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industrial technology advances

The rationale for ensemble and
meta-algorithmic architectures in signal
and information processing
steven j. simske

We are living through an historic era in computing. As the price of data storage and processing continues to plummet, we
are moving closer to a world where exhaustive search makes sense for certain types of intelligent systems. Signal and image
processing are two related domains that benefit from this ubiquity of data storage and computing power. In this paper, a new,
more collaborative, approach to solving signal and image processing tasks is built from the ground up to take into account the
reality of this new age of data and computing superfluity. Starting with the mature field of ensemble methods and moving to the
more-recently introduced field of meta-algorithmics, systems can be designed which are by nature to specifically incorporate new
machine-learning technologies. These are more robust, more accurate, more adaptive, and ultimately less costly to build and
maintain than the traditional machine-learning approaches. Applications to image and signal processing will then be discussed.
Combined, these examples illustrate a new meta-architectural approach to the creation of machine intelligence systems.
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I . I NTRODUCT ION

Machine intelligence is all around us. Our financial institu-
tions sift through our purchasing data to define patterns of
usual – and by their complement unusual – activity in order
tominimize fraud.Most likelywords andqueries showup in
typed, spoken, and gestured applications and services. Self-
driving cars are part of the everyday conversation. It is clear
that a growing percentage of the intelligent decisions made
in our world are performed by the machines, and not the
minds, of humans.

This “additional level of indirection” for decision-making
comes at a price. There is the risk that reliance on machine
algorithms may make humans less capable in some intel-
lectual capacities; however, this issue will not be addressed
here. What is more germane – and potentially more fright-
ening – is that machines will make critical mistakes which
go unnoticed. This argument is not based on an apoc-
alyptic or Luddite fear of computers. Computers have
arguably improved human lives more than any other inven-
tion (water purification and agriculture notwithstanding).
Instead, it is because machine intelligence is so very differ-
ent from human intelligence that the reliability of machine
intelligence output must be questioned.
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Computers and their associated algorithms, systems and
intelligence engines outperform humans on many math-
ematical and analytical tasks. To date, however, humans
significantly outperform computers on more distributed,
Gestalt, intuitive and unstructured tasks. As computers
are tasked more and more in this purported “Big Data”
era to discern information from ever-growing amounts of
unstructured data, how can we be sure that the machine
intelligence is consistent with human intelligence? One
approach is to design machine intelligence systems that
share the precepts of human intelligence. Paramount among
these are the following precepts:

• The ability to incorporate new rules of discernment and
models for analysis into an existing model or set of
models;

• The ability to selectively apply different learned content
based on the context;

• The ability to correctly solve problems in the absence of
sufficient input;

• The ability to perform “real time ground truthing”; that is,
the ability to assess a situation after a particular output is
assumed and efficiently perform a minimal set of valida-
tion experiments to prove or disprove the correctness of
the output.

These precepts will be re-considered (Section VII) after
the stage for meta-algorithm-based architectures is given.
The ensemble and meta-algorithmic approaches and their
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application to signal and image processing are outlined in
Sections II and III. In Section IV, a new model for intel-
ligent system architecture based on meta-algorithmics is
supported. This model is then applied to Biological Sig-
nal Processing (Section V) and to general Image Process-
ing, Object Segmentation and Classification (Section VI).
Section VII provides the Discussion, Conclusions, and the
Future of this approach to system design and deployment.

I I . ENSEMBLE ARCH ITECTURES

This section elaborates on Chapter 1, Section 6 of my earlier
work [1]. As noted there, ensemble learning focuses on the
handling of the output of two or more intelligent systems in
parallel. The reviews provided by [2, 3] are recommended
for their particular value in understanding ensemble
methods.

In [2], ensemble methods are described as “bundled fits
produced by a stochastic algorithm, the output of which is
some combination of a large number of passes through the
data”. This, then, constitutes an algorithm inwhich bundling
or combining of the fitted values from a number of fitting
attempts is used iteratively to converge on an intelligent out-
put [4]. Classification and Regression Trees as introduced
in [5] provide the means to move from traditional model-
ing (e.g. manifold-based systems and mixture models) to
algorithmic approaches. Partitioning of the input domain
is used to create subclasses of the input space which cor-
relate well with one class among a set of classes. However,
partitioning often leads to overfitting of the data and the
associated degradation of performance on test data relative
to the training data.

To avoid overfitting, ensemble methods are used. Bag-
ging, boosting and random forests are the three primary
ensemble methods described in [2]. Bagging, or “boot-
strap aggregation”, is an algorithm: random samples are
drawn N times with replacement and non-pruned classifi-
cation (decision) trees are created. This process is repeated
many times, after which the classification for each case in
the overall data set is decided by majority voting. Over-
fitting is avoided by this averaging and by the proper
selection of a margin for the majority voting. This means
some cases will go unclassified, but since multiple trees
are created these samples will likely be classified through
another case. Should any samples be unassigned, they
can be assigned by nearest neighbor or other decisioning
approaches.

Boosting [6] is, generally speaking, a process inwhich the
misclassified cases are more highly weighted after each iter-
ation. This is conceptually – though not mathematically –
analogous to the definition of a support vector wherein the
samples most likely to be mis-classified are emphasized.
In a support vector, the samples defining the boundary
(or “manifold”) between classes are emphasized. Regard-
less, this approach often prevents overfitting, and as the
AdaBoost [6, 7] algorithmhas certainly proven accurate in a
number ofmachine-learning problems. The approach is not

without problems, however. The stopping criterion – usu-
ally the error value during training – is not always effective,
and convergence is not guaranteed.

Random forests [8] are another important ensemble
approach. These further the randomness introduced by
bagging by selecting a random subset of predictors to cre-
ate the node splits during tree creation. They are designed
to allow trade-off between bias and variance in the fitted
value [2]. They are often useful for defining structure in an
otherwise unstructured data set.

The ensemble methods bagging, boosting, voting, and
class set reduction are among the 18 classifier combination
schemes overviewed in [9]. This broad and valuable paper
mentions the possibility of having individual classifiers use
in different feature sets. It also mentions different classifiers
operating on different subsets of the input; for example, the
random subspace method. This approach lays some of the
groundworks for meta-algorithmics; in particular, the Pre-
dictive Selection approach. Systemization of that approach,
however, does not occur until [1], and is covered in the next
section of this paper.

In [3], ensemble learning is defined as an approach
to combine multiple learners. Sewell introduces boot-
strap aggregating, or bagging, as a “meta-algorithm”
which is a special case of model averaging. The bag-
ging approach can be viewed as an incipient form of the
Voting meta-algorithmic pattern described in [1], Chap-
ter 6, Section 3.3. It is useful for both classification
and regression machine-learning problems. Different from
meta-algorithmic patterns, however, bagging operates on
multiple related algorithms, such as decision stumps, and
not on independently-derived algorithms. Boosting is also
described in [3] as a “meta-algorithm” that provides amodel
averaging approach. It, too, can be used for regression or
classification. Boosting’s value is in generating strong clas-
sifiers from a set of weak learners.

Another ensemble method is stacked generalization,
described in [10]. Stacked generalization extends the
combined training and validation approach to a plural-
ity of base learners. This is a multiple model approach
in that rather than implementing the base learner with
the highest accuracy during validation, the base learn-
ers are combined, often non-linearly, to create the “meta-
learner”. This paves, but does not systematize, the path
for meta-algorithmic patterns such as Weighted Voting.
However, stacked generalization is focused on combining
weak learners, as opposed to meta-algorithmics which are
focused on combining strong learners, engines or intelligent
systems.

The final ensemble method that introduces some of the
conceptual framework for meta-algorithmics is the random
subspace method [11], in which the original training set
input space is partitioned into random subspaces. Separate
learning machines are then trained on the subspaces and
the meta-model combines the output of the models, usu-
ally through majority voting. This shares much in common
with the mixture of experts approach [12], which differs in
that it has different components model the distribution in
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different regions of the input space and the gating function
decides how to use these experts. The random subspace
method leads to a single model – capable of classification
or regression analysis – that can provide high accuracy
even in the face of a highly non-linear input space. Both
the random subspace and mixture of experts’ approaches
are analogous in some ways to the Predictive Selection
meta-algorithmic approach and related meta-algorithmic
patterns. However, like other ensemble approaches, these
models stop at providing an improved single model for data
analysis. Meta-algorithmics, on the other hand – as seen
in the next section – use the output of ensemble meth-
ods, other classifiers, and other intelligent systems as their
starting points. Meta-algorithmics combine multiple mod-
els to make better decisions, meaning that, for example,
bagging, boosting, stacked generalization, and random sub-
space methods could all be used together to create a more
accurate, more robust and/or more cost-effective system.

I I I . META -ALGOR ITHM IC
ARCH ITECTURES

In [1], 20 specific meta-algorithmic patterns and one
generalized meta-algorithmic pattern are presented. The
patterns are arranged as first-, second-, and third-order pat-
terns based on their relative complexity and for ease of
instruction. Regardless of arrangement, the reader should
appreciate that knowing how to apply the patterns is more
important that their “structural clustering”. Each of the pat-
terns will be overviewed briefly, and one or more examples
of each given in the following sections. In this section, each
pattern is summarized for its overall value to the owner
of multiple machine intelligence generators (algorithms, sys-
tems, engines, etc.). The patterns are described in more
detail in [1] and the meta-algorithmic system diagrams can
be downloaded from [13].

A) First-order meta-algorithmics
The easiest meta-algorithmic pattern is named Sequential
Try – and this consists of nomore than trying onemachine-
learning approach after another until a task is completed
with sufficient quality. Evaluation is performedmanually or
automatically. This pattern is very useful when the system
architect can arrange her machine intelligence generators
in order of cost, expected time to completion, licensing
availability, etc.

Another relatively simple meta-algorithmic pattern is
the Constrained Substitute pattern. This pattern allows one
algorithm or machine intelligence system to substitute for
another when it is certain (with a given statistical prob-
ability) that the substitute system (which saves licensing
costs, processing time, storage, etc.) will perform acceptably
well in comparison with the substituted system. This pat-
tern is extremely useful for distributed systems with limited
licensed versions of the software or when processing power
is not a limiting factor in the system design.

Voting and Weighted Voting are simple means of using
multiple machine intelligence approaches simultaneously.
In using the Voting patterns, the outputs are simply
summed. For classification problems this means that the
class accumulating the highest total sum from the plural-
ity of classifiers is the labeled class. For Weighted Voting,
each algorithm or system is weighted based on its rela-
tive value to the overall solution. The weighting is usually
inversely proportional to the error rate in some way. This
pattern is probably the easiest choice for a system archi-
tect, as all systems contribute to the outcome for every case.
However, it typically requires more processing time, has
maximum cost, and is typically less robust than most other
meta-algorithmic system architecture choices.

Predictive Selection is a powerful – and widely applica-
ble –meta-algorithmic pattern that provides a very adaptive
means of assigning input to one of several subclasses, each
of which is best processed by a specific algorithmic ormeta-
algorithmic approach. The system architect thus assigns dif-
ferent analysis approaches to each of two or more different
parallel pathways based on a – preferably highly accurate –
prediction of whichmachine intelligence approachwill per-
form best on each of the paths. This approach is valuable in
many different intelligent systems, and is often a “first good
guess” for the system architecture when the input domain is
broad.

The final first-ordermeta-algorithmic approach is that of
Tessellation andRecombination. This pattern requires some
domain expertise, since the tessellationmust logically break
up larger data units into their atomic units prior to their
recombination. This approach, however, has high likelihood
to produce emergent results and behavior than the afore-
mentioned first-order meta-algorithmic approaches. This
pattern is valuable when the input to an intelligent system
already represents, at some level, processed data. In other
words, it is valuable when the input data is already “intelli-
gent”. This pattern “reconsiders” the intelligence added at
the previous level to create an additional level of intelli-
gence. This pattern is particularly relevant to human learn-
ing, since the means in which to recombine information is,
ideally, driven by domain expertise.

B) Second-order meta-algorithmics
The second-order meta-algorithmics feature two or more
stages to perform the meta-algorithmic task. Several of
these patterns rely on the confusion, which is a matrix
showing all classification assignments. Those on the matrix
diagonal are correctly assigned, whereas those off-diagonal
provide the mis-classifications of the actual class (row) to
the mis-assigned class (column). This matrix is very helpful
for illuminating where subsets of classes may benefit from
a less general intelligence engine that simplifies the overall
classification problem.

The Confusion Matrix Pattern, as defined in [1], actually
relies on an Output Probabilities Matrix (OPM) that effec-
tively summarizes the relative classification confidence in
each classification output. An illustrative example is shown
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Table 1. Example OPM. Each of four classifiers has a total (summed)
confidence of 1.0, which shows up in the columns under “1”, “2”, etc.

Classifier
Output probabilities

matrix 1 2 3 4 Sum

Classifier confidence
output for Class

A 0.22 0.52 0.13 0.28 1.15

B 0.45 0.10 0.44 0.39 1.38
C 0.33 0.38 0.43 0.33 1.47

The sum of all Classifier confidence in each row can be used to select the
“Class” assignment. In this case, the sum is greatest for Class “C”. See the
text for more details.

in Table 1. Here, there are four Classifiers, each of which
assigns a normalized (sum of 1.0) probability of output to
each of the classes (here, there are three classes A, B, and C).
Thus, each column sums to 1.0. The sum of each row is used
to choose the overall assigned class. In the example below,
Class C has the highest overall confidence even though
Class B was chosen by three of the four classifiers.

Themanner in which the confusionmatrix is used deter-
mines the output classification. If the greatest sum is chosen,
then the classification for Table 1 is “Class A”. Other pos-
sible classifications are possible, however. The OPM could
be used, for example, as a mechanism for arranging votes
by each of the classifiers. In this case, “Class B” would be
chosen, with three votes. The OPM can also be weighted by
the relative accuracy of the classifiers. An example of this is
shown in Table 2, for which the Class “B” is chosen.

The output of an OPM as shown in Tables 1 and 2
is used to generate the Confusion Matrix, an example of
which is given in Table 3. Suppose that in the example of
Tables 1 and 2 Class “C” is the correct classification. The
result of Table 1 would be incorrect and would result in an
off-diagonal entry in the Confusion Matrix (Classifier Out-
put= “B”, True Class= “C”). The result of Table 2 would be
correct and result in an on-diagonal entry in the Confusion
Matrix (Classifier Output = “C”, True Class = “C”).

Once a large enough set of samples has been classified,
the confusionmatrix can be normalized such that each class
is equally represented and the sum of each row is 1.0. Such
a normalized confusion matrix is shown in Table 3.

Table 2 provides the input for the meta-algorithmic pat-
tern of Weighted Confusion Matrix. Here, the OPM of
Table 1 is multiplied by the relative contribution of each

Table 3. Example confusion matrix.

Classifier Output
(computed classification)

Confusion matrix with prediction
each Class having equal
representation in samples A B C

True Class of the samples (input) A 0.94 0.03 0.03
B 0.08 0.85 0.07
C 0.08 0.04 0.88

classifier to the final decision. More accurate, robust, or
otherwise valued classifiers are given higher OPM values
in proportion to their overall confidence weighting. The
impact of this is that differences in classifier confidence are
exaggerated for the more trusted classifiers, allowing them
to “outweigh” the other classifiers. In Table 2, the much
higher confidence classifier “2” has for Class “C” instead of
the correct Class “B” is thus overcome by the higher relative
weights assigned to the OPM cells for the other classifiers.
This results in a (column, row) assignment of (B,B) to the
confusion matrix in Table 3, which is along the diagonal
(and thus not confused).

The remainder of meta-algorithmic patterns will be
described more briefly here. The main goal of overviewing
the meta-algorithmic patterns is to support the argument
for an architectural, or structural, change in how intelli-
gent systems are designed and built. The plurality of meta-
algorithmic approaches equates with many architectural
choices for the intelligent system builder.

The second-ordermeta-algorithmic approaches are con-
cerned with making the individual intelligent systems work
better together. One mechanism is output space transfor-
mation, which allows us to use the same generators and
the same meta-algorithmic pattern to optimize the system
for different factors; for example, accuracy or robustness or
cost. The goal is to coordinate the behavior of the probabil-
ity differences between consecutively ranked classes among
themultiple engines [14]. Depending on the transformation
used, a significantly improved classification accuracy can be
garnered.

Other second-order patterns internalize domain exper-
tise (Tessellation and Recombination with Expert Deci-
sioner), particularly in the recombination step of the
algorithm which dictates how aggregates of the data will
be reconstructed from the primitives resulting from the

Table 2. Example OPM of Table 1 with Classifiers additionally weighted by their relative accuracy. The Weight of Classifier 1 is 2.0 times that of
Classifier 2, with the other two Classifiers being intermediate to these two.

Classifier

1 2 3 4
Output probabilities matrix Weight = 2.0 Weight = 1.0 Weight = 1.1 Weight = 1.5 Sum

Classifier confidence output for Class A 0.44 0.52 0.143 0.42 1.523
B 0.90 0.10 0.484 0.585 2.069
C 0.66 0.38 0.473 0.495 2.008

The sum of all Classifier confidence in each row can be used to select the “Class” assignment. In this case, the sum is greatest for Class “B”.
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tessellation step. This is a formal pattern-based means of
ingesting domain expertise into the recombination phase.
Other approaches use one architecture when a particular
grading criterion is achieved; and a different architecture if
it is not.

C) Third-order meta-algorithmics
Third-order meta-algorithmics add even tighter coupling
between the multiple steps in the algorithm. The primary
analysis tools of these meta-algorithmics – feedback, sensi-
tivity analysis, regional optimization, and hybridization –
tightly connect not only one step to the next, but also
connect the downstream steps back to the earlier steps.

Using the Feedback pattern, errors in the reconstructed
information are immediately fed back to change the gain –
e.g. weights – on the individual system architecture settings.
This is related to the Proof by Task Completion pattern,
which dynamically changes the weighting of the individ-
ual systems after tasks have successfully completed (effec-
tively feeding back the successes rather than the errors).
This approach affords limitless scalability, since new data
do not change the complexity or storage needs of the meta-
algorithmic pattern. Also, there is a wide range of choice in
how to weight old and new data.

With the third-order meta-algorithmics, intelligent sig-
nal and image processing system architecting moves from
science to art. The basic patterns provide a structural frame-
work for the application of meta-algorithmics, which com-
prises the science of meta-algorithmics. However, there is a
lot of art in the domain expertise needed to relatively weight
old and newdata, to knowhow strongly to incorporate feed-
back, and to know which other meta-algorithmic patterns
to use in parallel. The crux is that for third-order meta-
algorithmics, expert experience (incarnated as rules suitable
to provide “expert system” guidance) is useful to determine
the settings of not just the individual algorithms/systems,
but also the settings of how the algorithms/systems
combine.

For example, the Confusion Matrix for Feedback pat-
tern incorporates the relationship between the errors in
the intelligence algorithms/systems (as elucidated by the
confusion matrix). The feedback is used here to identify
the biggest source(s) of error to direct the creation of the
most likely impactful binary decisions in the problem. The
Expert Feedback pattern incorporates expert-learned rules
which guide what elements of the output (and their relative
weighting) is fed back to the input.

Another third-order meta-algorithmic approach,
Sensitivity Analysis, is often used to optimize the weight-
ing for expert feedback and other weighting-driven meta-
algorithmic patterns. Sensitivity analysis can be used to:

a) determine stable areas within the confusion matrix
b) determine stable areas within the relative weighting of

feedback parameters
c) determine stable areas within correlation matrices to

provide dimensionality reduction

Sensitivity analysis can also be used to cluster expert feed-
back for subclass-based analysis. This enables the Regional
Optimization pattern, which extends the highly adapt-
able and powerful Predictive Selection pattern by select-
ing by subclass first- or second-order meta-algorithmic
patterns rather than just selecting individual algorithms,
systems, or engines. As with Predictive Selection, the high-
est expected precision for the specific subclass is chosen.
This pattern, obviously, takes the concept ofmeta-algorithm
and makes it recursive. Algorithms, meta-algorithms, even
meta-meta-algorithms can be combined to create new algo-
rithms, affording multiple levels of learning. This concept
is incarnated in the so-named Generalized Hybridization
pattern. As expected, this pattern is for optimization of
the combination and sequencing of first- and second-order
meta-algorithmic patterns for a given – generally large –
problem space. These final two patterns enable, at least in
theory, a limitless number of meta-algorithmic approaches
to machine learning.

I V . A NEW MODEL FOR
ARCH ITECTURE

The previous section illustrated the breadth of patterns
available for the intelligent system architect. Here, their part
in a new model for intelligent system architecture is pre-
sented in terms of adaptability, ease of rollout, robustness,
accuracy, and cost.

There are, first and perhaps foremost, significant advan-
tages for collaboration and cooperation. An architecture
designed from the ground up to support additionalmachine
intelligence algorithms and systems is not “threatened”
by the creation of individually superior technologies. The
design is innately superior in that is provides an ingestion
mechanism for any new technology in the salient area of
machine intelligence – including of course image and signal
processing. The ingestion mechanism comprises:

(1) Generating statistics about the ingested machine intelli-
gence algorithm/system;

(2) Internalizing these statistics;
(3) Assessing the new set of meta-algorithmic, combinato-

rial, and ensemble systems created by the ingestion of
the new intelligence-generating algorithm or system;

(4) Re-deploying the system with the preferred architecture
as determined by (3).

These steps are described in some detail here.

(1) Generating statistics about the ingested machine intelli-
gence algorithm/system

The ground-truth data for this stage will typically be com-
prised: (a) existing tagged (training) sets used to deter-
mine the system’s prior architecture; (b) specific new tagged
(training) data used to develop the intelligent algorithm
or system that is being ingested; and (c) successfully com-
pleted tasks associated with the machine intelligence task.
The first of these, (a), is easy to use, as this is tagged for
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all the previousmachine intelligence-generating algorithms
or systems – the ingestion engine will naturally be able
to use these since its interfaces must be made compatible
with the existing architecture as part of the ingestion pro-
cess. Likewise, (b) must be re-interfaced as necessary to be
compatible as part of the ingestion process. For (c), the sys-
tem designermaywish to weight the successfully completed
tasks differently than the ground-truth based on her confi-
dence that the tasks have been completed correctly (and not
for example manually corrected later), on the relevancy of
the completed tasks to the desired intelligence generation
goals, on the recentness of the task completed, or upon other
considerations.

(2) Internalizing these statistics

Once all applicable training data are properly gath-
ered and weighted, the task of scoring each individual
algorithm/system and every germane meta-algorithmic,
combinatorial, and ensemble approach to using multiple
algorithms/systems is scored. These statistics include how
each possible architecture performs on specific subsets and
tessellations of the ground truthing data (which is useful for
Predictive Selection and related patterns).

(3) Assessing the new set of meta-algorithmic, combinato-
rial and ensemble systems created by the ingestion of the
new intelligence-generating algorithm or system

As described above, the meta-algorithmic approach is
recursive, and so in theory there are an infinite number
of possible intelligent system architectures. In practice, the
recursion rarely merits a single level of recursion (e.g.,
deploying the Predictive Selection pattern where each path-
way selects a different meta-algorithmic approach, rather
than a single algorithm or system), let alone multiple levels
of recursion. The system architect will have enough domain
knowledge to know how far to reach with the recursion.
Moreover, depending on the nature of the task, a potentially
large number of meta-algorithmic/combinatorial/ensemble
approaches will be eliminated at the start. Regardless, all
applicable system architectures are considered and mea-
sured against the salient training/tagged data to decide on
the appropriate system architecture as an output of this
step.

(4) Re-deploying the system with this newly determined
preferred architecture

Assuming all or a portion of the preferred system deploy-
ment is altered by the addition of the new machine intelli-
gence algorithm/system, the last step involves updating the
needed portion(s). If the input is assigned to a sub-category
as in Regional Optimization or Predictive Selection, then
only one or more sub-classes may require an updated archi-
tecture that involves at least in part the ingested machine
intelligence algorithm/system. It is worth noting here that
the entry of new training sets into the system may result
in new sub-category definitions, meaning any/all previous
choices for algorithms or meta-algorithms may need to be

refreshed – if the sub-category boundaries have changed,
the best pattern to apply to each sub-categorymay also need
to change.

As these brief overviews make clear, the advantages of
adding new algorithms to a pool of algorithms is clear.
As the new algorithms are added, the system architecture
can be reconsidered and optimized for the most salient
cost function – which includes overall system cost, sys-
tem adaptability (meaning supporting a wide plurality of
meta-algorithmic, combinatorial and ensemble approaches,
and easy to update), system accuracy, and robustness to
new input. This continual consideration of multiple meta-
algorithmic patterns adds a built-in adaptability and robust-
ness to the architecture. Real-time changes in the nature of
the data can be assessed by considering successfully com-
pleted tasks as part of the augmented ground truth set, and
over time alternative meta-algorithmic architectures may
be (automatically) substituted for the current architecture
to provide better performance. While this architecture is
guided by domain expertise, particularly in amending the
meta-algorithmic patterns to the specific machine intelli-
gence task, the final decision on architectural deployment
is data-driven and unambiguous.

In summary, then, the primary principles of this archi-
tectural approach, are:

(1) The system is architected by design to use a plurality
of intelligent systems – or meta-algorithmic intelligent
systems – purpose-built for the overall intelligence-
generating task;

(2) The system architect need not have deep knowl-
edge about the individual machine intelligence algo-
rithms/systems;

(3) Domain knowledge is relevant – and useful – for some
of themore in-depthmeta-algorithmic patterns (such as
tessellation and recombination).

This leads to a set of eight basic principles, originally out-
lined in [1], which are used to guide themachine intelligence
system:

Principle 1

No single generator – algorithm, system, or engine –
encapsulates the complexity of the most challenging prob-
lems in artificial intelligence, such as advanced machine
learning, machine vision and intelligence, and dynamic
biometric tasks. In image and signal analysis, multi-
ple algorithms can be used to provide enhanced image
segmentation, analysis, and recognition.

Principle 2

It makes sense for a system designer to optimize an
algorithm for a portion of the input range and then leave the
rest of the range to another algorithm. The Predictive Selec-
tion and Regional Optimization patterns, described above,
are broadly applicable to many image and signal-processing
tasks.
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Principle 3

The patterns of usage are often more accurate, more robust,
more trainable, more re-usable, and/or more cost-sensitive
than a single, highly trained algorithm, system, or engine.

Principle 4

Ground truthing, or the tagging of training data, is gener-
ally inefficient and expensive – in practice, it is reasonable
to assume that there will be a relative sparseness of training
data.

Principle 5

First-, second-, and third-order meta-algorithmics are used
to create a highly trainable system with relative ease
of implementation. Any combinational of commercial-
off-the-shelf, open source, and task-specific (“targeted”)
algorithms and systems can be deployed together in these
patterns. The targeted systems are designed to provide good
results for partitions of the input space onwhich the existing
systems do not perform acceptably.

Principle 6

The simultaneous use of bottom-up and top-down algo-
rithms, and the combination of targeted and broad algo-
rithms can be used to generate systems that are highly
resilient to changes in the input data, and highly adaptable
to subsystem deployment.

Principle 7

Weighting and confidence values must be built throughout
the system in order to enable the use of meta-algorithmics
on multiple classifiers at a time. This allows hybridizing the
multiple classifiers in a plurality of ways and provides the
means for simultaneously combining, learning, and parallel
processing.

Principle 8

The goals of modern algorithm designers will be, increas-
ingly, indistinguishable from the goals of modern system
designers. Architecting for intelligence is becoming a pri-
mary need for architecting any system, with the increasing
pervasiveness of Big Data, analytics, voice search, and other
machine-to-machine intelligent systems.

V . B IOLOG ICAL S IGNAL
PROCESS ING AND
META -ALGOR ITHMS

The Constrained Substitute meta-algorithmic pattern can
be used to replace a higher accuracy ECG analysis routine
with a lower accuracy, but faster, routine when for example
all one needs to know is that the heart is beating (when the
patient is on her way to the hospital, for example).

Voting andWeightedVoting can be usedwhen a plurality
of electrocardiogram (ECG) algorithms are used simultane-
ously. Two of the algorithmsmay decide that the ECG shows

Table 4. Predictive Selection approach to ECG analysis.

Noise condition Analysis approach

Low noise Algorithm A
Medium noise Weighted Voting (Algorithms A, B, and C)
High noise Algorithm C

signs of ventricular escape,while the third classifies the ECG
pathology as atrial flutter. The direct Voting method classi-
fies the anomaly as ventricular escape. However, if the third
classifier has a weight greater than the sum of the other two
classifiers, then the anomaly is classified as atrial flutter.

ECG analysis routines will perform with different accu-
racies in the presence of noise. The Predictive Selection
algorithm can be helpful here. The subclasses to which
input can be assigned might be, for example, “Low Noise”,
“Medium Noise”, and “High Noise”. As shown in Table 4,
each of these noise conditions has its own analysis approach
(which provides the highest accuracy output).

ECG can also be used in combination with other algo-
rithms for real-time biometrics. The Regional Optimization
approach is used here, since the biometric task involves a
different meta-algorithmic approach based on which bio-
metric measurements are available at the moment, and on
the relative expected accuracy of each algorithm.

V I . IMAGE PROCESS ING , OBJECT
SEGMENTAT ION AND
CLASS I F ICAT ION , AND
META -ALGOR ITHMS

Perhaps the simplest example of meta-algorithmics applied
to image processing is employing the Sequential Try
algorithm for compressing an image – or a large set of
images – to a constrained amount of storage space. For
example, a compression quality of 100 may be initially
chosen. Suppose the images take up 50 more storage than
allowed. They are then re-compressed at, for example, 67
quality, expecting them to “fit” in the allotted storage. How-
ever, the images may still take up too much room, and
need to be re-compressed at 65 in order to fit. Here, the
sequence of tries is for 100, 67, and 65 quality compression.

The Tessellation and Recombination algorithm can be
very valuable for image segmentation. Individual segmenta-
tion algorithms can break an image up into different logical
regions.When all the regions of all segmentation algorithms
are logically overlaid, they are broken up into different
smaller regions based on logical assignment in the seg-
mentation algorithms. For example, suppose one segmenta-
tion algorithm breaks up a region comprised of subregions
{A, B, C} into two segments {A + B} and {C}. Suppose that
a second segmentation algorithm breaks the region {A +
B + C} into two subregions {A} and {B + C}. The collec-
tive set of subregions is thus {A + B}, {C}, {A}, and {B + C}.
Through alignment, it is observed that {A + B} and {B + C}
overlap for subregion {B}, so that they are tessellated to
{A}, {B} and {C}. Region {B} is an emergent subregion not
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Table 5. Signal and image processing tasks to which meta-algorithmics
were applied, along with the percent improvement and type of system
behavior improvement measured in parenthesis. Summarized from [1].

Domain to which
meta-algorithmics
were applied

Percent improvement (type of
system behavior improvement)
over the best individual system

Image segmentation (extracting
specific objects)

8.3 (reduction in error rate)

Biometrics (system to ID an
individual with given
confidence)

7.2–10.7 (reduction in overall
system cost to achieve a
required level of biometric
accuracy)

Medical image analysis
(quantitative
histomorphometry)

29 (reduction in error rate)

Optical character recognition 5.0–27.6 (reduction in error
rate, depending on preferred
system costs)

Security printing data extraction 13.0 (reduction in bit level
reading error rate)

Image processing (pipeline) 54.8 (reduction in system
processing time or
improvement in throughput
performance)

Document classification 16.2 (reduction in system error
rate)

Image surveillance (tracking
from video)

13–29 (reduction in processing
time or improvement in
throughput performance)

output by either of the two segmentation systems. These
subregions are then recombined based on how well they
match the specific desired shapes or objects. A large possi-
ble set of recombinations is possible even for just these three
subregions:

• {A}, {B}, and {C}
• {A + B} and {C}
• {A + C} and {B}
• {A} and {B + C}
• {A + B + C}.
Meta-algorithmics are clearly broadly applicable to image
and signal-processing machine intelligence tasks. Signifi-
cant improvement in system output was obtained in a wide
range of image and signal-processing experiments [1]. As
shown in Table 5, (1) image segmentation error rate was
reduced by 8.3; (2) biometric system cost was reduced by
7.2–10.7; (3) medical image analysis error rate was reduced
29; (4) optical character recognition (OCR) error rate was
reduced 5.0–27.6; (5) error rate in the extraction of security
printing data was reduced 13.0; (6) image-processing time
was reduced by 54.8; (7) document classification error rate
was reduced by 16.2; and (8) image surveillance processing
time was decreased by 13–29.

In each case (Table 5), multiple meta-algorithmic
approaches provided improvement over the best individ-
ual algorithm/system.However, not everymeta-algorithmic
approach provided improvement. In general, the meta-
algorithmic pattern(s) that will improve on the best
individual algorithm/system are not known a priori, but can
be identified after the assessment process described above.

V I I . D I SCUSS ION , CONCLUS IONS ,
AND THE FUTURE

Here the four precepts for making machine learning more
compatible with human learning are reviewed:

• The ability to incorporate new rules of discernment and
models for analysis into an existing model or set of
models;

• The ability to selectively apply different learned content
based on context;

• The ability to correctly solve problems in the absence of
sufficient input;

• The ability to perform “real time ground truthing”; that is,
the ability to assess a situation after a particular output is
assumed and efficiently perform a minimal set of valida-
tion experiments to prove or disprove the correctness of
the output.

For each of these, the architectural approach outlined in
this paper is enabling. New rules of discernment and
models for analysis are ingested by design into a meta-
algorithmic/ensemble method based architecture. The
existing model for machine intelligence is crafted by design
for incorporating new algorithms or systems. The ability to
selectively apply content based on context was illustrated
above particularly for the Predictive Selection, Regional
Optimization, and Sensitivity Analysis methods. The ability
to solve problems in the absence of sufficient input is also
aided by the “rules based” methods for sub-categorization
in some cases, and by the Central Limit Theorem in oth-
ers (e.g., Voting, Weighted Voting, and Confusion Matrix-
based approaches). Finally, Expert Decisioner, Tessellation
and Recombination, and various Feedback patterns, among
others, provide the means to perform an applicable set of
validation experiments to prove or disprove the correctness
of the output (by subtracting it from the expected value and
feeding back this difference to the system).

As noted earlier, the adoption of a meta-algorithmic
model for intelligent system architecture empowers the
continual (re-)consideration of multiple meta-algorithmic
patterns as the system is used over time. This provides
adaptability and robustness by design. Real-time changes in
the nature of the data, which is more or less inevitable due
to changes in sensors, transducers, data collection, and data
representation approaches – not to mention changes in the
measured environment itself – can be continually reassessed
by adding successfully completed tasks to the training set.
The optimal meta-algorithmic pattern from those designed
for the specific intelligent task will therein be automatically
substituted for the current pattern as indicated by the mea-
sured function(s) of interest – cost, accuracy, performance,
etc. Domain expertise is thus married nicely to automated
system optimization.

Taken as a whole, the approach outlined in this paper
leads to a methodology for machine learning – particularly
in image and signal analysis – that thrives on the expertise
provided by alternative approaches to the same machine-
learning task. The meta-algorithmic approach does not
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focus on perfecting the machine learning per se, but rather
perfecting the way that a multiplicity of machine-learning
algorithms or systems work together to provide meaningful
output.

The analogy to human learning is not inappropriate.
A hard-earned set of rules govern the triaging, or sub-
categorization of the input space, which increases the “sur-
face area” of the machine-learning task, allowing multiple
systems of expertise to contribute to the output. Humans
learn the same way. When the scenario is familiar – for
example, walking down a straight, uncrowded lane – a sin-
gle, simple algorithm is applied for ambulation. When the
path meanders, the ground becomes uneven, and the hiker
competes for her part of the trail, however, a large number
of algorithms can be brought to bear in a short period of
time, including for example side-stepping, hopping, jump-
ing, stopping, and turning the upper body sideways to avoid
collisions and delays. The algorithms used suit the complex-
ity of the task. No one approach will suffice. The same can
certainly be said for the increasingly complex, hybridized
tasks expected of machine intelligence systems.
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