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Nested Gibbs sampling for mixture-of-mixture
model and its application to speaker clustering
naohiro tawara1, tetsuji ogawa1, shinji watanabe2 and tetsunori kobayashi1

This paper proposes a novel model estimationmethod, which uses nested Gibbs sampling to develop amixture-of-mixture model
to represent the distribution of the model’s components with a mixture model. This model is suitable for analyzing multilevel
data comprising frame-wise observations, such as videos and acoustic signals, which are composed of frame-wise observations.
Deterministic procedures, such as the expectation–maximization algorithm have been employed to estimate these kinds of mod-
els, but this approach often suffers from a large bias when the amount of data is limited. To avoid this problem, we introduce
a Markov chain Monte Carlo-based model estimation method. In particular, we aim to identify a suitable sampling method
for the mixture-of-mixture models. Gibbs sampling is a possible approach, but this can easily lead to the local optimum prob-
lem when each component is represented by a multi-modal distribution. Thus, we propose a novel Gibbs sampling method,
called “nested Gibbs sampling,” which represents the lower-level (fine) data structure based on elemental mixture distributions
and the higher-level (coarse) data structure based on mixture-of-mixture distributions. We applied this method to a speaker
clustering problem and conducted experiments under various conditions. The results demonstrated that the proposed method
outperformed conventional sampling-based, variational Bayesian, and hierarchical agglomerative methods.
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I . I NTRODUCT ION

Real-world data often comprise a set of component features,
such as images made of a set of pixels and speech com-
prising a set of frames. These data sets have a hierarchical
structure, as illustrated in Fig. 1. We describe data such as
images and speech as higher- and lower-level observations.
For example, in speech data obtained from a multi-party
conversation, higher-level observations correspond to each
speaker’s utterances, where their variation is caused by the
differences in the speakers. Lower-level observations corre-
spond to frame-wise observations comprising each utter-
ance, where their variation is caused by the differences in
the contents of speech. To cluster utterances by a speaker,
we need to derive a suitable mathematical representation
of an utterance for extracting each speaker’s characteristics
independently of the contents of the their speech [1].

An effective approach for representing higher-level
observations is modeling as stochastic distributions. Thus
assume, we that each higher-level observation follows a
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unique distribution, which represents each speaker’s char-
acteristics.Members of exponential families of distributions
are employedwidely tomodel higher-level observations due
to their usefulness and analytical tractability. However, the
underlying assumption of uni-modality for these distribu-
tions, is sometimes too restrictive. For example, frame-wise
observations, short time fast Fourier transforms of acous-
tic signals, and filter responses in images are known to
follow multi-modal distributions, which cannot be repre-
sented by unimodal distributions [2–4]. Mixture models
are reasonable approximations for representing thesemulti-
modal distributions [5, 6] and various distributions have
been used as components of mixture models such as the
t-distribution [7] and von Mises–Fisher distribution [8, 9].
In particular, Gaussian distributions are used widely as a
reasonable approximations for a wide class of probability
distributions [10]. By using a mixture distribution to rep-
resent each cluster, the whole speaker space is modeled as
a mixture of these mixture distributions. We refer to this
as a mixture-of-mixture model. The optimal assignment of
higher-level observations to clusters can be obtained by
evaluating the posterior probability of assigning each obser-
vation to each cluster’s mixture distribution. Thus, the clus-
tering problem is reduced to the problem of estimating this
mixture-of-mixture model.

The concept of mixture-of-mixture modeling was intro-
duced to analyze multi-modal data sample observations
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Fig. 1. Hierarchical structure of multi-level data analysis. Segment-wise (higher-level) observations are composed of a set of frame-wise (lower-level) observations.
Left figure illustrates the hierarchical structure in speech data composed of frame-wise observations (e.g. Mel-frequency cepstral coefficients).

comprising both continuous and categorical variables [11,
12] and data that composed of sets of observations such
as data from students nested within schools or patients
within hospitals [13–15]. However, in these studies, the
applications of mixture-of-mixture modeling were lim-
ited to simulated or low-dimensional data. In the present
study, we focus on applying mixture-of-mixture modeling
to speech data, which usually comprises high-dimensional
continuous data. In [13–15], an expectation–maximization
(EM) approach [16] was used to estimate mixture-of-
mixture models by augmenting observations with two-level
(higher-level and lower-level) latent variables.However, this
maximum-likelihood-based approach often suffers from
an overfitting problem when applied to high-dimensional
data [1, 17]. A Bayesian approach can make the estimation
of mixture-of-mixtures models more robust. For example,
maximum a posterior (MAP) and variational Bayes (VB)-
basedmethods have been applied to estimate themixture of
Gaussian mixture models (MoGMMs) [1, 18, 19]. However,
the VB-based approach often still suffers from a large bias
when the amount of data is limited [20]. Moreover, these
methods are easily trapped by a local optimum due to the
deterministic procedures in the EM-like algorithm.

To solve this problem, we propose a novel MoGMMs
estimationmethod based on theMarkov chainMonte Carlo
(MCMC)method. In this approach, the optimal parameters
for the MoGMMs are obtained stochastically by drawing
values iteratively from their posterior distribution. These
parameters can be estimated theoretically while avoiding
a local optimal solution by evaluating a huge number
of samples and combinations of higher-level latent vari-
ables (hLVs) Z and lower-level latent variables (lLVs) V
from their joint posterior distribution P (Z , V). However,
in practical implementations of MCMC, evaluating such
a huge number of combinations is infeasible and some
approximations are required.

Previously [1, 17], we introduced a Gibbs sampling-based
MoGMMs estimation approach, which draws the values of
lLVs and hLVs alternately by first sampling the lLVs after
initializing hLVs Z , i.e., V ∼ p(V |Z), and then sampling
hLVs by using the fixed lLVs, i.e., Z ∼ p(Z|V), sampled in
the previous step. This sampling method is easy to imple-
ment and highly accurate, and the it actually outperforms

the VB-based approach, especially when the data are lim-
ited, e.g., when each utterance is short and the spoken
utterances are few [17]. However, this sampling method,
has a severe restriction because the sampling of hLVs is
strictly determined by the values of the lLVs obtained in
the previous sampling step. This restriction can cause the
local optima problem for the hLVs, because the hLVs esti-
mated in each iteration can be highly correlated. To solve
this problem, we propose a novel sampling method for the
MoGMMs based on nested Gibbs sampling, which samples
both the hLVs and lLVs at the same time. This sampling
method allow an enormous number of combinations of
lLVs and hLVs to be evaluated efficiently, so we can find a
more appropriate solution than that obtained by alternating
Gibbs sampling for lLVs and hLVs.

The reminder of this paper is organized as follows. In
Section II, we formulate a MoGMMs by creating a mixture-
of-mixture model where each component of the mixtures
is represented by a GMM. In Section III, we explain how
to estimate the MoGMMs using fully Bayesian approaches
based on VB and MCMC methods. In Section IV, we
describe the MCMC-based model estimation method in
more detail as well as the proposed nested Gibbs sampling
method for MoGMMs estimation. In Section V, we present
the results of speaker clustering experiments conducted to
demonstrate the effectiveness of the proposed method. In
SectionVI, we give conclusions and discuss some directions
for future research.

I I . FORMULAT ION

In this section, we define the MoGMMsmodels where each
component of the model is represented by a GMM. In addi-
tion, we define the generative model for segment-oriented
data.

A) MoGMMs
Let out ∈ R

D be a D-dimensional observation vector, e.g.,
mel-frequency cepstral coefficients (MFCCs) at the t-th
frame in the u-th segment, Ou

�= {out}Tu
t=1 is the u-th seg-

ment comprising the Tu observation vectors, and O �=
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{Ou}Uu=1 is a set of U segments. We call this “segment-
oriented data.” Here, a MoGMMs is defined as follows:

p(O|�) =
U∏

u=1

S∑
i=1

hi p(Ou|�i ), (1)

where S denotes the number of clusters; hi represents
how frequently the i-th cluster’s segment appears; and
p(Ou|�i ) is the likelihood of u-th segment Ou being
assigned to the i-th cluster. In this case, p(Ou|�i ) models
the intra-cluster variability for each cluster, which can be
represented as:

p(Ou|�i ) =
Tu∏

t=1

K∑
j=1

wi jN (out |μi j , �i j ), (2)

where N denotes the j -th component in the i-th cluster,
which is represented by aGaussian distributionwith amean
vector μi j and a covariance matrix �i j ; wi j , the weight of
the j -th component; and K is the number of components
in each cluster’s GMM. Equations (1) and (2) imply that
the whole generative model for all segments O can be rep-
resented by a hierarchically structured MoGMMs where a
GMMrepresents a cluster’s characteristics (i.e., intra-cluster
variability), and that amixture of theseGMMs can represent
the entire cluster space (i.e., inter-cluster variability).

To represent this hierarchical model, we introduce two
types of latent variables: Z = {zu}Uu=1 represents segment-
level latent variables (sLVs), each of which identifies aMoG-
MMs component (i.e., speaker GMM) to which the u-th
segment is assigned, and V = {Vu = {vut}Tu

t=1}Uu=1, repre-
sents the frame-level latent variables (fLVs), each of which
identifies an intra-clusterGMMcomponent (the cluster dis-
tribution to which the u-th segment is assigned), to which
the t-th frame-wise observation in the u-th segment is
assigned. For instance, the sLVs and fLVs in MoGMMs
correspond to the document-level and word-level latent
variables in the latent Dirichlet allocation, where discrete
data are used [21]. By contrast, we focus on modeling a
continuous data space with a MoGMMs in this study.

By introducing these latent variables, we can describe the
conditional distributions of the observed segments given
the latent variables as follows1:

p(O|Z ,V , �) =
U∏

u=1

hzu

Tu∏
t=1

wzuvutN (out |μzuvut
, �zuvut ),

(3)
where �

�= {{hi }, {wi j }, {μi j }, {�i j }} denote the weight of
the i-th intra-cluster GMM, weight, mean vector, and
covariance matrix of the j -th component of the i-th intra-
cluster GMM, respectively. Note that we have assumed �i j

is a diagonal covariance matrix where the (d, d)-th element
is represented by σi j ,d .

1We use the notation p(·) to represent continuous probability func-
tions and P (·) to represent discrete probability functions.

We describe the distribution of the latent variables as
follows:

P (V|Z ,w) =
U∏

u=1

Tu∏
t=1

S∏
i=1

K∏
j=1

w
δ(vut , j)δ(zu ,i)
i j , (4)

P (Z|h) =
U∏

u=1

S∏
i=1

hδ(zu ,i)
i , (5)

where δ(a, b) denotes Kronecker’s delta, which takes a value
of one if a = b, and zero otherwise.

B) Generative process and graphical model
Using a Bayesian approach, the conjugate prior distribu-
tions of the parameters are often introduced as follows:

p(�|�0) =

⎧⎪⎪⎨
⎪⎪⎩
h ∼ D(h0),

wi ∼ D(w0),{
μi j ,d ,�i j ,d

} ∼ NG(ξ 0, η0,μ0
j ,d , σ 0

j ,d),
(6)

whereD(h0) andD(w0) denote Dirichlet distributions with
hyper-parameters h0 and w0, respectively.NG(ξ 0, η0,μ0

j ,d ,
σ 0

j ,d) denotes the normal inverse gamma distribution with
hyper-parameters ξ 0, η0, μ0

j ,d , and σ
0
j ,d .

Based on these likelihoods and prior distributions, the
generative process for our model is described as follows:

(i) Initialize {h0, �0},
(ii) Draw h fromD(h0),
(iii) For each segment-levelmixture component (i.e., cluster)

i = 1, . . . , S ,
(a) Draw wi fromD(w0),
(b) For each frame-level mixture component (i.e.,

inner-cluster GMM component) j = 1, . . . , K ,
(1) Draw {μi ,d , σi ,d} from NG(ξ 0

j , η
0
j ,μ

0
j ,d , σ 0

j ,d) for
each dimension d = 1, . . . , D.

(iv) For each segment u = 1, . . . , U ,
(a) Draw zu from multinomial distributionM(h),
(b) For each frame t = 1, . . . , Tu,
(1) Draw vut fromM(wzu),
(2) Draw out fromN (μzuvut

, �zuvut ).

Figure 2 shows a graphical representation of this model.

I I I . MODEL INFERENCE BASED ON
FULLY BAYES IAN APPROACH

When we use a Bayesian approach for estimating the MoG-
MMs, themain task is calculating posterior distributions for
the latent variables {V ,Z} and model parameter � given
observationO:

p(V ,Z , �|O) = 1

H0
p(O,V ,Z , �). (7)
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Fig. 2. Graphical representation of mixture-of-mixture model. The white square denotes frame-wise observations, and dots denote the hyper-parameters of prior
distributions.

H0 is a normalization coefficient, which is defined as fol-
lows:

H0
�= p(O) =

∑
V ,Z

∫
p(O,V ,Z , �)d�. (8)

Note that the model-based clustering problem is reduced to
the problemof estimating the optimal values of the fLVs and
sLVs, {V ,Z}, based on the posterior distribution defined in
equation (7). Thus, the posterior probabilities of the latent
variables V and Z can be calculated as follows:

γvut= j |zu=i ;�
�= p(vut = j |O, �, zu = i), (9)

γzu=i ;�
�= p(zu = i |O, �). (10)

Sufficient statistics of this model are computed using the
aforementioned posterior probabilities as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ci =

∑
u γzu=i ,

ni j =
∑

u,t γvut= j |zu=i · γzu=i ,

mi j =
∑

u,t γvut= j |zu=i · γzu=i · out ,

ri j ,d =
∑

u,t γvut= j |zu=i · γzu=i · (out,d)
2,

(11)

where ci denotes the number of segments assigned to the
i-th component of the entire cluster MoGMMs; ni j is the
number of frames assigned to the j -th component of the i-
th intra-cluster GMM of the MoGMMs; and mi j and ri j are
the first and second sufficient statistics, respectively.

However, it is generally infeasible to analytically estimate
these posterior distributions, so we must introduce some
approximations. In the rest of this section, we discuss how
to approximate the posterior distributions using VB- and
MCMC-based approaches.

A) Model estimation using a VB-based
approach
When the VB-based model estimation method is used, the
sLVs, fLVs, and model parameters are obtained determin-
istically by estimating their variational posterior distribu-
tions. To optimize a variational posterior distribution, we
attempt to maximize the marginalized likelihood, which is
described by equation (8). p(V ,Z , �|O) = q(V ,Z)q(�),

where the optimal variational posterior distribution (i.e.,
the q(V ,Z , �) that maximizes the free energy) can be
determined as follows:

q(V ,Z) ∝ exp
(〈

log p(O,V ,Z , �)
〉
q(�)

)
, (12)

q(�) ∝ exp
(〈

log p(O,V ,Z , �)
〉
q(V ,Z)

)
. (13)

where 〈A〉B denotes the expectation of A with respect to
B . The optimal values of q(V ,Z), and q(�) from equa-
tions (12) and (13) are obtained according to Algorithm 1,
as follows. The posterior probability of an fLV is estimated
as follows:

γ ∗
vut= j |zu=i ;�̃

�= exp

(
〈logwi j 〉q(wi j ) +

1

2

∑
d
〈log σi j ,d〉q(σi j ,d )

− D

2
log 2π− 1

2

∑
d

〈
(out,d − μi j ,d)

2

σi j ,d

〉
q(μi j ,d |σi j ,d )

)
.

(14)

We can determine the posterior distribution of an fLV by
normalizing (14) as follows:

q(vut = j |zu = i) =
γ ∗
vut= j |zu=i ;�̃∑
j γ
∗
vut= j |zu=i ;�̃

. (15)

In the same manner, we can compute an sLV γzu=i ;�̃ from
the posterior probability γ ∗

zu=i ;�̃
as follows:

γ ∗
zu=i ;�̃

�= exp

⎛
⎝〈log hi 〉q(hi ) +

∑
t

log
∑

j

γ ∗
vut= j |zu=i ;�̃

⎞
⎠,

(16)

q(zu = i) =
γ ∗

zu=i ;�̃∑
i γ
∗
zu=i ;�̃

. (17)
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The expected values of the parameters described in (14)–
(16) are computed as follows:

〈log hi 〉q(hi ) = ψ(h̃i )− ψ
(∑

i
h̃i

)
, (18)

〈logwi j 〉q(wi j ) = ψ(w̃i j )− ψ
(∑

j
w̃i j

)
, (19)

〈log σi j ,d〉q(σi j ,d ) = ψ(η̃i j )− log σ̃i j ,d , (20)〈
(out,d − μi j ,d)

2

σi j ,d

〉
q(μi j ,d |σi j ,d )

= η̃i j (out,d−μ̃i j ,d)
2 + ξ̃i j

σ̃i j ,d
,

(21)

where ψ(·) denotes the digamma function and �̃ =
{h̃i , w̃i j , ξ̃i j , η̃i j , μ̃i j } are the hyper-parameters of the poste-
rior distributions for �̃, which are computed as follows:

�̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̃i = h0 + ci ,

w̃i j = w0
j + ni j ,

ξ̃i j = ξ 0 + ni j ,

η̃i j = η0 + ni j ,

μ̃i j = ξ̃−1
i j (ξ

0μ0
j +mi j ),

σ̃i j ,d = σ 0
j ,d + ri j ,d + ξ 0(μ0

j ,d)
2 − ξ̃i j (μ̃i j ,d)

2.
(22)

Algorithm 1 shows the VB-based model estimation
algorithm. The fLVs and sLVs thatmaximize (equations (15)
and (17)) are theMAPvalues of their posterior distributions,
where we assume that these MAP values are the optimal
clustering results.

Algorithm 1: Model estimation algorithm using the VB
method.
initialize �̃;1

repeat2

for all clusters i and components j do3

for all segments u and frames t do4

Compute γq (V ,Z) in equation (12) before5

computing the expectation values
described in equations (15) and (17);

for all clusters i and components j do6

Compute the hyper-parameters of q(�) in7

equation (13) using the sufficient statistics, as
described in equations (18)–(21)

until converged ;8

This VB-based procedure monotonically increases the
free energy, as described in equation (8) under the varia-
tional posterior distribution q(V ,Z , �), but this approach
suffers from two problems, which are caused by the dif-
ference between true and variational posterior distribu-
tions, as well as the biased values. The first problem is
that the true posterior distributions of fLVs, sLVs, and the
model parameters in MoGMMs cannot be factorized (i.e.,

p(�,V ,Z|O) �= p(V|Z ,O)p(Z|O)p(�|O)), although
the variational posterior distributions assume that they
can. The second problem is that the posterior probability
obtained is generally biased because the calculated statistics
are strongly biased by the size of each segment. These prob-
lems are especially severe when the number of segments
is limited. To solve these problems, we need to estimate
the marginalized posterior distributions, into which model
parameter� and fLVs V are collapsed 2. This is obtained by
marginalizing equation (7) with respect to these parameters
as follows:

P (V ,Z|O) = 1

H0

∫
p(V ,Z , �,O).d�. (23)

We can then estimate the posterior distribution of the latent
variables directly and obtain an unbiased estimation.

Collapsed VB methods for estimating the marginalized
posterior distribution have been proposed in several studies
[22, 23], but these approaches are generally infeasible for our
hierarchicalmodel because we cannot apply the approxima-
tion of convexity to a hierarchical structure. Therefore, we
introduce the MCMCmethod to estimate the marginalized
posterior distribution from equation (23).

B) Model estimation based on the MCMC
approach
Using an MCMC-based approach, we obtain samples of
latent variables directly from their posterior distributions.
We can derive the marginalized distribution with respect to
themodel parameters described in equation (23) becausewe
do not need to evaluate the normalization term equation (8)
when employing an MCMC approach.

1) Marginalized likelihood for complete data
First, we derive the logarithmic marginalized likelihood for
the complete data, log p(O,V ,Z). In the case of complete
data, we can utilize all the alignments of observations out

to a specific Gaussian component distribution because all
of the latent variables, {V ,Z}, are treated as observations.
Then, the posterior distributions for each of the latent vari-
ables, P (zu = i |·) and P (vut = j |·) for all i , j , u, and t,
return 0 or 1 based on the assigned information. Thus,
γvut= j |zu=i and γzu=i described by equations (9) and (10)
are zero-or-one values depending on the assignment of the
data. Then, the sufficient statistics of this model, then, can
be represented as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ci =
∑

u δ(zu, i),

ni j =
∑

u,t δ(zu, i) · δ(vut , j),

mi j =
∑

u,t δ(zu, i) · δ(vut , j) · out ,

ri j ,d =
∑

u,t δ(zu, i) · δ(vut , j) · (out,d)
2,

(24)

2In this case, “collapsed” means that samples are drawn from the
marginalized distribution with respect to the model parameter �. In the
following, we refer to collapsed Gibbs sampling simply as Gibbs sampling.
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We can analytically derive the logarithmic marginal-
ized likelihood for the complete data by substituting equa-
tions (3)–(5) into the following integration equation:

log p(V ,Z ,O)

= log
∫

p(V ,Z ,O|�)p(�)d�

= log
�(h0)

∏
i �(h̃i )

�(h0)S�
(∑

i h̃i

) + log
∏

i

�
(∑

j w
0
j

)∏
j �(w̃i j )∏

j �(w
0
j )�
(∑

j w̃i j

)

+ β log
∏
i , j

(2π)−
ni j D

2

(ξ0)
D
2

(
�

(
η0

j

2

))−D (∏
d σ

0
j ,dd

) η0
j

2

(ξ̃i j )
D
2

(
�
(
η̃i j

2

))−D (∏
d σ̃i j ,dd

) η̃i j
2

,

(25)

where �̃i j
�= {h̃i , w̃i j , ξ̃i j , η̃i j , μ̃i j ,d , σ̃i j ,d}denotes the hyper-

parameter of the marginalized likelihood defined in
equation (22).

To construct theMCMCsampler, we define the following
logarithmic likelihood function for the complete data using
simulated annealing (SA) [24]:

Hp(β)
�= log pβ(V ,Z ,O)

= log p(O|V ,Z)+ 1

β
log P (V ,Z), (26)

where β is an inverse temperature defined for SA, which
controls the speed of convergence. We can now derive the
posterior distribution as follows:

P (V ,Z|O) = 1

Hp(β)
p(V ,Z)p(O|V ,Z)β

= 1

Hp(β)
exp {−βH(�)} , (27)

where Hp(β) is a normalization term introduced to normal-
ize {V ,Z} under the temperature β . The goal of theMCMC
approach is to obtain samples from equation (27). In the
next section, we discuss how to design the sampler in order
to obtain samples from this posterior distribution.

I V . IMPLEMENTAT ION OF MCMC-
BASED MODEL EST IMAT ION

We introduce a collapsed Gibbs sampler [25] to obtain sam-
ples of sLVs and fLVs from their posterior distributions.
Previously, we introduced a Gibbs assumption that alter-
nates the sampling of fLVs with some initializations of sLVs,
before sampling the sLVs using the fixed fLVs sampled in
the previous step [1, 17]. The drawback of this approach is
that the sampling of sLVs is determined strictly by the values
of the fLVs obtained in the previous sampling step and the
sLVs estimated in each iteration can be highly correlated.
To solve this problem, we propose a novel samplingmethod

that samples both sLVs and fLVs at the same time. This sam-
pling method allows an enormous number of combinations
of fLVs and sLVs to be evaluated efficiently, so we can find
a more appropriate solution than that obtained when alter-
nating Gibbs sampling for fLVs and sLVs. We refer to this
novel sampling technique as nested Gibbs sampling. This
section describes its formulation and implementation.

A) Nested Gibbs sampling for MoGMMs
For Gibbs sampling, we draw the value of each variable
iteratively from its posterior distributions and condition-
ing it with the sampled values of the other variables. This
posterior distribution is called the “proposal distribution.”
In the case of MoGMMs, the proposal distribution is the
joint posterior distribution of the sLV and fLVs related to
the u-th segment of {Vu, zu}, which is conditioned on the
sampled value of the latent variables related to the other
segments {V∗\u,Z∗\u}. Therefore, the proposal distribution of
MoGMMs is described as follows:

P
(Vu, zu|

{V∗\u,Z∗\u
}

,O) = p
(
Vu, zu,

{
V∗\u,Z∗\u

}
,O
)

p
({

V∗\u,Z∗\u
}

,O
) ,

(28)
where V∗\u = {v∗u′t |∀u′ �= u,∀t} and Z∗\u = {z∗u′ |∀u′ �= u}
denote the sets of samples for fLVs and sLVs, respectively,
except for those related to the u-th segment. After some iter-
ative sampling using equation (28), the samples obtained are
approximately distributed according to their true posterior
distributions. Direct sampling from a proposal distribution
equation (28) is theoretically feasible because equation (28)
takes the form of a multinomial distribution. However, it
is impractical to evaluate an enormous number of possi-
ble combinations of solutions. We notice that it is enough
to estimate the value of sLVs in order to estimate the opti-
mal assignment of utterances to speaker clusters. Therefore,
we try to marginalize out fLVs in equation (28) to make
the computation simple. We propose an MCMC-based
approach, which samples the value of zu directly from the
following marginalized posterior instead of equation (28):

p
(
zu|
{V∗\u,Z∗\u

}
,O) = ∫ p

(
zu|V∗u ,

{V∗\u,Z∗\u
}

,O)
× p

(V∗u | {V∗\u,Z∗\u
}

,O) dVu.
(29)

However, this integration is also infeasible because each vut

in Vu takes one of the number of K values (i.e., the number
of GMM components) and their combination are expo-
nentially large. Therefore, we introduce an approximated
approach, which uses the sampled value of V∗∗u obtained
from its true posterior p(V∗u |{V∗\u,Z∗\u},O). Then, V∗u is
marginalized out from equation (28) using the sampled
value V∗∗u by the following approximation:

p
(
zu|
{V∗\u,Z∗\u

}
,O) �∑

V∗∗u

P
(
zu|V∗∗u ,

{V∗\u,Z∗\u
}

,O) .

(30)
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We can easily sample the value of zu from equation (30)
because this is a multinomial distribution over zu that takes
the one of the C (i.e., number of clusters) values. With this
approach, the Gibbs sampling chain for zu is followed by
another Gibbs sampling chain in which we sample the val-
ues ofVu from its posterior distribution, conditioned on any
potential value of zu.We refer to thisGibbs sampler forVu as
a sub-Gibbs sampler andwe refer to the obtained samples as
V∗∗u|zu=i = {v∗∗ut|zu=i

}Tu
t=1. In the sub-Gibbs sampler, each value

of v∗∗ut|zu=i is sampled for all i as follows:

v∗∗ut|zu=i ∼ P
(
vut |

{V∗\u,Z∗\u
}

,V∗∗u\t , zu = i ,O) , (31)

where V∗∗u\t|zu=i = {v∗∗ut ′|zu=i |∀t ′ �= t} denotes the samples of
fLVs obtained from the sub-Gibbs sampler that are related
to all of the frames, except to the t-th frame in the u-th seg-
ment. After several iterations of equation (31) for all t in the
u-th segment, we obtain NGibbs samples. We then draw a
sample of sLV for the u-th segment from its posterior dis-
tribution conditioned on the samples {V∗∗u|zu=i

(n)}NGibbs

n=1 . By
aggregating the value of {V∗∗u|zu=i

(n)}NGibbs

n=1 over all possible
values of i , the Gibbs sampler for zu is defined as follows:

zu ∼ P (zu|
{V∗\u,Z∗\u

}
,O)

=
∑
∀Vu

P
(Vu, zu|

{V∗\u,Z∗\u
}

,O)

=
∑
∀Vu

P
(
zu|
{V∗\u,Z∗\u

}
,Vu,O) P

(Vu|
{V∗\u,Z∗\u

}
,O) .

(32)

By aggregating NGibbs samples of Vu from p(Vu|zu =
i , {V∗\u,Z∗\u},O) for all possible values of i and then plug-
ging them into p(zu|Vu, O), we obtain the following Monte
Carlo integration:∑
∀Vu

P
(
zu|
{V∗\u,Z∗\u

}
,Vu,O) P

(Vu|
{V∗\u,Z∗\u

}
,O)

� 1

NGibbs

NGibbs∑
n=1

P
(

zu|V∗∗u
(n),
{V∗\u,Z∗\u

}
,O
)

. (33)

We refer to these procedures as nested Gibbs sampling,
because we sample zu from equation (33) using the value

of V∗∗(n)u which can be obtained from the sub-Gibbs sam-
pler defined by equation (31) in a nested manner. A large
number of samples, NGibbs, may be required to accurately
represent of the marginal value for equation (33). To eval-
uate the effect of the number of samples on the overall
sampling procedure, we applied the proposed nested Gibbs
sampler to practical speech data. Figure 3 shows the log-
arithmic marginalized likelihoods (LMLs) obtained using
the proposed nested Gibbs sampling method with differ-
ent sampling sizes. The eight lines in each figure corre-
spond to the results of eight trials with different random
seeds. This figure shows that high accuracymay be achieved
with a small number of samples, and that even one sam-
ple may be adequate to approximate the marginal value
in equation (33). Algorithm 2 shows the algorithm of the

Algorithm 2: Model estimation algorithm based on the
proposed nested Gibbs sampling method.
initialization {V∗∗,Z∗∗}, V∗;1

repeat2

for all segments u do3

for all clusters i do4

for all frames t do5

for all components j do6

Update γ βvut= j |zu=i ←7

Pβ
(
vut= j |

{
Z∗\u,V∗\u

}
,V∗∗u\t ; zu= i

)
;

Draw the values of the fLVs, v∗∗ut , from8

their posterior probability with
v∗∗ut ∼γ βvut=·|zu=i ;

Update9

γ
β

zu=i |V∗u ← Pβ
(

zu = i |
{
Z∗\u,V∗\u

}
,V∗∗u

)
;

Draw the value of the sLVs, z∗u, from their10

posterior distribution with z∗u ∼ γ βzu=i |V∗∗u
;

Update the values of the fLVs with V∗u ← V∗∗u ;11

Update the SA temperature β with respect to12

scheduling
until some conditions are met ;13

(a) (b)

Fig. 3. LML obtained using proposed nested Gibbs sampler, applied to A1+ station noise. Refer to Table 1 for the details of test set A1. Each figure shows results
with a different sampling size Nsamp . Eight lines correspond to results of eight trials using different random seeds. (a) NGibbs = 1 & (b) NGibbs = 5
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nested Gibbs sampler for MoGMMs. The formulations of
equations (31) and (33) are described in the Appendix.

B) Computation of the marginalized
likelihood
For the Gibbs sampler described in A, we can approximate
the joint likelihood equation (26) using the sampled latent
variables {V∗u ,Z∗u }Uu=1.

Figure 4 is a scatter diagram showing the marginalized
likelihood and K values (which are used widely for the
measurement of the clustering) calculated from the results
obtained when the proposed nested Gibbs sampler was
applied to B1 and B1 with four types of noise. The values
of K are explained in the Experiment section. The dif-
ferences in the plots indicate the distinct speakers. This
figure shows that the value of K is strongly correlated
with the marginalized likelihood. Therefore, we can use the
marginalized likelihood as ameasure of the appropriateness
of the models.

V . SPEAKER CLUSTER ING
EXPER IMENTS

We investigated the effectiveness of ourmodel optimization
methods at speaker clustering using the TIMIT [26] and
CSJ [27] databases. We compared the following four model
estimation methods:

• n-Gibbs: MCMC-based model estimation using the pro-
posed nested Gibbs sampling method.

• Gibbs: MCMC-based model estimation using conven-
tional Gibbs sampling where the fLVs and sLVs are sam-
pled alternately [1, 17].

• VB: VB-based model estimation [19].
• HAC-GMM: hierarchical agglomerative clustering
method. A GMM is estimated for each utterance in
a maximum-likelihood manner. The similarity between
utterances is defined as the cross likelihood ratio between
corresponding GMMs. The pair of utterances with the
greatest similarity is merged iteratively until the correct
number of speakers is obtained [3].

(a) (b)

(c) (d)

(e)

Fig. 4. LML as a function of K value. Each plot shows the results obtained by applying the proposed n-Gibbs sampler to five different datasets (id:000, 001, . . . , 004).
Refer to Table 1 for the details of test set B1. (a) B1 (clean) & (b) B1+ crowd (c) B1+ street & (d) B2+ party (e) B2+ station
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A) Experimental setup
1) Datasets
All of the experiments were conducted using 11 evaluation
sets obtained from TIMIT and CSJ. Table 1 lists the num-
ber of speakers and utterances in the evaluation sets used.
T1 and T2 were constructed using TIMIT. T1 corresponds
to the core test set of TIMIT, which includes 192 utterances
from 24 speakers. T2 is the complete test set, which includes
1152 utterances from 144 speakers. In this case, there were no
overlaps between T1 and T2. The remaining nine evaluation
sets were constructed usingCSJ as follows: all lecture speech
in CSJ was divided into utterance units based on the silence
segments in their transcriptions, five speakers were then
randomly selected, and five, 10, and 20 of their utterances
were chosen for A1, A2, and A3, respectively. In the same
manner, we randomly selected 10 and 15 different speakers
and five, 10, and 20 of their utterances were used for B1 to B3
and C1 to C3, respectively. We evaluated five combinations
of different speakers for each dataset. The resulting cluster-
ing performance for each dataset was the average of these
five combinations.

The speech data from TIMIT and CSJ are not corrupted
by noise. In additional experiments, we used noisy speech
data, which we created by overlapping each utterance with
four types of non-stationary noise (crowd, street, party,
and station) selected from the noise database of the Japan
Electronic Industry Development Association [28]. These
noises were overlapped with each utterance at a signal-
to-noise ratio of about 10 dB. Speech data were sampled
at 16 kHz and quantized into 16-bit data. We used 26-
dimensional acoustic feature parameters, which comprised
12-dimensionalMFCCswith log energy and their� param-
eters. The frame length and frame shift were 25 and 10ms,
respectively.

2) Measurement
We employed the average cluster purity (ACP), average
speaker purity (ASP), and their geometric means (K value)
as the speaker clustering evaluation criteria [29]. In this
experiment, the correct speaker label was manually anno-
tated for each utterance. Let ST be the correct number of
speakers; S is the estimated number of speakers; ni j is the

Table 1. Details of test set.

Test Number of Number of Average total
set speakers utterances duration (min)

T1 24 192 9.7
T2 144 1152 58.8
A1 5 25 2.8
A2 5 50 5.6
A3 5 100 11.1
B1 10 50 5.6
B2 10 100 11.3
B3 10 200 22.5
C1 15 75 13.0
C2 15 150 26.0
C3 15 300 51.8

estimated number of utterances assigned to speaker cluster i
in all utterances by speaker j ; n j is the estimated number of
utterances of speaker j ; ni is the estimated number of utter-
ances assigned to speaker cluster i ; and U is the number of
all utterances. The cluster purity pi and speaker purity q j

were then calculated as follows.

pi =
ST∑
j=0

n2
i j

n2
i

, q j =
S∑

i=0

n2
i j

n2
j

. (34)

The cluster purity is the ratio of utterances derived from
the same speaker relative to the utterances assigned to each
cluster. The speaker purity is the ratio of utterances assigned
to the same cluster relative to the utterances spoken by each
speaker. Thus, ACP and ASP are calculated as follows.

VACP = 1

U

S∑
i=0

pi ni , VASP = 1

U

ST∑
j=0

q j n j . (35)

The K value is obtained as the geometric mean between
ACP and ASP as follows:

K =
√

VAC P · VAS P . (36)

3) Evaluation conditions
The number of iterations was set to 100 in the MCMC-
basedmethod, which was sufficient for convergence in both
the conventional and proposed Gibbs sampling in all of
the following experimental conditions. We conducted the
same speaker clustering experiment eight times using dif-
ferent seeds each time.We evaluated themarginalized likeli-
hood described in equation (26) for each result and selected
the result with the highest likelihood from those obtained
during the 100 iterations of eight experiments.

The hyper-parameters in equation (22) were set as fol-
lows: w(0) = {ρ, . . . , ρ} for all components; h0 = ρ and
h(0) = {ρ, . . . , ρ} for all clusters; η(0) = 1 and ξ (0) = ρ;
μ(0) = μ(O) and �(0) = η0�(O), where μ(O) and �(O)
were the mean vectors and covariance matrices estimated
from the whole dataset, respectively. The value range for
ρ was {1, 10, 100, 1000}. These parameters were deter-
mined using the development data set obtained from
the CSJ dataset. We initialized both the sLVs and fLVs
randomly.

B) Experimental results
1) Comparison with the conventional Gibbs
sampler
We evaluated conventional Gibbs sampling and the pro-
posed nested Gibbs sampling method with different num-
bers of mixture components using both clean and noisy
datasets. Figure 5 shows the K values obtained using the
Gibbs and n-Gibbs samplers with different numbers of
mixture components when they were applied to clean data
(A1) and noisy data (A1+ crowd).We can see that the high-
est K value was obtained when one or two components
were used for both the Gibbs and n-Gibbs samplers. This
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indicates that a small number of Gaussian distributions are
sufficient to model each speaker’s utterances in either sam-
pling method when clean data are used. However, in the
case of noisy data, the nested Gibbs sampler performed
best with eight components of mixtures, but the conven-
tionalGibbs samplerwith eight components achievedworse
results than the proposed method. This suggests that sam-
ples from noisy data follow a multi-modal distribution
and that the proposed sampling method can represent this
multi-modality. By contrast, the conventional Gibbs sam-
pler could not model these complex data even with a large
number of mixture components. Later, we will discuss the
reasonwhy the conventional Gibbs sampler degraded the K
value for the noisy data set by using diagrams to show the
convergence of the samplers.

Figure 6 shows the logarithmic marginalized likelihoods
of the samples obtained using the conventional Gibbs and
proposed nested Gibbs sampling methods when applied to
A1 with different SA temperatures [24]. The eight lines in
these figures represent the results obtained from eight tri-
als with different seeds. We can see that no trial converged

to a unique distribution without SA (i.e., β init = 1) when
a conventional Gibbs sampler was used. Introducing a
higher temperature (β init = 30) offered some protection
from divergence, but large variations still remained, as
shown in Figs 6(c) and 6(e). These results indicate that the
conventional Gibbs sampler was often trapped by a local
optimum. However, in the case of the nested Gibbs sampler,
the likelihoods converged after only 20 iterations at most,
and all of the trials converged to almost the same result, even
when we did not use the SA method (i.e., β init = 1). These
results indicate the greater effectiveness of the proposed
sampling method.

Tables 2 and 3 list the K values obtained using each
method for clean and noisy speech data, respectively. These
tables demonstrate that the nested Gibbs sampler outper-
formed the conventional Gibbs sampler irrespective of the
evaluation sets, under clean and noisy conditions. These
results imply that the proposed method can model data
drawn from both single and multi-modal distributions,
which the conventional Gibbs sampler was unable to cal-
culate.

(a) (b)

Fig. 5. K values obtained by existing Gibbs and proposed nested Gibbs sampler applied on (a) clean (A1) and (b) noisy (A1+ crowd) speech.

(a) (b) (c)

(d) (e) (f)

Fig. 6. LML obtained by Gibbs and nested Gibbs with SA applied on A1. Each figure shows result with different initial temperature β init. Eight lines correspond to
the results of eight trials with different seeds. (a) Gibbs (β init = 1 (w/o annealing)); (b) nested Gibbs (β init = 1 (w/o annealing)); (c) Gibbs (β init = 10); (d) nested
Gibbs (β init = 10 ); (e) Gibbs (β init = 30); (f) nested Gibbs (β init = 30).
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Table 2. K -value for clean test sets.

Evaluation data n-Gibbs Gibbs VB HAC-GMM

T1 (spkr:24 utt:192) 0.96 0.84 0.74 0.88
T2 (spkr:144 utt:1152) 0.74 0.52 0.41 0.73
A1 (spkr:5 utt:25) 1.00 0.90 0.92 0.93
A2 (spkr:5 utt:50) 0.99 0.96 0.97 0.99
A3 (spkr:5 utt:100) 0.98 0.97 0.99 0.97
B1 (spkr:10 utt:50) 0.98 0.93 0.85 0.95
B2 (spkr:10 utt:100) 0.98 0.90 0.90 0.96
B3 (spkr:10 utt:200) 0.98 0.91 0.96 0.96
C1 (spkr:15 utt:75) 0.97 0.92 0.81 0.95
C2 (spkr:15 utt:150) 0.93 0.91 0.90 0.96
C3 (spkr:15 utt:300) 0.92 0.91 0.91 0.95

Table 3. K value for noisy test sets. Four types of noise (crowd, street,
party, and station) are overlapped with speech of nine datasets.

Evaluation data n-Gibbs Gibbs VB HAC-GMM

A1+ crowd (spkr:5 utt:25) 1.00 0.90 0.82 0.95
A2+ crowd (spkr:5 utt:50) 0.99 0.96 0.95 0.97
A3+ crowd (spkr:5 utt:100) 0.99 0.97 0.99 0.95
B1+ crowd (spkr:10 utt:50) 0.97 0.92 0.83 0.93
B2+ crowd (spkr:10 utt:100) 0.97 0.94 0.91 0.92
B3+ crowd (spkr:10 utt:200) 0.93 0.88 0.92 0.89
C1+ crowd (spkr:15 utt:75) 0.99 0.96 0.79 0.96
C2+ crowd (spkr:15 utt:150) 0.99 0.95 0.91 0.94
C3+ crowd (spkr:15 utt:300) 0.96 0.90 0.90 0.92
A1+ street (spkr:5 utt:25) 0.86 0.74 0.69 0.79
A2+ street (spkr:5 utt:50) 0.78 0.66 0.69 0.77
A3+ street (spkr:5 utt:100) 0.86 0.72 0.84 0.75
B1+ street (spkr:10 utt:50) 0.84 0.75 0.62 0.79
B2+ street (spkr:10 utt:100) 0.75 0.68 0.66 0.73
B3+ street (spkr:10 utt:200) 0.72 0.62 0.71 0.71
C1+ street (spkr:15 utt:75) 0.77 0.67 0.60 0.75
C2+ street (spkr:15 utt:150) 0.68 0.60 0.61 0.68
C3+ street (spkr:15 utt:300) 0.68 0.62 0.71 0.68
A1+ party (spkr:5 utt:25) 0.97 0.87 0.88 0.95
A2+ party (spkr:5 utt:50) 0.99 0.93 1.00 0.87
A3+ party (spkr:5 utt:100) 1.00 0.92 0.99 0.96
B1+ party (spkr:10 utt:50) 0.98 0.88 0.83 0.95
B2+ party (spkr:10 utt:100) 0.96 0.86 0.88 0.95
B3+ party (spkr:10 utt:200) 0.96 0.89 0.90 0.92
C1+ party (spkr:15 utt:75) 0.98 0.93 0.81 0.94
C2+ party (spkr:15 utt:150) 0.94 0.91 0.87 0.92
C3+ party (spkr:15 utt:300) 0.92 0.90 0.90 0.90
A1+ station (spkr:5 utt:25) 0.92 0.86 0.77 0.87
A2+ station (spkr:5 utt:50) 0.86 0.76 0.90 0.85
A3+ station (spkr:5 utt:100) 0.84 0.75 0.86 0.87
B1+ station (spkr:10 utt:50) 0.89 0.79 0.69 0.86
B2+ station (spkr:10 utt:100) 0.84 0.77 0.76 0.86
B3+ station (spkr:10 utt:200) 0.81 0.75 0.81 0.81
C1+ station (spkr:15 utt:75) 0.89 0.79 0.69 0.84
C2+ station (spkr:15 utt:150) 0.89 0.74 0.77 0.80
C3+ station (spkr:15 utt:300) 0.81 0.73 0.83 0.83

2) Comparison with the VB-based method and
agglomerative method
The K values determined using the VB-based and agglom-
erative methods are also listed in Tables 2 and 3. The results
obtained by the proposed method were equal or superior to
those with the conventional VB-based (VB) methods using

both the clean and noisy datasets. In particular, the pro-
posed method obtained substantially better performance
when the data were very scarce (e.g. A1, B1, C1, T1, and T2).
This implies that nested Gibbs sampling-based estimation
can adequately estimate the cluster structure from lim-
ited data, which is generally difficult to achieve. In fact,
the VB-based method cannot model such limited data. To
evaluate the effectiveness of a fully Bayesian approach, we
also compared the proposed method with the conventional
hierarchical agglomerativemethod (HAC-GMM). The pro-
posed method also outperformed the HAC-GMM in most
conditions.

3) Computational cost
We now consider the computational cost based on two fea-
tures: the number of iterations until convergence and the
computation required for each epoch. The T-1 dataset (i.e.,
24 speakers and 192 utterances; 9.7min in total) was used
for this experiment. TheVB approach required about 14.8 s
on average for one epoch and 12 iterations until it con-
verged (i.e., real-time factor (RTF) of about 0.0031) when
an Intel Xeon 3.00GHz processor was used. However, the
proposed nested Gibbs sampling method required about
41.4 s on average for one epoch and about 63 iterations
until the maximum logarithmic marginalized likelihood
was obtained (i.e., RTF of about 0.0450), whereas the con-
ventional Gibbs samplingmethod only required about 1.58 s
and about 17 iterations until the maximum logarithmic
marginalized likelihood was obtained (i.e., RTF of about
0.0005). Figure 6(a) shows the logarithmic marginalized
likelihood obtained when the nested Gibbs sampler was
applied to dataset A1. We can see that the chain of sam-
ples obtained using the nested Gibbs sampler converged
within 100 iterations at most. Compared with the conven-
tional Gibbs sampler, the nested Gibbs sampler required
more iterations and computations while it obtains substan-
tially better performance. In fact, the computational cost
of the nested Gibbs sampler will increase drastically as the
number of utterances increases because many iterations are
needed during the sampling process. However, the sam-
pling of fLVs can be parallelized, because the posterior
distribution of fLVs is calculated independently of the utter-
ances. Thus, we can reduce the computational time by using
multi-threading technology.

V I . CONCLUS ION AND FUTURE
WORK

In this study, we proposed a novel method for estimating
a mixture-of-mixture model. The proposed nested Gibbs
sampler can efficiently avoid local optimum solutions due
to its nested sampling procedure, where the structure of
its elemental mixture distributions are sampled jointly.
We showed that the proposed method can estimate mod-
els accurately for speech utterances drawn from complex
multi-modal distributions, whereas the results obtained
by the conventional Gibbs sampler-based method were
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trapped in local optima. The proposed method also outper-
formed the conventional agglomerative approach in most
conditions.

The proposed MoGMMs can build a hierarchical model
from multi-level data that comprise frame-wise observa-
tions. Some types of real-world data also has the same
kind of structure, such as images comprising a set of pix-
els. In future research, we plan to apply MoGMMs to the
image-clustering problem.

Non-parametric Bayesian approaches have recently been
attracting the attention as methods for selecting optimal
model structures. For example, the nested Dirichlet pro-
cessmixturemodel [30] provides amodel selection solution
for our MoGMMs. In a previous study, we proposed a non-
parametric Bayesian version of amixture-of-mixturemodel
and showed that it was effective in estimating the number
of speakers [31, 32]. However, this model was based on the
conventional Chinese restaurant process and we employed
the conventional Gibbs sampling method, which is read-
ily trapped by the local optima. In future research, we plan
to develop a nested Gibbs sampling-based method for such
non-parametric Bayesian models.

APPEND IX

In this appendix, we provide detailed descriptions of how to
calculate the posterior probabilities for the fLVs and sLVs in
equations (31) and (33), which are required for nested Gibbs
sampling.

[sLV]

p(zu = i |O,Vu,
{V\u,Z\u

}
)

= p(O,V ,Z\u, zu = i)

p(O,V ,Z\u)

∝ p(O,V ,Z\u, zu = i)

p(O\u,V\u,Z\u)

∝ exp

⎧⎨
⎩log

�
(∑

j w̃i\u, j

)
�
(∑

j w̃i , j

)

− β
∑

j

(
H(�̃ i , j )− H(�̃ i\u, j )

)⎫⎬
⎭

�= γ βzu=i |V . (37)

To derive the result using equation (37), we assume
that the marginalized likelihood for each complete data
{out , vut , zu} is independent from the others, and use the fact
that

p(O,Vu,
{V\u,Z\u

}
) = p(O\u,V\u,Z\u)

∑
zu

p(Ou,Vu, zu)

∝ p(O\u,V\u,Z\u), (38)

H(�̃ i , j ) in equation (37) denotes the logarithmic likelihood
of the complete data {O,Z ,V}, which is defined as follows:

H(�̃ i , j )
�= log p(O,Vu\t

{V\u,Z\u
}

, vut = j , zu = i)

∝ log�(w̃i j )− D

2
log ξ̃i j

+ D log�

(
η̃i j

2

)
− η̃i j

2

∑
d

log σ̃i j ,d, (39)

where h̃i , w̃i j , ξ̃i j , η̃i j , μ̃i j , and σ̃i j ,d denote the hyper-
parameters of the marginalized likelihood defined in
equation (22). We can also obtain the samples of fLVs from
these factorized distributions as follows:

[fLVs]

p(vut = j |O,Vu\t ,
{V\u,Z\u

}
, zu = i)

= p(O,Vu\t ,
{V\u,Z\u

}
, vut = j , zu = i)

p(O,Vu\t ,
{V\u,Z\u

}
, zu = i)

∝ p(O,Vu\t ,
{V\u,Z\u

}
, vut = j , zu = i)

p(O\{ut},V\{ut},Z\u, zu = i)

∝ exp
{
−β
(

H(�̃ i , j )− H(�̃ i , j\t)
)}

�= γ βvut= j |zu=i , (40)

where H(�̃ i\u, j ) H(�̃ i , j\t) in equations (37) and (40)
denote the logarithmic likelihood of complete data with
respect to {O\t ,Z ,V\t} and {O\u,Z\u,V\u}, respectively.

To derive the result equation (40), we assume that the
marginalized likelihood for each complete data {out , vut , zu}
is i.i.d. and we use the fact that

p(O,Vu\t ,
{V\u,Z\u

}
, zu = i)

= p(O\{ut},V\{ut},Z\u, zu = i)
∑
vut

p(out , vut , zu = i)

∝ p(O\{ut},V\{ut},Z\u, zu = i). (41)
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