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industrial technology advances

Dimensionality reduction of visual features
for efficient retrieval and classification
petros t. boufounos1, hassan mansour1, shantanu rane2 and anthony vetro1

Visual retrieval and classification are of growing importance for a number of applications, including surveillance, automotive,
as well as web andmobile search. To facilitate these processes, features are often computed from images to extract discriminative
aspects of the scene, such as structure, texture or color information. Ideally, these features would be robust to changes in per-
spective, illumination, and other transformations. This paper examines two approaches that employ dimensionality reduction
for fast and accurate matching of visual features while also being bandwidth-efficient, scalable, and parallelizable. We focus on
two classes of techniques to illustrate the benefits of dimensionality reduction in the context of various industrial applications.
The first method is referred to as quantized embeddings, which generates a distance-preserving feature vector with low rate. The
second method is a low-rank matrix factorization applied to a sequence of visual features, which exploits the temporal redun-
dancy among feature vectors associated with each frame in a video. Both methods discussed in this paper are also universal in
that they do not require prior assumptions about the statistical properties of the signals in the database or the query. Further-
more, they enable the system designer to navigate a rate versus performance trade-off similar to the rate-distortion trade-off in
conventional compression.
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I . I NTRODUCT ION

The amount of visual data generated by humans continues
to grow at a staggering pace. This has created a plethora of
new applications that were not conceivable even a decade
ago: face tagging in images uploaded to social networking
sites, extraction of rich information about products pho-
tographed at a supermarket, geographical, and historical
data mining about landmarks photographed on a touris-
tic excursion, and augmented reality, to name a few. The
increased diversity and redundancy of today’s rapidly grow-
ing databases enables the development of robust and novel
applications with unprecedented capabilities.

Visual search and retrieval has been an active area
of research for decades and there is a large body of
work on image descriptors that enable fast and accurate
image retrieval. Some popular descriptors include SIFT [1],
SURF [2], GIST [3], BRISK [4], and FREAK [5]. Of these,
GIST captures global properties of the image, while the oth-
ers capture local details at several salient points in an image,
and therefore, have been used to match local features or
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patches. These descriptors can be used for image match-
ing, registration, and retrieval by combining hypotheses
from several image patches, for example, using the popu-
lar Bag-of-Features approach [6]. A comparative study of
image descriptors has shown that scale-invariant feature
transformation (SIFT) features have the highest robustness
against common image deformations such as translation,
rotation, and a limited amount of scaling [7]. However,
recent work has reported FREAK to outperform SIFT in
terms of robustness and speed [5].

There are a variety of other features that are well suited
for specific visual inference tasks. For example, eigen-
faces [8] or Viola-Jones face descriptors [9] are typically
preferred for face recognition, while the matching of other
biometrics, such as fingerprints, requires features specif-
ically designed to maximize matching performance for a
given biometric sensor [10]. In recent years, deep learning
has also become a popular means for determining the best
features for a given inference task (e.g. [11]).

For many problems, the sheer size of the data to be
searched makes image-based querying extremely challeng-
ing, especially in bandwidth-restricted applications that
depend upon the speed of information retrieval. This prob-
lem is further compounded by the size of the search query.
For example, a SIFT feature vector for a single salient point
in an image is a real-valued, unit-norm 128-dimensional
vector. Finding a reliable match between a server-side
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image and a photograph sent by a mobile client typically
requires features obtained from several hundred salient
points. Therefore, a prohibitively large bit rate is required to
transmit the SIFT features from a client device to a database
server for the purpose of matching. So, while feature selec-
tion is a key issue for many visual inference tasks, the focus
of this paper is on the efficiency of the storage, transmission,
and matching processes.

It goes without saying that the visual inference mech-
anism must identify visual matches accurately. However,
the accuracy requirement cannot be considered in isolation,
especially when tradeoffs need to be made to ensure practi-
cal feasibility of the algorithm. Driven by various industrial
applications, we believe it is important that the following
requirements also be satisfied:

(i) Compact upload from the client device to the server or
cloud: To minimize the communication overhead, the
visual inference mechanismmust ensure that the client
sends the query signal to the server using the smallest
possible number of bits. Small query vectors will help
to satisfy the low latency requirements for real-time
applications, as further elaborated below.

(ii) Fast search algorithm at the server: In several applica-
tion scenarios, the information retrieved by the visual
inference mechanism may be time-sensitive. Examples
include augmented reality-enabled headsets for peo-
ple browsing museum exhibits, or scene-specific route
guidance for cars, etc. In such cases, it is beneficial
for the server-based matching algorithm to be as fast
and parallelizable as possible without compromising
the matching performance.

(iii) Robustness to variations in the visual query: For most
interesting applications of visual inference, there is no
guarantee that the images taken by the client device
will be optimally aligned with the images in the server’s
database. For example, the server’s database may be
compiled via crowdsourcing from a very large num-
ber of users. Therefore, it is imperative that the visual
search be robust to variations in the input image, such
as, changes in translation, rotation, scaling, image qual-
ity, illumination, and so on.

(iv) Future proof algorithm: In many visual inference appli-
cations, the server’s database keeps changing as new
visual data are added and low-quality or irrelevant
data are discarded. For instance, the performance of
a mobile phone-based augmented reality application
would improve as a richer variety of images are accu-
mulated at the database server with time. From a prac-
tical perspective, it is desirable that the algorithm and
parameters used by the client remain unchanged when
the server’s database changes. Frequently changing the
parameter values may well guarantee optimal perfor-
mance, but would also require the client device to
download frequent updates containing the retrained
parameters.

This paper considers the utilization of dimensionality
reduction techniques to address the above issues in the

context of several retrieval and classification tasks. Two
distinct approaches are described to illustrate the benefits.
The first method is referred to as quantized embeddings
and generates randomized distance-preserving embeddings
of image features. Specifically, we use a randomized lin-
ear transformation, known as a Johnson–Lindenstrauss (JL)
embedding [12], to map the image features to a lower-
dimensional space, followed by coarse, possibly dithered,
quantization. The embedded signals are transmitted to
the server to perform inference or matching. We show
that the reduced dimensionality, combined with the coarse
quantization, can significantly reduce the necessary band-
width while maintaining matching performance. The sec-
ond method is a low-rank matrix factorization applied to
a sequence of visual features, which exploits the tempo-
ral redundancy among feature vectors associated with each
frame in a video. As with the embeddings, we demon-
strate that the rate of the visual features can be dramat-
ically reduced while maintaining classification accuracy.
Both methods discussed in this paper are also universal in
that there are no assumptions about the statistical proper-
ties of the signals in the database or the query. It should
also be noted that while we focus on visual inference and
image retrieval, the described methods are also applicable
to a wide variety of other modalities and applications.

The remainder of the paper is organized as follows.
Section II analyzes the performance of embeddings under
quantization and demonstrates how quantized embeddings
can be used to convert scale-invariant features into low
bit-rate representations that are suitable for visual search
applications. Section III discusses the use of low-rank
matrix factorization techniques to extract compact fea-
tures from a large sequence of (possibly dense) visual fea-
tures. Additionalmethods and related work are discussed in
Section IV. Section V provides some concluding remarks.

I I . QUANT IZED EMBEDD INGS OF
FEATURE SPACES

We are interested in an efficient, general method for infer-
ence problems, including search, retrieval, and classification
of visual data, such as images and videos. For the search to
be accurate, it is necessary to choose an appropriate feature
space with a high matching accuracy. Having chosen the
feature space, a dimensionality reduction step typically fol-
lows, resulting in a descriptor. This is a critical step in reduc-
ing both the bandwidth and the search time of the query.
This section describes several design approaches, collec-
tively referred to as quantized embeddings, which reduce
the bit rate of the feature vectors while maintaining the
performance of the inference task.

A) Randomized embeddings
An embedding is a mapping of a set X to another set
V that preserves some property of X in V . Embeddings
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Fig. 1. The JL lemma guarantees the existence of an embedding that preserves
pairwise Euclidean distances.

enable algorithms to operate on the embedded data, allow-
ing processing and inference, so long as the processing
relies on the preserved property. In the context of visual
retrieval and classification, we consider applying a random-
ized embedding of the features extracted from the image or
video of interest in order to reduce the dimensionality of the
feature vector.

The use of embeddings is justified by the JL lemma,
which states that one can design an embedding f (·) such
that for all pairs of signals u, v ∈ X ⊂ R

d , their embedding,
f (u), f (v) ∈ R

k satisfies:

(1 − ε)‖u − v‖2
2 ≤ ‖ f (u) − f (v)‖2

2 ≤ (1 + ε)‖u − v‖2
2,
(1)

for some ε, as long as k = O(log P/ε2), where P is the
number of points in X .

A key feature of the JL lemma is that the embedding
dimension k depends logarithmically only on the number
of points in the set, and not on its ambient dimension d. It
establishes a dimensionality reduction result, in which any
set of n points in a d-dimensional Euclidean space can be
embedded into a k-dimensional Euclidean space, as shown
in Fig. 1. Thus, the embedding dimension can typically
be much lower than the ambient dimension, with mini-
mal compromise on the embedding fidelity, as measured
by ε. Any processing based on distances between signals –
which includes themajority of inferencemethods – can thus
operate on the much lower-dimensional space.

One way to construct the embedding function f is to
project the points from X onto a random hyperplane pass-
ing through the origin, drawn from a rotationally invariant
distribution. In practice, this is accomplished by multiply-
ing the data vector with a matrix whose entries are drawn
from a specified distribution. Concretely, the JL map can
be realized using a linear map f (u) = (1/

√
k)Au, where

the k × d matrix A can be generated using a variety of
random constructions [13, 14]. For example, it has been
shown that a matrix with i.i.d. N (0, 1) entries provides the
distance-preserving properties in equation (1) with high
probability.

In general, the embedding dimension depends on the
complexity of the signal set. For discrete points it only
depends logarithmically to their number. However, as the
set becomes denser, other measures of complexity, such as
the set covering number, can be used to better character-
ize the embedding dimension. For examples, see [15–17] and

Fig. 2. (a) A quantized embedding is derived by first obtaining a JL embedding
by multiplying the vectors in the canonical feature space by a random matrix,
followed by scalar quantization of each element in the vector of randomized
measurements.

references therein. Thus, embedding dimensionality can be
kept low, even for very large, and increasing in size, datasets.
Of course, with such large signal sets, it is necessary that
the features are sufficiently discriminative to perform the
required tasks.

Our focus in this paper is bit rate and communication
complexity. However, it should also be noted that embed-
dings reduce complexity due to the dimensionality of the
problem, not complexity due to the size of the signal set.
This is often an issue with search-based techniques, such
as nearest neighbors (NNs). Techniques including locality-
sensitive hashing (LSH) and tree-based searches can be used
to reduce query complexity in such cases, as discussed in
Section IV. Complexity due to data size is less of an issue for
trained-based techniques, such as neural networks and sup-
port vector machines (SVM). In those, the data-intensive
training stage is typically performed off-line and can afford
significantly more computational and storage complexity.

B) Quantized embeddings
We now consider the problem of transforming the selected
features into a compact descriptor that occupies a signifi-
cantly smaller number of bits, while preserving the match-
ing accuracy of the native feature space. We first perform
the dimensionality reduction using a JL embedding, as
described in the previous subsection.However, even though
the dimensionality of the embedding f (u) is smaller than
the original feature vector u, the elements of f (u) are real-
valued and thus cannot be represented using a finite number
of bits. In order to make it feasible to store and transmit
the distance-preserving embeddings f (u), the real-valued
random projections have to be quantized.

Consider a finite-rate uniform scalar quantizer q(·) as
shown in Fig. 2 with stepsize � and S as the saturation
level of the quantizer. Using such a quantizer, it was shown
in [18] that a JLmap f (u) = (1/

√
k)Au can be quantized to

g (u) = (1/
√

k)q(Au) and satisfy the following condition:

(1 − ε)‖u − v‖2 − � ≤ ‖g (u) − g (v)‖2

≤ (1 + ε)‖u − v‖2 + �. (2)

The above condition indicates that quantized embed-
dings preserve pairwise Euclidean distances up to a multi-
plicative factor 1 ± ε, and an additive factor ±�. It follows
from the JL lemma, that reducing ε requires a greater num-
ber of randomizedmeasurements k. Furthermore, reducing
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Fig. 3. Reducing the bits per dimension increases the quantization error (red
curve), but allows more dimensions, thereby reducing the embedding error
(blue curve). The total error plot (black curve) suggests an optimal trade-
off between the number of dimensions and the number of bits allocated per
dimension.

� amounts to increasing the number of bits allocated to
each measurement. This suggests a trade-off between the
embedding space dimension k, i.e. the number of measure-
ments and the number of bits per measurement B . For a
fixed bit rate, fewer measurements and more bits per mea-
surements will increase the error due to the JL embedding,
ε, while a greater number of measurements and fewer bits
per measurement will increase the error due to quantiza-
tion,�. The design choice should balance the two errors. A
tighter guarantee which, however, exhibits the same trade-
off has also been established when the �1 distance is used in
the embedding space [19].

The quantization interval � can be more explicitly
expressed in terms of the parameters that characterize the
scalar quantizer and the bits used to encode each measure-
ment. For the finite uniform scalar quantizer shown in Fig. 2
with saturation levels ±S , the quantization interval is given
by � = 2−B+1S . Using R to denote the total rate available
to transmit the k measurements, i.e. setting B = R/k bits
per measurement, the quantization interval then becomes
� = 2−R/k+1S . Figure 3 illustrates qualitatively the trade-
off between the measurement error and quantization error.
Unfortunately, due to the dependence of the error on the
distance between the signals, and to the existence of several
loosely determined constants in the proofs of embedding
theorems, this tradeoff can only be explored using experi-
mental data. Still, we should note that ε scales approximately
proportionally to 1/

√
k when small.

Thus far, we have only discussed quantized embeddings
under a Euclidean (�2) distance criterion. However, exten-
sions to non-Euclideandistances, such as the �1 distance, are
also possible. For example, Indyk et al. [20] have described
an embedding into a normed �1 metric space that pre-
serves �1 distance, such that the distance in the embedding
space within a 1 − ε factor of the original distance with high
probability, andwithin a 1 + ε factor of the original distance
with constant probability.

Fig. 4. “Unary” expansion of an integer vector to preserve �1 distances. Each
element of the original vector is expanded to V bits, such that if the coefficient
value is ui , the first ui bits are set to 1 and the next V − ui bits are set to zero.
The �2 distance between expanded vectors equals the �1 distance between the
original vectors. This requires that ui is bounded by V . Thus, a d-dimensional
vector is expanded to dV dimensions.

If we assume integer feature vectors with bounded ele-
ments, it becomes possible to preserve �1 distance to within
a 1 ± ε factor with high probability. This can be achieved
by naively mapping the integer feature vectors into binary
feature vectors, as shown in Fig. 4, using what is sometimes
referred to as a “unary” expansion. The expanded vectors
are elements of a real-valued �2 metric space, such that the
squared �2 distance between the binary vectors is exactly
equal to the �1 distance between the original integer feature
vectors [18, 21].

Such a mapping, which is an isometry into a Hamming
space, was first suggested in [22].With this mapping, it then
becomes possible to apply the quantized embeddings to the
binary feature vectors, which has the effect of preserving
the pairwise �1 distance between the original integer fea-
ture vectors. Since the embedding dimension only depends
on the number of signals in the original space, the signifi-
cant intermediate dimensionality expansion does not affect
the embedding dimension. Results of this approach on a
face verification experiment inwhich the underlying feature
space consists of Viola–Jones face features were presented
in [23].

C) Universal embeddings
More sophisticated quantizer designs are possible within
this framework, and have been shown to provide interesting
tradeoffs among matching accuracy, bit rate efficiency and
privacy [24–26]. Rather than using a finite-range uniform
quantizer, an alternative approach uses a non-monotonic
quantizer combined with dither, which can preserve dis-
tances up to a certain radius, as determined by the embed-
ding parameters. Furthermore, given a fixed total rate, R,
the quality of the embedding depends on the range of dis-
tances it is designed to preserve. At a fixed bit-rate, increas-
ing the range of preserved distances also increases the ambi-
guity of how well the distances are preserved. Specifically,
universal embeddings use a map of the form:

q = Q(Au + w), (3)
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(a) (b) (c)

Fig. 5. (a) Conventional 3-bit (eight levels) scalar quantizer with saturation level S = 4�. (b) Universal scalar quantizer. (c) The embedding map g (d) for JL-based
embeddings (blue) and for universal embeddings (red).

where A ∈ R
k×d is a matrix with entries drawn from an

i.i.d. standard normal distribution, Q(·) is the quantizer,
and w ∈ R

k is a dither vector with entries drawn from a
[0, �] uniform i.i.d. distribution. An important difference
with respect to conventional embeddings is that the quan-
tizer Q(·) is not a conventional quantizer shown in Fig. 5(a).
Instead, the non-monotonic 1-bit quantizer in Fig. 5(b) is
used. This means that values that are very different could
quantize to the same level. However, for local distances that
lie within a small radius of each value, the quantizer behaves
as a regular quantizer with dither and stepsize �.

In particular, universal embeddings have been shown to
satisfy:

g (‖u − v‖2) − τ ≤ dH ( f (u), f (v)) ≤ g (‖u − v‖2) + τ ,
(4)

where dH (·, ·) is the Hamming distance of the embedded
signals and g (d) is the map:

g (d) = 1

2
−

+∞∑
i=0

e−(π(2i+1)d/
√

2�)2

(π(i + 1/2))2
. (5)

Similarly to JL embeddings, universal embeddings hold
with overwhelming probability as long as M = O(log
P/τ 2), where, again, P is the number of points in X .

The behavior of universal embeddings is illustrated in
Fig. 5(c). In particular, g (·) can be very well approximated
by a linear portion that reaches a saturation point at distance
D0 and then saturates to a constant portion. The slope of the
linear portion is determined only by the choice of �, which
also determines the distance D0 at which distance preserva-
tion saturates. Specifically, D0 is proportional to �; a larger
choice of � implies that a larger range of distances is pre-
served. On the other hand, as described in [15, 25], given a
fixed rate, preserving a larger range of distances by selecting
a larger� reduces the fidelity withwhich these distances are
preserved.

D) Experimental results
In this section, we discuss the performance of quantized
embeddings for two application scenarios. The first applica-
tion is visual inference on natural images in which we find
similar images based on embeddings of SIFT features. The

second application is object classification based on HOG
features and SVM classification.

1) Embeddings of scale-invariant features
We conducted experiments on a public database to evalu-
ate the performance of meta-data retrieval using quantized
embeddings of scale-invariant features.We used the ZuBuD
database [27], which contains 1005 images of 201 buildings
in the city of Zurich. There are five images of each building
taken from different viewpoints. The images were all of size
640 × 480 pixels, compressed in PNG format. One out of
the five viewpoints of each building was randomly selected
as the query image, forming a query image set of s = 201
images. The server’s database then contains the remaining
four images of each building, for a total of t = 804 images.

SIFT features are extracted from the query and database
images and features are matched using their quantized
embeddings. The exact details, including the matching
algorithm and extensive results, have been described in
recent papers [15, 18, 25]. Here, we summarize the experi-
ments that examine the performance of our approach and
the trade-off between number of measurements and num-
ber of bits per measurement with respect to that perfor-
mance.

To measure the fidelity of the algorithm, we define the
probability of correct retrieval Pcor simply as the expected
value of the ratio of the number of query images for which
the NN search yields the correct match (Nc ), to the total
number of query images (Nq ), which is 201 for the ZuBuD
database. In this definition, the expectation is taken over
the randomness in the experiment, namely the realization of
the random projection matrix A. We repeated each exper-
iment 30 times, using a different random realization of A
each time, reporting the mean of the ratio Nc/Nq as Pcor .

We first compared the accuracy of meta-data retrieval
achieved by the LSH-based 1-bit quantization schemes [28,
29] with our multi-bit quantization approach. Both the
LSH-based schemes use random projections of the SIFT
vectors followed by 1-bit quantization according to the sign
of the random projections. Figure 6(a) shows the variation
of Pcor against the number of projections for the LSH-based
schemes. This is significantly outperformed by meta-data
retrieval based on unquantized projections. Between the
two extremes lie the performance curves of the multibit
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(a) (b)

Fig. 6. (a) Multi-bit quantization with fewer random projections outperforms LSH-based schemes [28, 29], which employ 1-bit quantization with a large num-
ber of random projections. (b) When the bit budget allocated to each descriptor (vector) is fixed, the best retrieval performance is achieved with 3 and 4-bit
quantizations.

(a) (b)

Fig. 7. (a) Universal embedding performance at different bit rates, as a function of � (b) Performance of properly tuned universal embeddings (UE) as a function
of the rate, compared with the conventionally quantized JL embeddings (QJL) also shown in Fig. 6(b).

quantization schemes. Using 4 or 5 bits per dimension
nearly achieves the performance of unquantized random
projections. For the same number of measurements, this
comes at a significant rate increase, compared with 1-bit
measurements.

Next, we examine experimentally the optimal trade-off
between number of measurements, k, and bits per mea-
surement, B , to achieve highest rate of correct retrieval,
Pcor , given a fixed total rate budget, R = kB , per embedded
descriptor. This is shown in Fig. 6(b). A multibit quantizer
again gives higher probability of correct retrieval than the 1-
bit quantization schemes, confirming that taking few finely
quantized projections can outperform takingmany coarsely
quantized projections. However, more bits per measure-
ment are not always better. In particular, the 3 and 4-bit
quantizers provide the highest Pcor for a given bit budget,
outperforming the 5-bit quantizer.

The trade-off can be further improved using univer-
sal embeddings, as shown in Fig. 7. Specifically, Fig. 7(a)
demonstrates the effect of varying the locality parameter
� in the experiments, at various bit rates. As the radius
of distances preserved expands, performance improves,
as expected from the theory. However, beyond a certain
radius, further expansion is not necessary for NN iden-
tification; expanding the radius only reduces the fidelity

of the embedding, thus reducing the retrieval accuracy.
Figure 7(b) demonstrates the improved performance of
properly tuned universal embeddings, compared with con-
ventionally quantized JL embeddings. We should also note
that tuning universal embeddings can be done in a princi-
pled way, by designing � according to the distances that
should be preserved in the dataset. In contrast, there is
no principled method to design quantized embeddings, i.e.
select B and k given the desired rate R.

These experiments confirm that using quantized embed-
dings is significantly more efficient than sending quantized
versions of the original descriptor. In our experiments, the
performance of quantized SIFT vectors saturated at 94,
using 384 bits per descriptor. The same performance is
achieved consuming only 80 bits per descriptor using quan-
tized embeddings of the descriptor, and 60 bits using uni-
versal embeddings. In other words, quantized and universal
embeddings provide approximately 79 and 84 lower rate
compared with SIFT features, respectively, with the same
retrieval performance.

Furthermore, the scheme is much more efficient than
compressing the original image via JPEG and transmitting
it to the server for SIFT-based matching. At 80 quality fac-
tor, the average size of a JPEG-compressed image from the
ZuBuDdatabase is 58.5 KB. In comparison, the average total
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(a) (b) (c)

Fig. 8. Classification accuracy as a function of the bit-rate achieved using: (a) quantized JL (QJL) embeddings; (b) the universal embeddings; and (c) classification
accuracy as a function of the quantization step size � used in computing the universal embeddings.

bit rate of all embeddings computed for an image in this
database is 2.5 KB using quantized embeddings and 1.9 KB
using universal embeddings.

2) Embeddings of HOG features for SVM
classification
Next, we demonstrate the performance of compressed fea-
tures on a multiclass classification problem. The goal is to
identify the class membership of query images belonging to
one of eight different classes.

To set up this problem, we extract Histogram of Ori-
ented Gradients (HOG) features [30] from 15 training and
15 test images. The HOG algorithm extracts a 36 element
feature vector (descriptor) for every 8 × 8 pixel block in an
image. The descriptors encode local histograms of gradient
directions in small spatial regions in an image. Every HOG
feature is compressed using either quantized JL embed-
dings or universal quantized embeddings. The compressed
features are then stacked to produce a single compressed
feature vector for each image. Then, the compressed fea-
tures of the training images are used to train a binary linear
SVM classifier. In the testing stage, compressed HOG fea-
tures of the test images, i.e., candidate query images, are
computed and classification is performed using the trained
SVM classifier. In our simulations, we used tools from the
VLFeat library [31] to extract HOG features and train the
SVM classifier.

We consider eight image classes. One is the persons from
the INRIA person dataset [30, 32]. The other seven – car,
wheelchair, stop sign, ball, tree, motorcycle, and face – are
extracted from the Caltech 101 dataset [33, 34]. All images
are standardized to 128 × 128 pixels centered around the
target object in each class.

Figure 8(a) shows the classification accuracy obtained
by quantized JL embeddings of HOG descriptors using the
trained SVM classifier. The black square corresponds to 1-
bit scalar quantization of raw non-embeddedHOGdescrip-
tors, each consuming 36 bits – 1 bit for each element of the
descriptor.

The figure shows that 1-bit quantized JL embeddings
achieves a 50 bit-rate reduction, compared to non-
embedded quantized descriptors, without impacting classi-
fication accuracy. This is obtained using an 18-dimensional

JL embedding of every HOG descriptor, followed by 1-bit
scalar quantization. Furthermore, increasing the embed-
ding dimension, and, therefore, the bit-rate, above 18
improves the inference performance beyond that of the 1-bit
quantized non-embedded HOG features. Note that, among
all quantized JL embeddings, 1-bit quantization achieves the
best rate-inference performance.

Figure 8(b) compares the classification accuracy of uni-
versal embeddings for varying values of the step size param-
eter � with that of the 1-bit quantized JL embeddings
and the 1-bit quantized non-embedded HOG descriptors.
With the choice of � = 1.4507, the universal embedded
descriptors further improve the rate-inference performance
over the quantized JL embeddings. In particular, they also
achieve the same classification accuracy as any choice of
quantization for non-embedded HOG descriptors, or even,
unquantized ones, at significantly lower bit-rate. The data-
points representing the bit-rate versus accuracy tradeoff for
unquantized HOG descriptors are not shown in the figure,
as they are out of the interesting part of the bit-rate scale.

Figure 8(c) illustrates the effect of the parameter � by
plotting the classification accuracy as a function of � for
different embedding rates. The figure shows that, similar
to the findings in [35], if � is too small or too large, the
performance suffers.

As evident, an embedding-based system design can be
tuned to operate at any point on the rate versus classifi-
cation performance frontier, which is not possible just by
quantizing the raw features. Furthermore, with the appro-
priate choice of �, universal embeddings improve the clas-
sification accuracy given the fixed bit-rate, compared with
quantized JL embeddings, or reduce the bit-rate required to
deliver a certain inference performance.

I I I . LOW-RANK MATR IX
FACTOR IZAT ION OF V ISUAL
FEATURES

Compact descriptors of visual scenes allow us to reduce the
amount of metadata that is compressed and stored with the
video bitstream while maintaining a discriminative repre-
sentation of the scene content. We assume that local scene
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descriptors, such as SIFT or HOG features, are extracted
from every video frame in a group of pictures (GOP). The
descriptors are then stacked together to form a matrix X
of size m × N , where m is the length of the feature vector
and N is the total number of descriptors extracted from the
GOP. In many situations, the number of descriptors N can
reach several hundred features per frame. Therefore, it is
imperative that these descriptors be encoded in a compact
manner.

This section considers the problem of extracting descrip-
tors that represent visually salient portions of a video
sequence. Specifically, we describe a feature-agnostic
approach for efficient retrieval of similar video content in
which the extraction of compact video descriptors is cast
as either a k-means clustering problem or a non-negative
matrix factorization (NMF) problem.

A) Background
Matrix factorization is an effective technique commonly
used for finding low-dimensional representations for high-
dimensional data. An m × N matrix X is factored into two
components L , R such that their product closely approxi-
mates the original matrix

X ≈ L R. (6)

In the special case where the matrix and its factors have
non-negative entries, the problem is known as NMF. First
introduced by Paatero and Tapper [36], NMF has gained
popularity in machine learning and data mining following
the work of Lee and Seung [37]. Several NMF formula-
tions exist, with variations on the approximation cost func-
tion, the structure imposed on the non-negative factors,
applications, and the computational methods to achieve the
factorization, among others [38].

Here, we examine NMF formulations proposed for clus-
tering [39, 40]. Specifically, we consider the sparse and
orthogonal non-negative matrix factorization (ONMF) for-
mulations. The ONMF problem is defined as

min
L≥0,R≥0

1

2
‖X − L R‖2

F s.t. R RT = I , (7)

which was shown in [39] to be equivalent to k-means clus-
tering. Alternatively, the sparse NMF problem [40] relaxes
the orthogonality constraint on R replacing it with an �1

norm regularizer on the columns of R and a smoothing
Frobenius normon L . The sparseNMFproblem is explicitly
defined as

min
L≥0,R≥0

1

2
‖X − L R‖2

F + α‖L‖2
F + β

N∑
i=1

‖R(:, i)‖2
1, (8)

where α and β are problem-specific regularization
parameters.

B) Compact video scene descriptors
Visually salient objects in a video scene maintain a nearly
stationary descriptor representation throughout the GOP,

Fig. 9. Example of extracting SIFT features from a video scene and computing
the compact descriptor L along with the binary selection matrix R.

resulting in significant redundancy in the columns of X .
Thus, the problem of computing a compact descriptor of
a video scene can be formulated as that of finding an effi-
cient, i.e. low-dimensional, representation of the matrix X .
Ideally, the set of feature vectors that represent the salient
objects in a GOP can be encoded using a matrix L ∈ R

m×r ,
where r 
 N represents the number of descriptors that dis-
tinctly represent the salient object. Figure 9 illustrates the
process of extracting features from a video GOP and com-
puting the low dimensional representation L and selection
matrix R.

In the case of SIFTdescriptors, the columns in X are non-
negative unit normvectors. Therefore, we compute compact
descriptors L̂ using the following alternative ONMF:

(L̂ , R̂) = min
L∈R

m×r
+ ,

R∈R
r×N
+

1

2
‖X − L R‖2

F

subject to

{
‖Li‖2 = 1, ∀i ∈ {1, . . . r }
‖R j‖0 = 1, ∀ j ∈ {1, . . . N},

(9)

where Li and R j are the columns of the matrices L and
R indexed by i and j , respectively, and R+ is the positive
orthant.

In contrast to (7), the formulation in (9) explicitly
requires that only one column of L is used to represent
each descriptor of X through a single non-zero coefficient
in the corresponding column of R. This is equivalent to
constraining R RT to be a diagonal matrix but not neces-
sarily the identity. Since L in (9) has unit norm columns,
the formulation in (7) is equivalent to (9), subject to a
scaling of the columns of L and, correspondingly, of R.
This reformulation enables an efficient solution as described
in [41].

From the discussion above, it follows that the NMF for-
mulation in (9) functions similar to a k-means classifier. For
a large enough r , the columns of L̂ will contain the cluster
centers of dominant features in thematrix X , while R̂ selects
the cluster centers in L̂ that best match the data.
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(a) (b)

Fig. 10. (a) Video scene classification accuracy using ONMF, sparse NMF, and k-means clustering for varying rank and number of clusters. (b) Classification
accuracy after removing from the video database the GOPs that are temporally adjacent to the query GOP.

Table 1. Compression ratio of a rank r = 30 compact descriptor.

Hall
Sequence Coastguard Bus Soccer Football Monitor Stefan

Mean descriptors
per GOP

2083 6761 1055 6186 3889 11959

Compression
ratio ()

98.66 99.66 97.26 99.52 99.33 99.75

C) Experimental results
We consider the problem of classifying scenes from six
different video sequences. We choose the reference video
sequences1: Coastguard, Bus, Soccer, Football, Hall Mon-
itor, and Stefan, each composed of CIF resolution (352 ×
288 pixels) video frames. The sequences are then divided
into GOPs of size 30 frames each, and SIFT descriptors are
extracted from every frame in a GOP. The sequence Ste-
fan contains 90 frames while all other sequences contain
150 frames each. Therefore, we have a total of 28 distinct
GOPs. Let s denote the video sequence index and g denote
the GOP number. We stack the descriptors from GOP g
of video sequence s into a matrix Xsg and solve the NMF
problem (9) to extract compact descriptors L̂ sg with rank
r ∈ {10, 20, 30, . . . , 80}. As a representative result, Table 1
shows the average compression ratio per video sequence
achieved by choosing a rank r = 30 compact descriptor.

In the scene classification experiment, our goal is to iden-
tify the video sequence to which a GOP belongs. Therefore,
we choose one query GOP from the available 28 and match
it to the remaining 27 database GOPs so as to classify the
query GOP to a video sequence. Matching is performed by
finding the GOP ĝ , whose compact descriptor L̂ sg corre-
lates the most with that of the query GOP L̂ Q . The video
sequence associated with the GOP ĝ is then chosen as the
matching sequence. We also compare the matching perfor-
mance of the ONMF algorithm – i.e. the algorithm that
solves (9) – with that of compact descriptors computed via
k-means clustering of the SIFT features and from solving
a sparse NMF problem developed in [40]. The sparse NMF

1Available from: http://trace.eas.asu.edu/yuv/

formulation differs from ourONMF formulation in that the
matrix R is sparse and non-binary. In all cases, the number
of clusters is set equal to the rank of the matrix factors.

Figure 10(a) illustrates the accuracy of matching a query
GOP to the correct sequence using each of the three algo-
rithms. The figure shows that compact descriptors com-
puted using theONMF algorithm exhibit a highermatching
accuracy and aremore discriminative compared to k-means
or sparse NMF. Moreover, the ONMF classifier is more
robust to the chosen number of clusters compared with k-
means. Note that sparse NMF results in a relatively poor
classifier and is very sensitive to the chosen factor rank.
We also test the robustness of the compact descriptors to
the scene variability by removing from the video database
the GOPs that are temporally adjacent to the query GOPs.
Figure 10(b) shows the classification accuracy where the
ONMF classifier maintains a superior classification perfor-
mance relative to k-means and sparse NMF. Both figures
demonstrate that by appropriately selecting the rank of the
factorization a system designer can tune thematching accu-
racy versus compression performance trade-off, according
to the application constraints.

Since thesemethods operate on aGOP, and the size of the
GOP impacts latency and buffering requirements, it is also
worthwhile to study the performance with varying GOP
sizes. Figure 11 plots the video scene classification accuracy
using the ONMF scheme for varying rank and GOP sizes.
This plot shows that the classification performance drops
less than 3 when the GOP size is changed from 30 to 5
frames, which suggests that accuracy could still be main-
tained under low latency constraints. Furthermore, Table 2
reports the change in compression ratio as a function of
the rank and GOP size. These results show a reduction in
the compression ratio with smaller GOP size, as one would
expect. Overall, the compression benefit is still quite notable
even under such constraints.

We note that combining theNMF approachwith embed-
dings can further improve the compression efficiency of
a compact descriptor. In particular, when the GOP size
is large, the matrix factorization will dominate the gains.
However, when the GOP size is small, the embeddings will
have a greater influence on the compression of features for

http://trace.eas.asu.edu/yuv/
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Fig. 11. Video scene classification accuracy using ONMF for varying rank and
GOP sizes.

Table 2. Compression ratio versus GOP size and rank.

Rank 10 () 20 () 30 () 40 () 50 ()

30 frame GOP 99.01 98.03 97.04 96.06 95.08
15 frame GOP 98.03 96.06 94.09 92.13 90.16
10 frame GOP 97.04 94.09 91.14 88.19 85.24
5 frame GOP 94.09 88.19 82.29 76.39 70.49

a particular frame. This combination might also help to
reduce the complexity of the image or video matching pro-
cess at the database server. The NMF approach essentially
clusters the features (or embeddings) of a given image or
video signal. So, while the server’s aim is still to find the
matching image, its task is altered; it now has to match the
query cluster against a small set of database clusters. The
effectiveness of such an approach needs to be examined by
further analysis.

I V . RELATED WORK

This paper has discussed two classes of dimensionality
reduction approaches in the context of visual retrieval and
classification. The first is based on random projections and
would typically operate on descriptors for a specific image,
while the second operates over a sequence of image descrip-
tors and uses matrix factorization or k-means clustering to
identify the most salient descriptors to represent the objects
in a video scene. The specific techniques described in this
paper are suitable for a wide range of image/video retrieval
and classification tasks.However, this is a very rapidly grow-
ing area and a number of very interesting and successful
approaches have emerged in recent years. While we do not
aim to provide a comprehensive review of all related meth-
ods, a select set of related techniques are discussed further
in this section to provide readers with a broader sense of the
available techniques that address dimensionality reduction
needs in the context of visual inference problems.

In the following, we first discuss work related to ran-
dom projections. Similar to the quantized embeddings pre-
sented in this paper, such techniques are independent of
the data and underlying feature space, and can provide
worst-case theoretical guarantees on their ability to preserve
distances and achieve a specified performance. Then, we
briefly touch on a few data-dependent approaches, which
rely on machine learning to optimize the rankings and
similarities of visual data. Lastly, we review several source
coding approaches including recent standardization efforts
that have focused on compact descriptors for visual search.

A) Random projections
The JL embedding and an extension to quantized embed-
dings has been discussed in Section II. In addition to
the work that has been cited, other research groups have
also investigated the design and impact of quantization,
such as [19, 42–46]. Furthermore, as noted in the paper,
JL embeddings preserve �2 distances and one method to
extend this to �1 distances through an isometric mapping
to Hamming space has been discussed. However, there is
a large body of work in preserving other similarity mea-
surements, such as �p distances for various p’s [47–49],
edit distance [50–53] and the angle, i.e. correlation, between
signals [54–56].

A common thread in the aforementioned body of work
is that distances or other similarity measures are preserved
indiscriminately. This is in sharp contrast to the work
described in Section II-C of this paper, which allows the
design of embeddings that represent some distances bet-
ter than others, with control on that design. For example,
in the image retrieval application, it might be beneficial to
only encode a short range of distances, as necessary for NN
computation and classification.

Recent work in this area has provided classification guar-
antees for JL embeddings on very particular signal mod-
els [16] and with some narrowly defined locality proper-
ties [17]. In particular, it has been shown that separated con-
vex ellipsoids remain separatedwhen randomly projected to
a space with sufficient dimensions. The work described in
this paper significantly enhances the available design space
compared to JL embeddings. It should, thus, be possible to
establish similar results, but this remains an open problem.

Another very popular and related technique is LSH,
which significantly reduces the computational complexity
of NN computation [14, 57, 58]. The LSH literature shares
many of the tools with the embeddings literature, such as
randomized projections, dithering and quantization, but
the goal is different: given a query point, LSH will return
its near neighbors very efficiently, with O(1) computation.
This efficiency comes at a cost: no attempt is made to
represent the distances of neighbors. When used to com-
pare signals it only provides a binary decision, whether
the distance of the signals is smaller than a threshold or
not. This makes it unsuitable for applications that require
more accurate distance information. That said, some of the
embedding techniques could be used in the context of an
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LSH-based scheme. Moreover, it should also be possible to
designmechanisms that reduce complexity which explicitly
exploit ourmethods, for example extending the hierarchical
approach in [59].

Two other techniques [28, 29] have been proposed for
efficient remote image matching based on a version of LSH.
These techniques compute random projections of scale
invariant features followed by 1-bit quantization based on
the sign of the random projections. By construction, as the
quantizer makes a 1-bit decision, these works do not con-
sider the tradeoff between dimensionality reduction and
quantization.

Finally, the work presented in [60, 61] uses random-
ized embeddings to efficiently approximate specific kernel
computations. The application of quantized embeddings to
SVM classifiers [26] is a generalization of these approaches,
by allowing control over the distance map in the kernel and
the ambiguity of the distance preservation.

B) Learning-based embeddings
There is also a large body of work focused on learn-
ing embeddings from available data. Boosting Similarity
Sensitive Coding (BoostSSC) and restricted Boltzmann
machines (RBM) have been proposed for learning com-
pact GIST codes for content-based image retrieval [62].
Alternatively, semantic hashing can be transformed into
a spectral hashing problem in which it is only necessary
to calculate eigenfunctions of the GIST features, providing
better retrieval performance than BoostSSC and RBM [63].
Besides these relatively recently developed machine learn-
ing algorithms, some classical training-based techniques
such as principal component analysis (PCA) and linear dis-
criminant analysis (LDA) have also been used to generate
compact image descriptors. In particular, PCA has been
used to produce small image descriptors by applying tech-
niques such as product quantization [64] and distributed
source coding [65]. Alternatively, small image descriptors
were obtained by applying LDA to SIFT-like descriptors
followed by binary quantization [66]. Related techniques
in this space include [67, 68], which attempt to learn a
distance-preserving embedding from available data by solv-
ing a very expensive optimization program.

Such approaches exploit a computationally expensive
training stage to improve embedding performance for a
particular dataset with respect to its distance-preserving
properties. While significant performance gains could be
realized with such approaches, the embedding guarantees
are only applicable to data similar to the training data. In
other words, the embedding might not generalize or per-
form well on different sets. For example, retraining would
be required when there are significant changes or updates
to the dataset, or the query is performed on a dataset with
different content and statistics. This architecture may be
undesirable for some applications, such as AR applications,
in which the database can keep growing as new landmarks,
new products, etc. are added.

In contrast, the approaches based on randomprojections
are independent of the data. Such designs are considered
universal in the sense that they work on any dataset with
overwhelming probability, as long as the embedding param-
eters are drawn independently of the dataset. Of course,
using data for training is a promising avenue and the link
between the two approaches is a very interesting area for
future exploration.

C) Source coding of descriptors
As a source coding-based alternative to random projection
methods and learning-based dimensionality reduction, a
low-bitrate descriptor has been constructed using a com-
pressed histogram of gradients (ChoG) specifically for aug-
mented reality applications [69]. In this method, gradient
distributions are explicitly compressed, resulting in low-rate
scale invariant descriptors.

Along these lines, a new standard referred to as compact
descriptor for visual search (CDVS) has been recently final-
ized to provide an interoperable solution for state-of-the-art
image-based retrieval [70]. The main steps employed in the
extraction and encoding pipeline of this standard are as
follows:

• Keypoint detection: To handle the scale invariance, key-
points are identified based on the creation of a scale-space
made by a set of Laplacian-of-Gaussian (LoG) filtered
images and the subsequent identification of extrema in
this space by means of polynomial approximations.

• Feature selection: Based on the characteristics and rele-
vance of the keypoints, a subset of keypoints is extracted,
so as to maximize a measure of expected quality for sub-
sequent matching.

• Local descriptor compression: To reduce the bit rate,
transform and scalar quantization-based compression
techniques are applied to selected local descriptors.

• Coordinate coding: An independent compression of the
coordinates of the selected key points, which are critical
for geometric verification, is additionally applied.

• Global descriptor aggregation: The local descriptors are
finally aggregated to form a single global descriptor. This
stage includes dimensionality reduction throughPCAand
formation of a Scalable Fisher Vector which is then bina-
rized.

Further details on the above steps and performance com-
parisons relative to other image-based descriptors can be
found in [70].

In order to determine an efficient representation of image
descriptors over a sequence of images, temporal correlation
among descriptors should also be considered. The approach
discussed in Section III essentially summarizes descriptors
to a small set that can represent the visually salient objects
in the video scene. We discussed the use of matrix factor-
ization or k-means clustering techniques for this purpose.

Alternatively, the sequence of image descriptors could
be compressed using traditional source coding techniques
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that exploit the motion of those descriptors through the
sequence. Examples of such techniques appear in [71–74].
These methods exploit powerful paradigms from video
compression, such as motion compensated prediction and
rate-distortion optimization, to reduce the bit-rate of the
transmitted descriptors.

In terms of future standardization, MPEG is also plan-
ning to develop a standard for compact descriptors for
visual analysis (CDVA) [75]. It is probable that the new stan-
dard will extend the CDVS standard from images to video
signals, and that it will employ techniques similar to those
discussed in this paper and above.

V . CONCLUD ING REMARKS

Advancedmedia applications such as augmented reality and
situation-aware systems will be enabled through techniques
that efficiently perform inference algorithms on visual data.
Much work has been done in recent years to identify fea-
tures that represent the salient aspects of the visual informa-
tion and facilitate a wide range of inference tasks, including
similarity search, semantic indexing and classification. This
paper has reviewed several relevant requirements for such
systems, including the need to communicate visual features
with low rate and latency, and facilitate inference with low
complexity.

In this paper we argue that dimensionality reduction is
critical technology to satisfy the needs of these systems.
In particular, we review two types of schemes for dimen-
sionality reduction: quantized embeddings, which offer the
ability to preserve distances and satisfy rate constraints
in a lower-dimensional space, and a matrix factorization
approach, which summarizes the most relevant features
to describe the sequence of descriptors associated with a
video scene. Both approaches enable noteworthy rate sav-
ings in visual inference applications and provide significant
flexibility in navigating the rate versus performance trade-
off, similar to the rate-distortion trade-off in conventional
compression.

The specific methods presented in this paper are part of
a much larger body of work that addresses dimensionality
reduction techniques for visual applications. For instance,
many recent works have shown the benefits of learning
low-dimensional embeddings to optimize similarity search.
Also, the standardization of compact descriptors for visual
search and analysis is underway. One standard addressing
the needs for image data is already complete while plans for
future standards that extend these approaches to video are
actively being discussed and considered.

We hope that the material presented in this paper
illustrates some of the emerging applications that require
advanced processing of visual data, and highlights relevant
technology in the current literature. Beyond this, we believe
that there are opportunities for newmethods that efficiently
represent and encode visual information for more gen-
eral functions, such as classifiers and estimators based on

machine learning algorithms.We also expect to see applica-
tions in distributed environments, where visual information
may be partially observed and processed in a decentralized
manner on nodes in a network, with the goal of performing
joint inference or control.
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