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Robust power line detection with
particle-filter-based tracking in radar video
qirong ma1, darren s. goshi2, long bui2 and ming-ting sun3

In this paper, we propose a tracking algorithm to detect power lines from millimeter-wave radar video. We propose a general
framework of cascaded particle filters which can naturally capture the temporal correlation of the power line objects, and the
power-line-specific feature is embedded into the conditional likelihood measurement process of the particle filter. Because of the
fusion of multiple information sources, power line detection is more effective than the previous approach. Both the accuracy and
the recall of power line detection are improved from around 68 to over 92.
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I . I NTRODUCT ION

Power-line-strike accident is a substantial threat for heli-
copter flight safety. Recently, four Turkish soldiers died
in such an accident when the helicopter hit power lines
and crashed [1]. According to the report in [2], among the
934 registered helicopter accidents in the USA from 1996
through 2000, 50 of them are categorized as power-line-
strike accidents. In these accidents, the helicopter was either
destroyed or substantially damaged, and 15 of them resulted
in fatality. Most of these accidents happened at night, thus
an automatic power line detection and warning system for
helicopters that can work anytime is highly desirable to
ensure helicopter flight safety.
Radar is one of the object detection systems that can

especially work at night. A few previous works have been
developed for power line detection with radar. In [3], a
passive millimeter-wave (PMMW) radar system is tested
to detect power lines from a vehicle. In [4], an active
millimeter-wave radar is mounted on a rescue helicopter to
detect power lines together with an infra-red camera and a
RGB camera. In [5], the radar cross-sectionmodel of power
lines is developed, and the authors observe the so-called
“Bragg-pattern” which is a distinguishing feature of power
line due to its periodic surface structure. However, these
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works provide no automatic algorithm to detect the power
lines from the radar reception signal.
In [6], a power line imaging system based on a 94GHz

active millimeter-wave radar is reported. Unlike previous
radar systems, the system in [6] can synthesize the field-
of-view scene containing the power lines from the inter-
mediate frequency (IF) channel of the reception signal in
real time at 10 fps (frames-per-second). Based on the syn-
thesized field-of-view, the automatic detection of the power
lines can be accomplished by an image-processing approach
on the radar video. However, because of the strong ground
return noise in the radar image, power line detection is still
very challenging.
A heuristic algorithm for automatically detecting power

lines from the radar video is proposed in our previous work
[7]. The Hough Transform is employed to detect power
line candidates, and a pre-trained support vector machine
(SVM) classifier is used to differentiate power lines from
noise lines based on the power-line-specific Bragg pat-
tern. However, each frame is processed separately, and the
important temporal correlation between power line objects
is only imposed as a post-processing step using a heuris-
tic algorithm. Thus, even though the frame-level detection
accuracy (i.e. the accuracy of frame-level result as whether
each frame contains power line or not) in [7] is impressive,
the power-line-level accuracy (i.e. the accuracy of line-level
result as whether each power line is correctly detected or
not) is not as good.
In this paper, we observe that the temporal correlation

of the power line objects can be captured using formal
tracking methods such as particle filtering. Particle filter-
ing offers a unified framework to represent and sequentially
estimate the object state from theBayesian probabilistic per-
spective. The object state probability distribution function
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(pdf) is represented by a group of weighted samples, or
particles, and tracking is accomplished by a two-step pro-
cess of prediction and update. The prediction step diffuses
the particles from the last time instant by an object dynamic
model, thus predicting the prior probability density of the
object in the new time instant. The update step computes
the likelihood of the diffused particles in the new time
instant given new observations. The final tracking result
is obtained from the posterior probability density combin-
ing the prior and the likelihood. Particle filtering has been
applied to various tracking tasks such as tracking sports
players [8], pedestrians [9], and surveillance applications.
In this paper, we demonstrate that the characteristics

of the power lines can be embedded into the update step
of particle filtering, by utilizing the detection algorithm
developed in our previous work [7] to measure the like-
lihood of a power line object in the new frame. The
temporal correlation between power line objects in neigh-
boring frames is naturally captured by the particle filtering.
Thus, the two distinguishing characteristics of the power
line object, namely, the intrinsic characteristics or features
of the object, and the temporal correlation of the object,
are combined and both are effectively used. The success-
ful usage of these two types of information is the key to
the accurate and robust detection of the power line objects.
Part of this work has been reported previously in [10], while
this paper provides extensive results and more detailed
analysis.
We also propose a cascaded particle filter tracking

algorithm, and demonstrate its application for power line
detection. To effectively represent the object probability
density by a group of weighted samples, the number of sam-
ples often needs to be considerably large, which results in
high computational load, especially when the evaluation of
the measurement function for each sample is not trivial.
In this paper, we show that when the tracking algorithm and
the measurement function are carefully designed, tracking
in the original state space can be accomplished by sep-
arating it into its sub-spaces. Then the original particle
filter becomes a few simpler particle filters cascaded, and
the original tracking problem is simplified to a few eas-
ier tracking problems in the smaller sub-spaces. Because
of the dimensionality reduction, the number of particles
needed in each sub-space is much smaller than that in
the original state space. Thus, the computational cost is
reduced, and higher robustness can be achieved. We also
investigate the conditions under which such a factorization
of a particle filter into smaller cascaded particle filters is
possible.
In summary, in this paper we present a novel power

line detection algorithm, which integrates both the intrinsic
power line object characteristics and temporal correlation
into particle filter tracking framework. We also demon-
strated cascaded particle filters for dimensionality-reduced
tracking of power lines, achieving higher robustness with
lower computational cost. To the best of our knowledge, this
is the first work to use particle filter tracking for power line
detection from radar video.

The remaining part of this paper is organized as follows.
In the next section, we review the background information
including related works, the 94GHz power line imaging
system, and the previous power line detection algorithm
in [7]. In Section III, we explain our proposed approach in
details. We present the experimental results in Section IV,
and conclude this paper in Section V.

I I . BACKGROUND

A) Related works
A series of works have been developed in [11, 12] to model
and measure the backscattering characteristics of power
lines in activemillimeter-wave radar, which is utilized in [7]
to develop a power line detection algorithm. PMMW imag-
ing systems have gone through a growing stage [13]. In [3],
a PMMW power line imaging system is evaluated in com-
parison with a RGB camera and an infra-red camera. The
PMMW system can provide extra visibility of the power
line objects, while the active millimeter-wave radar is even
more effective at imaging them. In [4, 14–16], a radar obsta-
cle detection system is proposed, which also includes mul-
tiple information sources such as infra-red camera, RGB
camera, and a millimeter-wave radar. However, none of
these systems provide an automatic power line detection
algorithm. Some power line inspection robots have been
developed in [17–19], while the purpose of these works is
to inspect the defects of power lines rather than to detect
them.
The particle filter for object tracking is first proposed

in [20]. Since then it has found tremendous successful appli-
cations in this field. A color-based particle filter for tracking
is proposed in [21], which integrates color distribution into
particle filtering for object tracking. In [22] an appearance-
adaptive model is developed for simultaneous particle filter
tracking and object recognition. The work in [9] places an
object detector in the framework of particle filter tracking
and achieves tracking-by-detection. However, the purpose
of [9] is to use the confidence map provided by the object
detector for object tracking, while our work is to use the
object-tracking framework for robust object detection. A
complete survey of the field of visual tracking is beyond
the scope of this paper, and the reader is referred to [23]
for a good review. Nonetheless, all these tracking works are
applied to object tracking from the RGB video, while we
investigate tracking from the radar video. For more works
on particle filtering, the reader is referred to [24–29].

B) The millimeter-wave power line imaging
system
The 94GHz millimeter-wave power line imaging system
used in this work is an evolution of the legacy hardware in
[30]. For more information about the radar system and the
imaging process the reader is referred to [6]. The front-end
unit includes the millimeter-wave transmitter and receiver.
The in-cabinet processing system receives the IF signal from
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Fig. 1. B-scope image of a scene that contains power lines and their supporting
towers. From [6], shown here for completeness.

the radar receiver and synthesizes the field-of-view scene
from it, in which the power lines could be visible. We show
an example frame of such a field-of-view in Fig. 1, and two
zoom-in frames in Fig. 2. The synthesized radar image is a
B-scope plot, i.e. range-versus-angle mapping of the scene
from the sensor’s perspective. One can think of such a plot
as if a bird looking down onto the ground, with the only
difference being that the B-scope plot is a polar plot. As
Fig. 1 shows, different columns of the image refer to dif-
ferent sweeping angles of the sensor, or different azimuths;
different rows refer to different distances, or ranges of the
object from the radar sensor. A vertical stack of power lines
appear as if one single power line in the image since they
have roughly the same distance to the radar.
From Figs 1 and 2, a few characteristics of the power

lines are evident. Firstly, they are all straight lines in the
radar images. Though in these figures they appear as curves,
it is just an artifact of the B-scope, i.e. polar coordinate
view. They will appear as straight lines when the coordinate

Fig. 3. Physical structure of the power line.

system is transformed to the Cartesian coordinate. The
power lines have sagging effect due to gravity, yet it is not
reflected in the radar images because the distance difference
caused by sagging is negligible compared to the distance
between the power lines and the radar sensor. Secondly, the
power lines appear in parallel groups. Thirdly, the power
lines have the so-called Bragg pattern, i.e. the periodic peak
pattern. In the USA, all the high-voltage power lines consist
of several wires twisting around each other, forming a peri-
odic pattern on the surface of the power lines as shown in
Fig. 3. When the millimeter-wave is diffracted by the power
line surface, according to Bragg’s Law of Diffraction, peri-
odic peaks in the return signal will appear in the following
angles [31]:

θn = sin−1

(
nλ

2L

)
, (1)

where λ is the wavelength and L is the period of the power
line surface structure, i.e. the horizontal distance between
two braiding strands of wires on the power line surface.
Lastly, in Fig. 2 we find that when the noise is heavy, the
power lines become not as visible. The noise is due to the
ground returnwhen the radar sensor pointing is low, so that
the power line objects are surrounded by the strong return
from the ground in the same range. The ground return
noise brings extra difficulties to the power line detection
algorithm.

C) Previous power line detection algorithm
In [7], we proposed an automatic power line detection
algorithm for the millimeter-wave radar video. It adopts
Hough Transform [32] to detect straight lines, which

Fig. 2. Zoom-in view of the power line images. The ground return noise is evident in the right image. From [6], shown here for completeness.
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Fig. 4. Power line detection algorithm in [7] for a frame.

Fig. 5. Adaptive frame result generating algorithm in [7].

include both the true power lines and some noise lines. To
make a differentiation between a power line and a noise
line, a pre-trained SVM classifier [33] is further applied.
A compact 14-dimensional feature set is extracted from
the line data (i.e. all the pixel values on a line concate-
nated into a one-dimensional vector), in order to capture
the distinguishing Bragg pattern and represent the line data
efficiently. The feature vector includes features both in the
spatial domain and the frequency domain. The power line
detection algorithm for each frame is shown in Fig. 4. It
outputs the detected power lines in one frame, with each
line represented in two parameters, θ and ρ, corresponding
to the orientation of the line and its distance from the ori-
gin. Based on the power line detection result in each frame,
a heuristic adaptive algorithm is proposed to incorporate
the inter-frame correlation and the parallel property of the
power lines, and a final frame-level score is generated as an
indicator of the probability for a frame to contain power
lines, and a binary decision is made as to whether issue
warning of containing power lines for this frame or not. The
block diagram of this adaptive algorithm is shown in Fig. 5.
This algorithmcanproduce almost 100accurate frame-

level result, in terms that it can decide for each frame as
containing power line or not almost perfectly. However,
because the adaptive algorithm is rather ad hoc, important
power line features, such as they are parallel and temporally
correlated, are not effectively exploited in a systematic way.
As a result, the algorithm has difficulties detecting power
lines that are “occluded” by the ground return noise when
the radar pointing is low. The result is that the algorithm
performance in the line-level is not as good as the frame-
level. In order to effectively utilize these important power-
line-specific features, we propose to use a tracking-based
approach to take care of the temporal correlation and incor-
porate the parallel property into the algorithm, which will
be presented in the following section.

I I I . POWER L INE TRACK ING WITH
PART ICLE F I LTER ING

A) Object tracking with particle filtering
The problem of object tracking can bemore generally mod-
eled as the estimation of the hidden state of a system that
changes over time using a sequence of noisy measurements
that are made on the system. The system state includes the
information about the object that is of interest, such as the
position and velocity of the size of the object. The mea-
surement is carried out in the image frames of the video.
Mathematically, consider the evolution of the state sequence
xk , k ∈ N of a target object given by

xk = fk(xk−1, vk−1), (2)

where xk−1 is the state in the previous frame, fk describes
the system dynamics model which is a first-order Markov
Chain, and {vk−1, k ∈ N} is an i.i.d. process noise sequence.
The measurement sequence zk is generated from the state
sequence xk by the measurement process

zk = hk(xk ,nk), (3)

where hk() is the measurement function, i.e. the mapping
from the underlying state xk to the observed quantity zk ,
and {nk , k ∈ N} is an i.i.d. measurement noise sequence.
With the model and symbols defined, the tracking prob-

lem is to estimate p (xk|z1:k), the posterior pdf of the state
xk given all the measurements z1:k up to frame k from the
Bayesian perspective. p (xk|z1:k) may be obtained recur-
sively in two steps: prediction and update. The prediction
step is to obtain the prior pdf of xk , p (xk|z1:k−1), from
the posterior p (xk−1|z1:k−1) in the previous frame and
the system model in equation (2) using the Chapman–
Kolmogorov equation [34]

p (xk|z1:k−1) =
∫

p (xk|xk−1) p (xk−1|z1:k−1) d xk−1. (4)

In frame k, when a new measurement is available, the
posterior pdf is obtained via Bayes’ rule

p (xk|z1:k) = p (zk|xk)p (xk|z1:k−1)∫
p (zk|xk)p (xk|z1:k−1) d xk

, (5)

where p (zk|xk) is the likelihood of the new measurement
zk given the predicted state xk .
The particle filter is a sequential importance sampling

technique to approximate the posterior pdf p (xk|z1:k) using
a finite set of N weighted samples {xi

k , wi
k}i=1,...,N by Monte

Carlo simulation. When the number of samples N is large
enough, the approximated posterior pdf becomes close to
the true probability density and the approximate solution
approaches the optimal Bayesian solution. The candidate
particles x̃i

k are sampled from an appropriate importance
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distribution q (xk|x1:k−1, z1:k), and the weights of the sam-
ples are [35]

wi
k = wi

k−1

p (zk|x̃i
k)p (x̃i

k|xi
k−1)

q (xk|x1:k−1, z1:k)
. (6)

In the case of bootstrap filter [36, 37], the importance distri-
bution q (xk|x1:k−1, z1:k) is the same as the state transition
density p (xk|xk−1), and the weightwi

k for each particle i in
frame k is then simplified as

wi
k = wi

k−1 · p (zk|x̃i
k). (7)

Because a large number of these particles have negligi-
ble weights, the particles are re-sampled in each frame to
avoid the degeneracy problem. For a fixed number of par-
ticles, wi

k−1 = 1/N is a constant and can be ignored. In the
end, the importance weight in equation (6) is reduced to
p (zk|x̃i

k), the conditional likelihood of a new observation
zk given the particle x̃i

k . Note that the normalization term of
the weights is omitted here for clarity.

B) Cascaded particle filters
The reason for the success of particle filter tracking is
twofold. First, the theoretic framework of Bayesian estima-
tion is a general and well-established model. The sequential
Bayesian estimation model in equations (4) and (5) cap-
tures the nature of object tracking. Secondly, even though
equations (4) and (5) are usually intractable except for a
few special cases such as the linear dynamic model with
Gaussian noise, Monte Carlo simulation can deal with any
general distribution in a non-parametric way as long as the
number of samples N is large enough.
However, when the dimensionality of the state space

increases, the number of samples needed to effectively rep-
resent the probability density also increases, in an expo-
nential rate – well-known as the “curse of dimensionality”.
Although the computational cost for evaluating the likeli-
hood function p (zk|x̃i

k) for one sample is negligible, when
the number of samples increases exponentially, the cost
becomes huge. One could sacrifice the number of samples
N for speed, but this will cause incomplete and problem-
atic representation and estimation of the true probability
density.
We thus propose to use cascaded particle filters to

alleviate the curse of dimensionality. We observe that
when the state vector incorporates more information and
the dimensionality of the state space increases, often the
state vector can be decomposed into a few un-correlated
sub-states, and the state space can be decomposed into
a few orthogonal sub-spaces. Let xk = (uk , vk), if we
have p (xk) = p (uk , vk) = p (uk) · p (vk), p (xk , xk−1) =
p (uk ,uk−1) · p (vk , vk−1), and p (xk , z1:k) = p (uk , z1:k) ·
p (vk , z1:k), it can be easily shown that

p (xk|xk−1) = p (uk|uk−1) · p (vk|vk−1),

p (xk−1|z1:k−1) = p (uk−1|z1:k−1) · p (vk−1|z1:k−1),

p (zk|xk) = p (zk|uk) · p (zk|vk).

(8)

So the prediction step in equation (4) becomes

p (xk|z1:k−1)

=
∫

p (xk|xk−1) p (xk−1|z1:k−1) d xk−1

=
∫∫

p (uk|uk−1) p (vk|vk−1)

× p (uk−1|z1:k−1) p (vk−1|z1:k−1) d uk−1 d vk−1

=
∫

p (uk|uk−1) p (uk−1|z1:k−1) d uk−1·

×
∫

p (vk|vk−1) p (vk−1|z1:k−1) d vk−1

= p (uk|z1:k−1) · p (vk|z1:k−1). (9)

And the update step in equation (5) becomes

p (xk|z1:k) ∝ p (zk|xk) p (xk|z1:k−1)

∝ p (zk|uk) p (zk|vk)

× p (uk|z1:k−1) p (vk|z1:k−1)

∝ p (zk|uk) p (uk|z1:k−1)

× p (zk|vk) p (vk|z1:k−1)

∝ p (uk|z1:k) · p (vk|z1:k).

(10)

It is clear from equations (9) and (10) that both the predic-
tion and update steps can be factored into the prediction
and update of uk and vk separately, so the estimation of
uk and vk are independent of each other. Thus, the origi-
nal tracking problem in a high-dimensional state space can
be solved by some cascaded tracking in lower-dimensional
sub-spaces, given that the state vector can be decomposed
into some independent sub-space state vectors. The reduced
dimensionality simplifies the problem, requires fewer sam-
ples to represent and estimate the probability density, and
has a higher chance of success. The dynamic model to
propagate the particles can be defined separately in the
sub-spaces, and the measurement likelihood p (zk|x̃i

k) is
decomposed into individual measurement likelihood in the
sub-spaces, i.e. p (zk|ũi

k) and p (zk|ṽi
k). Similar idea of fac-

torization has been successfully applied to face detection
in [38].

C) Observation models
In this section, we define the observation models that
embed the previous power line detection algorithm into
the particle filter tracking framework. The power line is
represented by two parameters, θ andρ in theHoughTrans-
form domain, and they are very much independent, i.e. the
distance between the radar sensor and the power line is
independent from the approaching angle of the helicopter.
Another reason for separating θ and ρ is because in reality
we find that all the power lines in the field-of-view captured
by the radar are parallel, thus the θ value for all the power
lines are the same. θ can be estimated first, then individual
ρ values for individual power lines can be further estimated
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by individual ρ trackers along the estimated θ direction.
Thus, according to the cascaded particle filters algorithm
developed in the previous section, we consider two separate
likelihood measurements, p(zk|θ̃ i

k) and p(zk|ρ̃i
k).

1) Observation model for θ , p(zk|θ̃ i
k)

The purpose of θ tracking is to estimate the orientation of
all the power lines in each frame. To compute the condi-
tional likelihood of a particular θ sample θ̃ i

k , we combine
different sources of information, namely, a concentration
measure based on the Hough Transform data, the strength
of lines, and temporal smoothness:

p(zk|θ̃ i
k) = c(zk|θ̃ i

k)︸ ︷︷ ︸
concentration

· s (zk|θ̃ i
k)︸ ︷︷ ︸

line strength

· gθ (θ̃
i
k , θ̂k−1)︸ ︷︷ ︸

temporal smoothness

, (11)

where k denotes current frame and k − 1 denotes previ-
ous frame. Adopting the preprocessing algorithm including
thresholding and coordinate transformation in [7], Hough
Transform converts a frame zk to Hough-domain data
Hk(θ , ρ), and Hk(θi , ρ j ) represents the number of pixels (or
line strength) for a particular line parameter combination
(θi , ρ j ). From the definition of Hough Transform [32] it can
be shown that the sum of all the Hough Transform domain
data for any particular θ is constant, i.e.

∑
ρ Hk(θ1, ρ) =∑

ρ Hk(θ2, ρ), yet Hk(θ1, ρ) and Hk(θ2, ρ) have different
distributions over ρ. For the true power line orientation,
Hk(θtrue, ρ) is more concentrated because a few power lines
with large number of pixels will dominate. Taking the idea
from Information Theory that the more concentrated a
distribution is, the lower its uncertainty and its entropy,
we define the “concentration” measure similar to the
entropy:

c
(
zk|θ̃ i

k

) =
∑

ρ

Hk
(
θ̃ i

k , ρ
)

log
(
Hk
(
θ̃ i

k , ρ
))∣∣∣

Hk(θ̃
i
k ,ρ)>0

. (12)

For the true power line orientation, there will be a few lines
with significant strength, i.e. number of pixels. The line
strength measure s (zk|θ̃ i

k) takes the sum of the top T val-
ues (in our simulations we use T = 3) in Hk(θ̃

i
k , ρ). Lastly,

the temporal smoothing term for θ is defined as:

gθ (θ̃
i
k , θ̂k−1) = exp

(
− (θ̃ i

k − θ̂k−1)
2

2σ 2
θ

)
, (13)

where θ̂k−1 is the tracked θ in the previous frame and σθ is
the standard deviation parameter of the Gaussian function.

2) Observation model for ρ, p(zk|ρ̃i
k)

The ρ tracker is cascaded after the θ tracker and tracks for
the ρ value of each individual power line along the orienta-
tion θ̂k tracked by the θ tracker. Similarly, different sources

of information are combined to define the conditional like-
lihood of a particular ρ sample ρ̃i

k :

p(zk|ρ̃i
k) = f (zk|ρ̃i

k)︸ ︷︷ ︸
classifier confidence

· a(ρ̃i
k , ρ̂k−1)︸ ︷︷ ︸

association function

·

gρ(ρ̃
i
k , ρ̂k−1)︸ ︷︷ ︸

temporal smoothness

. (14)

The classifier confidence is directly inherited from the
SVM-based power line detection algorithm in [7]. The
algorithm retrieves the pixel data on a particular line spec-
ified by (θ̂k , ρ̃i

k), and outputs the SVM decision function
value as the classifier confidence. Here we see the previ-
ous power line detection algorithm can fit nicely into the
tracking framework by f (zk|ρ̃i

k). The association function
measures the similarity of the Hough domain data in a local
neighborhood between this sample ρ̃i

k and the tracked ρ̂k−1

in previous frame, based on the intuition that for the same
power line, Hough domain data should be similar in local
neighborhood for neighboring frames. It is defined as the
normalized correlation:

a(ρ̃i
k , ρ̂k−1) =

∑r
l=−r Hk(θ̂k , ρ̃i

k + l)
Hk−1(θ̂k−1, ρ̂k−1 + l)√∑r
l=−r

(
Hk(θ̂k , ρ̃i

k + l)
)2

·
√∑r

l=−r

(
Hk−1(θ̂k−1, ρ̂k−1 + l)

)2

, (15)

where r is a parameter specifying the size of the local
neighborhood. Lastly, the temporal smoothing term for ρ

is defined in the similar way as equation (13):

gρ(ρ̃
i
k , ρ̂k−1) = exp

(
− (ρ̃i

k − ρ̂k−1)
2

2σ 2
ρ

)
. (16)

D) Power line detection with tracking
To complete the particle filter tracking algorithm, we need
to define the motion dynamic models that propagate the
particles. Without any prior knowledge of the helicopter
movement, we use a drifting model for both θ and ρ:

θk = θk−1 + εθ , (17)

ρk = ρk−1 + ερ . (18)

The process noise εθ and ερ are drawn from zero-mean
Gaussian distributions with standard deviations of σθ and
σρ , respectively.
With all the building blocks explained, now we can

present the complete power line detection with tracking
algorithm. For readability we first present the θ-tracking
algorithm, the purpose of which is to estimate the ori-
entation of all the parallel power lines in a frame given
the orientation of the power lines in previous frame, in
Algorithm 1.
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Algorithm 1. The θ-tracking algorithm
Input: A new radar video frame zk , and its Hough Transform Hk(θ , ρ)

if k = 0, i.e. the first frame then
θ̂0 = arg maxθ c(z0|θ) · s (z0|θ)

Initialize Nθ θ-particles θ̃ i
0 = θ̂0, wi

θ0
= 1

Nθ

else
Propagate θ-particles according to equation (17)
Measure weight according to equation (11), wi

θk
= p(zk|θ̃ i

k)

Output θ̂k = arg maxi wi
θk

Re-sample Nθ un-weighted particles from p(θk|z1:k) approximated by {θ̃ i
k , wi

θk
}

end if
Output: θ̂k

Algorithm 2. The ρ-tracker processing algorithm

Input: A new radar video frame zk , its Hough Transform Hk(θ , ρ), the output θ̂k from θ-tracker, and the particles of the
ρ-tracker {ρ̃i

k−1, w
i
ρk−1

} from previous frame
Propagate ρ-particles according to equation 18
Measure weight according to equation 14, wi

ρk
= p(zk|ρ̃i

k)

Output (ρ̂k , wρ̂k ) = arg maxi wi
ρk

Re-sample Nρ un-weighted particles from p(ρk|z1:k) approximated by {ρ̃i
k , wi

θk
}

Output: ρ̂k , wρ̂k

Algorithm 3. The power line detection with tracking algorithm
Input: A new radar video frame zk

Step 1. Pre-process: thresholding and coordinate transformation according to [7]
Step 2.Hough Transform: zk → Hk(θ , ρ)

Step 3. θ-tracking: get θ̂k by Algorithm 1
Step 4. ρ-tracking
if k = 0, i.e. the first frame then

Initialize Mρ ρ-trackers by searching for Mρ local maxima {ρ0, j , j = 1, . . . , Mρ} in H0(θ̂0, ρ).
for all ρ0, j do
if f (zk|ρ0, j ) > 0, i.e. passes SVM then
Initialize Nρ particles ρ̃i

0, j = ρ0, j

else
Terminate this ρ-tracker ρ0, j

end if
end for

else
Process each ρ-tracker ρk, j by Algorithm 2, get the ρ-tracker output ρ̂k, j and ŵρk, j

if ŵρk, j > Tρ then
Keep this ρ-tracker

else
Terminate this ρ-tracker

end if
Add new ρ-trackers by searching for local maxima not covered by any ρ-tracker, similar to k = 0 initialization case,
and allow up to Mρ ρ-trackers

end if
Output: (θ̂k , ρ̂k, j ) in each ρ-tracker as detected power lines in zk
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Table 1. Characteristics of the testing datasets.

Range Azimuthal
resolution resolution

Dataset size Frames (m) (degrees) Characteristics

1 2048 × 176 49 0.2861 0.1541 Stationary hover at 350m to power lines
2 4096 × 175 97 0.1431 0.1550 Flight toward power lines at 600m
3 4096 × 175 149 0.1431 0.1546 Flight above power lines with fixed pointing
4 2048 × 174 147 0.2861 0.1556 Flight toward power lines at 450m
5 2048 × 172 148 0.2861 0.1574 Flight above power lines with elevation scanning mode
6 4096 × 174 119 0.1431 0.1555 Advanced pedal turn at 400m
7 4096 × 343 118 0.0715 0.0790 Pedal turn at 150m
8 2048 × 175 147 0.2850 0.1549 Flight toward power lines with elevation scanning mode

The re-sampling step is implemented in the same way as
[20]. The algorithm for processing a ρ-tracker is presented
in Algorithm 2.
Then we can present our complete power line detection

with tracking algorithm in Algorithm 3. In this algorithm,
Tρ is a parameter that controls the association threshold
for the ρ-tracker, and Mρ defines the maximum number
of ρ-trackers allowed in each frame. In the first frame, the
ρ-trackers are initialized by searching for local maxima in
Hough Transform data, which is the same way for detecting
power lines in the previous algorithm [7]. If a line candidate
(corresponding to a local maximum in Hough Transform
data) is classified by the SVM as a power line, a ρ-tracker
is initialized and it continues to track the position of this
power line in future frames; otherwise it is ignored and no
ρ-tracker is initialized. In the case of a false alarm power
line, the tracker will most likely not be able to find any good
association in future frames and this false alarm ρ-tracker
will be terminated. We also deal with the situation of power
line occlusion by ground return noise.When a power line is
occluded by noise, the tracker could lose track of it. To re-
capture it when the power line appears again, in each frame
we also search for candidate power lines in the region that is
not covered by any ρ-tracker and initialize new ρ-trackers.
We immediately terminate the “lost-track” trackers rather
than keeping them running and predicting because the pur-
pose is to detect the power lines rather than to have an
exact track of each single power line, and in simulation
we find that such a strategy of immediate termination and
re-initialization is more effective for detecting the power
lines.

I V . EXPER IMENTS

A) Data collection
The helicopter flight test team has conducted a flight test
in Everett, WA, and collected several datasets, each lasting
from a few seconds to about 15 s. These datasets are col-
lected under different flying conditions, such as hovering
and flying toward the power lines, with the radar sensor
either fixed or sweeping up-and-down, thus they have dif-
ferent characteristics and can represent most of the cases

that happen in real-world situations. These datasets are fur-
ther described in Table 1. The power lines in these datasets
are clear in the radar video when they have a physical dis-
tance between about 200m and 500m to the sensor. The
frame rate for all the videos are 10 fps, as constrained by the
sensor in [6]. Formore information regarding the collection
of the radar video datasets, please refer to [6].

B) Feature selection for the SVM classifier
In [7] we have proposed a 14-dimensional feature vector to
represent the data on a candidate line. Though the dimen-
sionality of the feature vector is not overwhelmingly high,
it is desirable to select a more compact set from the fea-
ture vector for computational efficiency. Moreover, select-
ing the characterizing subset from the feature could often
improve classification accuracy, since the “noisy” features
can be removed by feature selection. It is also interesting
to see which features are more important than others. We
employ the feature selection algorithm proposed in [39].
The feature selection algorithm is applied to the same classi-
fier training dataset as described in [7], andwe progressively
select a subset of the feature, and use the subset to get cross-
validation results as classifier performance measurement.
We do this for the subset feature size being 14 (i.e. the full
feature set) to 3, as keeping only 1 and 2 features does not
provide very meaningful classification results. The results
are shown in Fig. 61. From the results we see consistent
performance drop of the classifier when feature number is
reduced. Even though the performance drop when 1 or 2
features being removed is not substantial, which could be an
indication of some minor redundancy among the features,
the full set of features still achieves the best overall perfor-
mance. Thus, we keep the full set of 14 features for the SVM
classifier in this paper.

C) Testing results
To show the effectiveness of the detection with tracking
algorithm, we compare the line-level detection results in

1The incomplete curves for low feature numbers are due to that iter-
ation numbers of SVM training exceeding the maximum allowed number
in the implementation, which indicates that the classifier has difficulty in
finding a good separation surface for the training set because of reduced
feature set.
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(a)

(b)

Fig. 6. Feature selection results. For each sub-figure, horizontal axis is the size
of the training set (as a portion of the entire classifier training set), and the verti-
cal axis is the classification accuracy. (a) Cross-validation training accuracy for
14–9 features, (b) Cross-validation testing accuracy for 8–3 features.

Table 2 with the previous power line detection algorithm
in [7]. We manually inspect the result for each frame, and
compute the line-level recall and precision for each dataset.
Recall is the ratio of correctly detected power lines to all the
existing power lines in the images, and precision is the ratio
of correctly detected power lines to all the detected power
lines returned by the algorithm. Conceptually, the higher
the recall, the lower the false negatives; the higher the preci-
sion, the lower the false positives. We can see that with the
cascaded particle filter tracking algorithm, both recall and
precision are greatly improved, thus boosting the robustness
of the power line detection algorithm significantly.
To validate the necessity for cascaded θ-tracking and

ρ-tracking, in Table 3 we compare the line-level recall and
precision with θ-only tracking algorithm. Only Algorithm 1
is activated in Algorithm 3 but not Algorithm 2 In each
frame, the overall power line orientation is tracked, and
the top Mρ lines along that direction are classified by the
SVM classifier as power lines or noise lines. We can see

Table 2. Power-line-level recall and precision comparison with
previous algorithm.

[7] Ours

Dataset Recall () Precision () Recall () Precision ()

1 75.87 58.13 97.73 91.51
2 79.06 76.68 97.91 97.84
3 73.78 81.17 87.45 99.85
4 57.29 77.59 79.57 94.29
5 77.72 92.55 80.69 91.01
6 46.15 45.08 100.0 90.64
7 57.37 50.13 94.78 91.75
8 50.26 63.23 89.65 84.81
Overall 68.36 68.94 92.03 92.83

Table 3. Power-line-level recall and precision comparison with
θ-only tracking.

θ-only θ + ρ

Dataset Recall () Precision () Recall () Precision ()

1 84.64 91.59 97.73 91.51
2 92.56 100.0 97.91 97.84
3 84.88 99.83 87.45 99.85
4 61.88 92.70 79.57 94.29
5 77.92 85.90 80.69 91.01
6 93.86 94.31 100.0 90.64
7 90.69 88.31 94.78 91.75
8 64.68 75.31 89.65 84.81
Overall 79.86 90.47 92.03 92.83

the performance with full θ + ρ tracking algorithm is supe-
rior to that of θ-only. We notice that the involvement of
ρ-trackers particularly improves the recall, which means
more true power lines can be detected. The reason is that
without the ρ-trackers, power lines that are occluded by
the ground return noise may not be correctly classified by
the SVM, thus they are missed by the θ-only algorithm.
But with the ρ-tracking algorithm, the strong association
of these partially occluded power lines between neighbor-
ing frames can still be greater than Tρ , thus the effective
utilization of temporal correlation complements the “blind
spots” of the SVM classifier. On the other hand, when the
power lines are tracked through regular particle filter track-
ing algorithm in the (θ , ρ) state space instead of cascaded
particle filter tracking, in simulation we found that the per-
formance is not as good. The main reason is that the data
on a line whose direction is not the direction of the real
power lines and crossing multiple power lines looks just
like a true power line, having multiple peaks correspond-
ing to the crosses with the true power lines, thus bringing
confusion. However with the cascaded particle filter, the
confusion can be avoided.
We show the visual results comparison in Fig. 7, where

we list the original frames, the ground truth, the detection
results in [7], and the results of the algorithm in this paper.
It should be noted that these are all zoom-in views show-
ing the power line regions, not the entire field-of-views of
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Fig. 7. Some example frames with power line detection results comparison. First column: original frames. Second column: ground truth power lines, as manually
labeled. Third column: the detection results in [7]. Last column: the detection results in this paper. The reader is suggested to view this figure in color. Notice that
in the first column many power lines are subtle and hard to recognize, while the detection with tracking algorithm can successfully detect them.

the radar. The radar images are displayed in pseudo-color,
with a cooler color means lower intensity while a hotter
color means higher intensity. The power lines are overlaid
as red lines in the detection results. We can clearly see the
superiority of the detection with tracking algorithm. Even
when the ground return noise is strong and the power lines
are occluded, the detection with tracking algorithm can still
correctly detect most of them. The previous algorithm suf-
fers from a lot of false alarm lines, while the new algorithm
has a much cleaner result.

D) Performance and implementation

In Table 4, we present the speed performance compari-
son of the proposed algorithm with [7]. Both the algo-
rithms are un-optimized, single-thread implementation in
Section IV-C. The test is performed on a desktop PC with
3.40GHz CPU. We can see the speed of the tracking
algorithm is at the same level as the previous detection
algorithm, while for some datasets the proposed algorithm
performs even better. We see approximately there are
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Table 4. Speed performance comparison, in
terms of average processing time per frame.

Time (s)

Dataset Size Frames [7] Ours

1 2048 × 176 49 0.079 0.093
2 4096 × 175 97 0.198 0.181
3 4096 × 175 149 0.212 0.188
4 2048 × 174 147 0.071 0.076
5 2048 × 172 148 0.068 0.065
6 4096 × 174 119 0.204 0.184
7 4096 × 343 118 0.304 0.276
8 2048 × 175 147 0.065 0.073

three different resolutions for the radar videos in Table 1,
2048 × 176, 4096 × 175, and 4096 × 343. The resolution
is a parameter controlled by the sensor, i.e. the power line
imaging system. The resolution of 2048 × 176 is adequate
for our target application, as we can see they can achieve
the same detection results as those with other resolutions.
For our current target application, we will use the videos
with resolution of 2048 × 176, which can run in real-time.
If a higher resolution is needed in the future, a faster PC, a
multi-threaded implementation, or an field-programmable
gate array (FPGA) implementation could be used to handle
the required computation.
The implementation of the algorithm requires few user-

specified parameters. εθ , ερ , and Tρ are inherent to the
nature of power line object dynamics and association, which
can be optimally estimated from some training data. While
the training requires manually labeling the track of each
individual power line which is rather tedious, we adopt
some sensible values for them. Mρ specifies the maximum
number of power lines in each frame, and we set it to 8 since
in testing we find that is the maximum number of power
lines to appear in the field-of-view. The other parameter
needs to be set in the implementation is the number of par-
ticles. For the simulation results presented in this paper, we
set Nθ = 80 and Nρ = 20.

V . CONCLUS ION

In this paper, we present a robust detection with particle fil-
ter tracking algorithm to automatically detect power lines
from the video captured by a 94GHzmillimeter-wave radar.
The particle filter framework captures both the power-line-
inherent features and the important temporal correlation
feature. The experimental results show that the algorithm
has superior performance over a previous power line detec-
tion algorithm. The power line imaging radar and the detec-
tion algorithm in this paper is intended to provide a valuable
assistance to helicopter pilots.
The power line detection and tracking could be a begin-

ning of an image processing application platform with the
94GHz millimeter-wave imaging radar developed in [30].
Future applications can include detection and tracking of
other types of objects. Also, because the ground return

noise has significant influence on the power line detection
and possibly other applications, we would like to investi-
gate the possibility of de-noising the radar video from an
image-processing perspective.
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