefore, the PDF of the pre-event signal can be derived as

pθ0(z) = 1√
2πσ 2

n

exp−z2/2σ 2
n . (9)

Similarly, the post-event signal becomes

z[k] = x[k] + w[k], (10)

where

x[k] = a1 · sin (2π f1Ts k + φ1) , (11)

w[k] = ξϕ[k] − sθ0 [k] + n[k]. (12)

By invoking the central limit theorem, the PDF of w can
be approximated as N(0, σ 2

w), where σ 2
w = σ 2

ξ + σ 2
n + 1

2a2
0 .

Further, a first-order approximation of the PDF of x mod-
eled asU (−a1, a1) is employed in the sequel to keep the fol-
lowing derivation analytically tractable. Then, it is straight-
forward to derive the post-event PDF as

pθ1(z) = 1

4 |a1|
[
erf

(
z + |a1|√

2 · σw

)
− erf

(
z − |a1|√

2 · σw

)]
,

(13)

where a1 and σw are both unknown parameters.

c. PDF derivation of event-specific modeling
Similar to the generic modeling approach discussed above,
the pre-event PDF of the event-specific modeling can be
derived as equation (9). For the post-event signal, different
types of power quality events have different PDFs.

For sags/swells, the post-event signal after pre-processing
is written as

z[k] = ess [k] + n[k]. (14)

It can be shown that the PDF of z[k] can be derived as

pθ1(z) = 1

4 |b|
[
erf

(
z + |b|√

2 · σn

)
− erf

(
z − |b|√

2 · σn

)]
, (15)

where b indicates the value range of the uniformly dis-
tributed ess as shown in equation (5).
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For transients, the post-event signal after pre-processing
is expressed as

z[k] = eth[k] + n[k]. (16)

The PDF of z[k] can then be derived as

pθ1(z) = 1√
2π(σ 2

n + σ 2
th)

exp−[z2/2(σ 2
n +σ 2

th)], (17)

where σth is an unknown parameter.

4. Detection algorithm
The proposed detection algorithm is based on the CUSUM
scheme [16, 17]. The basic CUSUMalgorithmfirst calculates
the log-likelihood ratio of each sample as

s [k] = ln
pθ1(z[k])

pθ0(z[k])
. (18)

Due to the existence of the unknown parameters in the
post-event model, we calculate the weighted sum of the
log-likelihood ratios considering all possibilities. We then
extend equation (18) into the following form:

s [k] = ln

[∫
A1

∫
�w

pθ1(z[k])

pθ0(z[k])
dF�w

(σw) dFA1 (a1)

]
,

(19)

where F∗(∗) indicates the cumulative distribution func-
tion of the unknown parameter. Three different uncertainty
models (i.e. Guassian, Gamma, and Inverse-Gamma) of the
unknown parameters are used [18].

With accurate modeling and parameter estimation,
pθ1(z[k]) is generally larger than pθ0(z[k]) during pre-event
phase while smaller than pθ0(z[k]) during post-event phase.
As a result, s [k] is prone to be negative during pre-event
phase while more likely to be positive during post-event
phase. Then, we calculate the cumulative sum of the log-
likelihood ratio as

S[k] =
k∑

i=1

s [i]. (20)

Finally, according to the CUMSUM algorithm from the
quickest detection theory [17], the stopping time can be
found as

td = min{k : S[k] − min
1≤ j<k

{S[ j ]} > h}, (21)

where h is the predefined threshold.

I V . MULT I - SENSOR JO INT
DETECT ION SCHEME

A) Problem formulation
In multi-sensor scenario, multiple sensors within the tar-
get geographical area are involved for the joint detection.

Fig. 2. Multi-sensor joint detection.

As shown in Fig. 2, each detector takes its corresponding
sensor measurements {Vl

0 , Vl
1 , Vl

2 , . . . }, 1 ≤ l ≤ L as input
sequence and outputs its processing result dl , 1 ≤ l ≤ L .
These intermediate processing results are then sent to the
fusion center through independent communication chan-
nel. Finally, the fusion centermakes the final detection deci-
sion, D ∈ {0, 1}, based upon the local processing results.

B) Proposed scheme
Generally, there are two ways to handle sensors’ measure-
ments: one is to directly send the original measurements to
the fusion center for central processing; the other way is to
send the compressed measurements or local results to the
fusion center for further processing. The latter one is usu-
ally more practical due to the communication bandwidth
constraints.

In our proposed multi-sensor scheme, each remote
detector outputs its local decision dl

i ∈ {0, 1} made by the
single-sensor detection scheme discussed in Section III.
On the fusion center side, majority voting is adopted for
the joint decision making. Specifically, given a sequence
of local decisions from multiple sensors in the target geo-
graphic area dl

i , i ≥ 0, 1 ≤ l ≤ L , where dl
i ∈ {0, 1} and L

indicates the number of sensors involved. The final decision
is made as

Dk =

⎧⎪⎨
⎪⎩

1, if
L∑

l=1
dl

k > L
2 ,

0, otherwise,
(22)

Suppose the FAR of the single-sensor detection scheme
is predefined as α, the FAR of the multi-sensor scheme can
be derived as

αMVWCU SU M =
L∑

q=L/2

(
L

q

)
αq (1 − α)(L−q). (23)

Fig. 3 shows the relationship between αMVWCU SU M and
α. Inspection of Fig. 3 reveals that the FAR is signifi-
cantly improved when α is smaller than 0.5. In addition,
as more sensors are involved, better FAR improvement can
be achieved by the multi-sensor detection scheme. Since
less time samples are required, such a multi-sensor scheme
can effectively reduce the detection latency. According to
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Fig. 3. FAR improvement with multi-sensors.

Fig. 4. SimPowerSystem model for voltage sag event.

Fig. 5. SimPowerSystem model for voltage transient event.

Wald’s inequality [19], we have the relationship between the
predefined FAR α and the threshold h as

e−h = α. (24)

Then, we can choose

h = − ln α. (25)

In order to achieve the targeted FAR for various signalmod-
els and power events, Monte Carlo simulation is performed
to determine the optimal threshold for a given FAR.

V . EXPER IMENTAL EVALUAT ION

We use Matlab toolbox SimPowerSystems to model and
simulate electrical power systems for power quality event
signal generation. For example, Figs. 4 and 5 are powersystem
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Fig. 6. 3-Phase power quality event generated from SimPowerSystems models. (a) Voltage Sag. (b) Transient.

models for voltage sags and voltage transient, respectively.
As shown in Fig. 4, the voltage sag event is triggered by
the fault on one of the transmission lines. The voltage tran-
sient event, shown in Fig. 5, is triggered by the connection of
large capacitor banks in order to improve the system power
factor. Fig. 6 shows the generated power quality event sig-
nals. In this particular example, voltage sag event happens
around 0.06 s and lasts until 0.15 s, while transient event
occurs at 0.06 s and ends soon.

To compare the performance, we define the following
averaged mean squared error (MMSE) of the event detec-
tion as the performance metric:

MMSE = E [E [(Te − Oe)
2])], (26)

where Oe indicates the occurrence time of the power quality
event and Te is the detected stopping time.

Fig. 7(a) shows the short-time Fourier transform (STFT)
of the transient event signal. The appearance and disap-
pearance of high-frequency components indicates the start-
ing and ending times of the transient event, respectively.
Fig. 7(b) shows the analysis result of the MUSIC method.
The deformed spectrum indicates the occurrence of the
power quality event. Please note, Figs 7(a) and 7(b) shows
results of STFT andMUSIC on the pure transient event sig-
nal, noise distortion is not included. Due to the periodicity
of the sinusoidal power signal, the window size of STFT and
MUSIC must be a multiple of the cycle and the sliding step
must be a multiple of half cycle to output a steady result
during the pre-event phase. Limited by the sliding window
effect, both of the STFT and MUSIC method are restricted
by a fixed detection resolution (0.01 s). Therefore, neither of
them provides quick detection for smart grid system.

Fig. 8(a) shows the detection result of the sample-by-
sample RMS method on the transient event signal. The
detection result is expressed in terms of detection metric
derived from the signal amplitude according to various
detection methods. The length of the sliding window is set

to be a cycle, i.e. 1/60 s. The prominent amplitude devi-
ation around 0.06 s indicates the incidence of the power
quality event. Fig. 8(b) shows the detection results of
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Fig. 7. STFT and MUSIC results. (a) STFT result on transients event. (b)
MUSIC result on transients event.
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the proposed scheme using generic modeling and event-
specific modeling respectively. The turning points shown
in Fig. 8(b) indicates the occurrence of the power quality
event. To further compare the performance, we plot the
averaged detection latency under different signal to noise
ratio (SNR). The FARs of both schemes are predefined as
α = 0.17%. As shown in Fig. 8(c), the proposed scheme is
able to detect the power quality event faster under the fixed
FAR.

Fig. 9 compares the averaged detection latency under
different noise levels. For a larger SNR, the event-specific
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Fig. 10. Detection results under different uncertainty models. (a) Detection curves. (b) Detection latency.

modeling slightly outperforms the generic modeling in
terms of the detection latency. In addition, with one
unknown parameter, the event-specific modeling is more
computationally efficient than that of the generic
modeling.

Fig. 10 shows the detection results under different uncer-
tainty models. The detection curves of an example event
signal shown in Fig. 10(a) present similar performance.
Fig. 10(b) further proves the observation.With a large noise
level, there is not much performance difference among dif-
ferent uncertainty models. When the noise level increases,
however, uniformmodel andGaussianmodel offer superior
robustness.

Similar to the single-sensor data generation, we use the
SimPowerSystem for multi-sensor power quality event data
generation. We place multiple sensors along the transmis-
sion line in different event models. For example, a gener-
ated three-sensor voltage sag signals are shown in Fig. 11.
The distance between two sensors is 150 km and sensor
VM2 is the closest one to the actual event occurrence
location.

The MBQCUSUM scheme and the proposed MVW-
CUSUM scheme are applied to the above multi-sensor
power quality signals for event detection. We compare the
detection performance of the two schemes in terms of
detection delay and FAR with fixed alarm threshold. We
can see from Fig. 12(a) that the MBQCUSUM scheme can
achieve slightly smaller detection delay (i.e. hundreds of
milliseconds) than the MVWCUSUM scheme. According
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to Fig. 12(b), however, the proposedMVWCUSUM scheme
is more robust compared with the MBQCUSUM scheme as
the noise level increases.

V I . CONCLUS ION AND FUTURE
WORK

We propose a power quality event detection scheme for
power quality monitoring in Smart Grid. Based on the
change-point detection theory, we exploit both instanta-
neous information (real-time power line signal samples)
and historical statistics of power line signals to detect the
occurrence of power quality event in a quick and reli-
able manner. We also present a multi-sensor joint detec-
tion scheme to further improve the detection performance.
We compared the proposed scheme with a group of con-
ventional schemes and shows that our scheme outper-
forms conventional schemes in detection latency, reliability
and robustness. In the future work, we plan to have a
deeper analysis of the theoretical properties of the proposed
scheme.
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