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Combining augmented statistical noise
suppression and framewise speech/non-speech
classification for robust voice activity detection

YASUNARI OBUCHI

This paper proposes a new voice activity detection (VAD) algorithm based on statistical noise suppression and framewise
speech/non-speech classification. Although many VAD algorithms have been developed that are robust in noisy environments,
the most successful ones are related to statistical noise suppression in some way. Accordingly, we formulate our VAD algorithm
as a combination of noise suppression and subsequent framewise classification. The noise suppression part is improved by intro-
ducing the idea that any unreliable frequency component should be removed, and the decision can be made by the remaining
signal. This augmentation can be realized using a few additional parameters embedded in the gain-estimation process. The
framewise classification part can be either model-less or model-based. A model-less classifier has the advantage that it can be
applied to any situation, even if no training data are available. In contrast, a model-based classifier (e.g., neural network-based
classifier) requires training data but tends to be more accurate. The accuracy of the proposed algorithm is evaluated using the
CENSREC-1-C public framework and confirmed to be superior to many existing algorithms.
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. INTRODUCTION

Voice activity detection (VAD) is a task to identify active
voice periods from an input audio signal. The audio signal
may include stationary or transient noise, music, or back-
ground speech (babble noise). Even if the power of these
interfering sounds is large, and the signal-to-noise ratio
(SNR) is low, the voice activity detector must extract the
signal of voice periods only and send them to a speech-
communication device or speech recognizer. Accurate VAD
is essential for the communication device to achieve effi-
ciency and to avoid insertion and deletion errors by the
speech recognizer.

Since human speech is approximately stable on the time
scale of 20-30 ms, most VAD studies are based on frame-
wise processing. In the framewise processing, a feature vec-
tor is extracted from each frame and used by the binary
classifier to distinguish between speech and non-speech.
From this perspective, we can categorize previous studies
of VAD into the two following groups.

The first group focuses on identifying better framewise
features. Obviously, the simplest feature is instantaneous
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power, which is sufficient in high-SNR environments.
However, power-based VAD is vulnerable to noise and
does not work effectively in many applications. To achieve
robustness under noisy conditions, various framewise fea-
tures have been proposed. Even in the early period of
digital communication, the accuracy of VAD results were
known to improve by the zero-crossing rate [1]. Recently
proposed features include cepstral features [2], MFCC [3,
4], spectral entropy [5], long-term spectral envelope [6],
periodic-aperiodic component ratio [7], and higher order
statistics [8].

The second group of VAD studies focuses on the clas-
sifier. Although fixed or adaptive thresholding is used for
one-dimensional features, various classification algorithms
are applicable for multi-dimensional features. Examples of
simple methods are the Euclidean distance [2] and LDA
(linear discriminant analysis) [3] methods. More sophis-
ticated approaches include the GMM (Gaussian mixture
model) [9] and the support vector machine (SVM) [4, 6].
More recently, classifiers based on DNNs (deep neural net-
works) have been proposed [10-13].

As described above, a VAD system can be made by com-
bining a feature extractor and a speech/non-speech classi-
fier. However, such a simple combination does not take into
account that both the human voice and various noises have
temporal dependency. In contrast, VAD accuracy under
noisy conditions can be improved by introducing a scheme
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to deal with inter-frame information. The simplest example
is temporal smoothing, in which a short period of speech is
re-labeled as non-speech, and a short period of non-speech
is re-labeled as speech. The hangover scheme, in which
additional frames are re-labeled as speech on both sides of
a speech period, is also used in many cases. Some features
such as long-term spectral envelope and order statistics
filter [14] utilize temporal information implicitly. Classi-
fiers using HMM (hidden Markov model) [15], conditional
random field (CRF) [16], and recurrent neural network
[11] are more explicit examples of incorporating temporal
information.

Among the methods in the second group, one of the
standard is the work of Sohn et al. [17], which is based on
the decision-directed estimation of the speech and noise
distribution [18]. In their method, speech and noise pro-
cesses in each frequency band are treated as independent
Gaussian random variables, and their parameters are esti-
mated recursively. This approach is widely used in speech
enhancement and is known as the minimum mean-square
error short-time spectral amplitude (MMSE-STSA) estima-
tor. Following the success of Sohn’s algorithm, Fujimoto and
Ishizuka [19] proposed a more sophisticated temporal archi-
tecture that uses switching Kalman filter (SKF), resulting in
significant improvement.

In this paper, we investigate a series of new VAD algo-
rithms by extracting and expanding the key components in
the successes of Sohn’s and Fujimoto’s methods. Although
the noise suppression part and the classification part are
strongly linked in their methods, we assume that each part
can produce the desired results separately. Therefore, our
approach focuses on introducing state-of-the-art noise sup-
pression and classification methods and adapting them to
VAD.

In the noise suppression part, the optimally modified log
spectral amplitude (OM-LSA) speech estimator [20] is used.
When applying OM-LSA, some augmented parameters are
used because the existence of voice can be confirmed by reli-
able components only; the unreliable components should
be removed to avoid errors. This is quite different from the
case of speech communication and recognition, in which
the distortion caused by the augmented parameters is very
harmful. The introduction of augmented noise suppression
is the first major contribution of this paper.

In the classification part, we first investigate approaches
without model training. Such an approach could be applied
to any language and situation, even when no training data
are available. Subsequently, we pursue even higher VAD
accuracy by using model-based approaches. The model can
be trained in either an unsupervised or supervised man-
ner. We examine various training methods and show that
the best performance can be obtained using convolutional
neural networks (CNNs). The introduction of a CNN as a
postprocessor of augmented noise suppression is the second
major contribution of this paper.

This paper is an extended version of [21, 22]. The former
paper proposed to use augmented statistical noise suppres-
sion, while the latter proposed to use CNNs. In addition,

more details on the implementation and some additional
evaluation results are presented.

The remainder of this paper is organized as follows.
In Section II, we briefly review the statistical noise sup-
pression by OM-LSA and introduce augmented parame-
ters. In Section III, a simple classification method without
pre-trained models is described. In Section IV, we discuss
various model-based classification methods and describe
our final and optimal CNN-based classifier in detail. Exper-
imental results are shown in Section V, and the last section
is for conclusions.

. AUGMENTED STATISTICAL
NOISE SUPPRESSION

A) Original OM-LSA

The MMSE-STSA speech estimator was based on the idea
that the amplitude of each frequency component X (k, /) isa
random variable, and the estimate X (k, ) should minimize

E{(X (kD] — X (kD) (1)

where (k, ) is the frequency component and frame indices.

The log spectral amplitude (LSA) estimator is the
improved version of MMSE-STSA, in which the cost func-
tion is defined by the difference of log X:

E{(log | X (k,])| — log | X (k,)])?}, (2)

which is known to be more suitable for speech processing.
Solving (2) is mathematically complicated but straight-
forward, and the solution is expressed as follows.

|X(k,D)| = Gk, DY (kD] 3)
_&kD 1 et

Galll) = 1+&(k, D) P <2 /;(k,l) t dt) W

v(k,) = y(k,DEKRD /(1 + E(k, 1)), (5)

where Y (k, 1) is the amplitude of observed signal in the fre-
quency domain, and G g (k, ) is the gain function. Variables
&(k,1) and y (k,1) are called a priori SNR and a posteriori
SNR, respectively. The a posteriori SNR is defined by the
current frame observation;

Y (k,D)|?
y(k1) = o2 (k1) (6)
where the noise process variance o2 (k, ) must be obtained
separately. As in [20], we use the minima-controlled recur-
sive averaging (MCRA) noise estimation to obtain o2 (k, ).
The a priori SNR is estimated recursively using the esti-
mated gain of the previous frame;

£k =G (k1 — Dy (k1 —1)
+ (1 — cy) max{y (k,I) — 1,0} )

where ¢, is an adjustable weight parameter. A more detailed
derivation of the above-mentioned solution could be found
in [23].



OM-LSA modifies the result of LSA by taking the
weighted geometric mean of G y (k, ) and its lower bound-
ary Gmin, where the weight is based on the speech presence

probability p(k,1).

IX(k, )| = Gk, )| Y (k,])]|
Gk, 1) = [GH(k’l)]P(k,l)Gl—p(k,l).

min

(8)
(9)
The speech presence probability is obtained by

qo
— 4o

-1
plk,1) = [1 + 0+ é(k,l))e“’(k’l)] (10)
where gy is the a priori speech absence probability.

After the noise suppression process of OM-LSA was
done, there are two approaches to obtain VAD results.
The first approach is to reconstruct the waveform of the
noise-suppressed signal by combining the estimated ampli-
tude X (k, 1) and the original phase. Once the reconstructed
waveform was obtained, any existing VAD method can be
applied. The simplest example is to classify speech and non-
speech frames using a power threshold, which we discuss in
the next section. It is also possible to apply more sophis-
ticated machine learning-based method, which we discuss
in Section IV. The second approach is to use the speech
presence probability p(k,l) defined by (10) or the likeli-
hood ratio A(k,[) used in [17]. They can be integrated to
the framewise score as follows.

K-1

P() =[] ptkD,
k=0

(1)

K-1

A =[] AkD),
k=0

y (k. Dé(k, D)
1+ &k, D

K-1 1
= ex 12

Hzaner o)
where K is the number of frequency components. VAD

can be realized simply by applying a threshold for these

framewise scores.

B) Augmented implementation of OM-LSA

The original OM-LSA estimator was intended to provide
better speech signal for communication and recognition.
Therefore, it was designed to maintain the balance between
lowering the noise level and not causing the distortion.
However, reducing the noise is particularly important for
VAD, while the distortion is rarely harmful. In view of the
priority of noise removal, we propose to use some augmen-
tation techniques for the OM-LSA speech estimator.

The first step of augmentation focuses on (6). Although
MCRA is known to be a reliable noise estimation algorithm,
we believe that the noise level must be over-estimated so that
any unreliable part of the spectrogram does not affect the
VAD results. In fact, we formerly found that the noise level
must be under-estimated to obtain more accurate results
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of speech recognition [24], because distortion is the main
cause of misrecognition. Both under and over estimation of
the noise can be realized by introducing a weight factor « as
follows.

Y (k,D?

vkD = aocl (k1)

(13)
The second step of augmentation focuses on (8) that
defines how the estimated gain is applied to the speech
amplitude. Augmentation is realized simply by introducing
a modification parameter 8 as follows.
XDl =GP DIY (kD). (14)
The third step of augmentation is a screening step of the
prominent noise component. In contrast that speech has
a wideband spectrum, there are kinds of noises that have
a very sharp peak in the power spectrum, such as electri-
cal beeps and musical instrument sounds. The prominent
component in the power spectrum could be removed by the
process described as follows.

rank(k) > nK

GP(k, DY (k, )]
0 otherwise,

|X(k,D)| = (15)

where rank(k) is the number of frequency components
whose magnitude is larger than the kth frequency. At
last, our VAD-oriented OM-LSA-based speech estimator is
defined by equations (4), (5), (7), (9), (10), (13), and (15).

I1. CLASSIFICATION WITHOUT
MODEL TRAINING

After the noise suppressed signal is obtained, we extract
framewise features and classify each frame into speech or
non-speech. The simplest classification algorithm is to apply
a threshold to the frame power, which is calculated as fol-
lows.
K—1
QW) =Y wk)|X (kDI

k=0

(16)

where w(k) is the A-weighted filter coeflicient correspond-
ing to the kth frequency. In the above equation, X (k, ) is not
necessarily the same as that of (15) because sometimes the
optimal time scale is not equal between noise suppression
and VAD. In this paper, the frame power for VAD is calcu-
lated using 20 ms half-overlapping frames from the recon-
structed waveform, whereas the noise suppression was exe-
cuted using 32 ms half-overlapping frames. In fact, we apply
the modification from (14) to (15) not directly during noise
suppression. Instead, we apply (15) for the reconstructed
waveform.

Once the frame power is calculated, the frame is labeled
as speech if the power is larger than the threshold. Although
this approach is not effective in low-SNR environments by
itself, it works quite effectively when it is combined with
noise suppression. It should be also noted that the same

3



4

YASUNARI OBUCHI

principle is applicable to other framewise features, such as
P()and A(]).

A typical modification of the threshold-based VAD is to
add inter-frame smoothing. Consonants at the beginning
and the end of an utterance is likely to be mislabeled as non-
speech due to its small power. Therefore, it is reasonable
to add several-frame speech periods (hangovers) on both
ends of the period labeled as speech. It is also reasonable
to remove (relabel as non-speech) very short speech peri-
ods because they are likely to be transient noise, and to fill
(relabel as speech) short non-speech periods because they
are likely to be voiceless intervals within utterances.

Throughout this paper, we remove speech periods of
10oms or shorter, fill non-speech periods of 8oms or
shorter, and add 8o ms hangovers on both ends of the
speech period.

V. CLASSIFICATION WITH
UNSUPERVISED AND SUPERVISED
MODEL TRAINING

If we use multi-dimensional features, more accurate VAD
results could be obtained using more sophisticated classi-
fiers. Such classifiers are mostly model-based, so we need to
prepare a set of training data.

If we have a set of unlabeled training data, then the
training process is called unsupervised. Clustering such as
k-means algorithm is an example of unsupervised training.
In the case of VAD, two clusters corresponding to the speech
class and non-speech class are generated. The training pro-
cess itself cannot decide which cluster corresponds to the
speech, but the non-speech cluster can be easily found by
testing a silent frame.

If we have a set of correctly labeled training data,
then we can train the classifier model more precisely. It
is called supervised training. In this paper, we investi-
gate three model-based supervised classifiers: decision tree
(DT), SVM, and CNN.

For all clusterers and classifiers, the same feature set
is used. The feature vector for the /th frame consists of
| X (k,s)|%, where 0 <k < K and | —2 <s <[+ 2. The
resulting feature vector has 5K elements. In the rest of this
paper, K = 40 is used.

When we use the model-based classifier, we omit the
modification by (15), and use (14) instead. It is because the
modification from (14) to (15) is learnable by the classifier if
it improves the classification accuracy for the training data.
Moreover, the machine learning algorithm may find even a
better modification.

When we use the framewise clusterers (k-means) and
framewise classifiers (DT, SVM, and CNN), inter-frame
smoothing is applied as in the case of simple thresh-
olding. Additional 40 ms speech periods were added on
both ends of the utterance. Other criteria are the same
as in the case of simple thresholding; noises of 100 ms or

shorter were removed and silences of 80 ms or shorter were
filled.

Table 1. Detail of CENSREC-1-C real dataset.

Number of speakers 5 female + 4 male

Utterances Japanese connected digits

Sampling rate 8kHz

Environment Restaurant Street

Noise level (dBA) Lows3.4 High69.7 Lows8.4 High 69.2
Estimated SNR (dB) Lowo0.86 High 4.68 Low —3.29 High —2.23
Number of files 36 36 36 36

Number of utterances 345 345 345 345

V. EXPERIMENTAL RESULTS

A) CENSREC-1-C evaluation framework

The proposed VAD algorithm was evaluated using
CENSREC-1-C [25], a public VAD evaluation framework.
The data part of CENSREC-1-C consists of two datasets:
simulated dataset and real dataset. In this paper, we used the
real dataset made of Japanese connected digit utterances.
The CENSREC-1-C real dataset is further divided into four
subsets based on the environment (university restaurant
and vicinity of highway street) and SNR level (high and
low). Its details are shown in Table 1, where the average
noise levels were cited from [25] and the SNR levels were
estimated using WADA-SNR [26].

CENSREC-1-C includes not only the data themselves,
but also the voice activity labels and performance calcula-
tion tools. When a specific algorithm and corresponding
settings are given, the false alarm rate (FAR) and the false
rejection rate (FRR) are automatically calculated. FAR is the
ratio of incorrectly labeled non-speech frames over the total
non-speech frames. FRR is the ratio of incorrectly labeled
speech frames over the total speech frames. We also use the
average error rate (AER), which is the average of FAR and
FRR.

B) Evaluation using classifiers without model
training

The first set of experiments using CENSREC-1-C was con-
ducted to compare three framewise scores, P(l), A(I),
and Q(I). The threshold-based classifier was applied to
those three scores obtained by statistical noise suppres-
sion without augmentation («¢ = 1.0,8 = 1.0, = 0.0).
Other parameter setting was the same as in [21] (C; =
0.99, G min = 0.01,qp = 0.2). Figure 1 shows the ROC
curves obtained by applying various threshold values. Since
CENSREC-1-C provides the baseline VAD tool, the corre-
sponding ROC curve was plotted for comparison. It is clear
that all three scores resulted in lower FARs and FRRs than
the baseline. Among them, P (I) is clearly less effective, and
Q() is slightly better than A (I). Accordingly, Q(I) is used
as the framewise score in this section.

The second set of experiments was to confirm the effec-
tiveness of the augmented statistical noise suppression. The
same threshold-based classifier was applied to the output of
statistical noise suppression, in which various augmentation
was applied.
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Figure 2 shows the effectiveness of noise over-estimation,
defined by (13). The values of f and n were not augmented,
and the value of « was changed. The point & = 1.0 corre-
sponds to the original OM-LSA, and it was reported that
o ~ 0.2 is optimal for speech recognition [24]. For each
value of «, various thresholds were tested, AER = (FAR +
FRR)/2 was calculated, and the smallest AER was plotted.
The results revealed that decreasing the value of « is only
harmful for VAD, and AER drops rapidly when « increases
from 1.0 to 2.0. When « is further increased, AER seems to
be saturated.

Figure 3 shows the effectiveness of gain nonlinearity,
defined by (14). The value of @ was fixed at 5.0, and vari-
ous values of 8 were tried. In this case, some improvements
were observed with increasing §, but it is not as dramatic as
in the case of increasing «.
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Fig. 4. Effect of prominent component removal expressed by various 7.

The results obtained by various values of 1 are shown in
Fig. 4, where B was fixed at 1.4. Again, AER drops rapidly
with increasing 7, and reached its smallest value at n = 0.07.
The best AER was 9.93%, where FAR = 12.42% and FRR =
7.43%.

We also investigated the possibility of using adaptive
parameters. Obviously, the most effective parameter is the
frame power threshold. Since the dataset of CENSREC-1-
C is made of four subsets, we checked the AER of our best
setting (¢ = 5.0, B = 1.4, n = 0.07) obtained with the opti-
mal threshold for each subset. In this case, the AERs for
Restaurant (SNR high), Restaurant (SNR low), Street (SNR
high), and Street (SNR low) were 7.00, 18.03, 2.73, and 3.94%
respectively. The average was 7.93%, which is much better
than the AER obtained with the fixed threshold (9.93%).

Similar experiments were conducted with the adaptive
a, B, and 7. In the case of o (see Fig. 2), the lowest AER
of 10.44% was still improved to 9.27%. In the case of B (see
Fig. 3), the lowest AER of 10.35% was still improved to 9.53%.
Finally, in the case of 17 (see Fig. 4), the lowest AER of 9.93%
was improved t0 9.37%.

Although these results indicate the potential value of
adaptive parameters, their effectiveness are strongly depen-
dent on the correct evaluation of the environment. We must
consider the risk of performance degradation caused by the
incorrect parameter setting.

C) Classifier training

More accurate VAD results could be achieved by the model-
based classifiers. In this paper, we investigate three types of
model-based classifiers: DT, SVM, and CNN. We also try k-
means clustering to compare supervised and unsupervised
training. Before applying them to CENSREC-1-C, we train
the classifiers and clusterer using a separate dataset.

1) TRAINING AND DEVELOPMENT DATA

The dataset for classifier and clusterer training, referred
to as Noisy UT-ML-JPN database in this paper, was cre-
ated using UT-ML public database [27] and our proprietary
noise data. The noise data were recorded in a running
car and in a cafeteria; they were added to the utterances
of Japanese subset of UT-ML database with SNR of o, 5,
and 10dB. Speech/non-speech labels for Noisy UT-ML-
JPN database were generated automatically by applying a
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Table 2. Length and number of frames of Noisy UT-ML-JPN
database.

Length (min) ~ Speech frames  Non-speech frames

228.4
377

616,566
86,958

738,168
136,308

Training
Development

power threshold for the clean version of UT-ML database.
The labeling process is completely framewise, meaning that
inter-frame smoothing was not applied.

The Japanese subset of UT-ML database includes six
male and six female speakers, each of which read one long
article (54.8 s on average) and 50 short phrases (3.3 s on aver-
age). Original data were recorded by 16 kHz sampling rate,
but they were downsampled to 8 kHz. One second silences
were appended on both ends of utterances before noises
were added.

After adding the noise, augmented statistical noise sup-
pression described in Section II-B) was applied. Based on
the results of Section V-B) and [21]', the parameter set-
tingwaso = 5.0, 8 = 1.4,and n = 0.07. Applying the same
noise suppression process to the training and test data are
called noise adaptive training (NAT), and known to be effec-
tive for speech recognition [28]. We also prepare the clean
version of the training data for comparison.

Finally, data of one male and one female speakers were
used for development, and the other data were used for
model training. The size of the training and development
set are shown in Table 2.

2) TOOLKITS

The classifiers were trained using publicly available toolk-
its. WEKA [29] was used for DT and SVM training, and
Caffe [30] was used for CNN training. The k-means clus-
tering program was prepared by ourselves.

When we use WEKA for DT and SVM, we adopt the
classifier ensemble approach. Although we have plenty of
training samples (more than 600 k of speech and more than
700 k of non-speech), it takes too long to execute the train-
ing using the whole data at once. Therefore, we split the
training data into small chunks, and trained many clas-
sifiers using different data chunks. The final classification
result can be obtained by voting of these small classifiers.
CNN training and k-means clustering were executed using
all data.

DT by WEKA (J48) runs without any specific param-
eter adjustment. SVM by WEKA (SMO) requires at least
selection of the kernel, so we used the two-dimensional
polynominal kernel. CNN by Caffe requires quite a few
parameters to be set, but we only show the network topology
in Fig. 5, that would be the most important information.

!Although the same method was applied to the same dataset by the
same author, the results of Section V-B) and [21] are not exactly the same.
It is because the program used in [21] belongs to the organization to which
the author has no access at present.

ip2
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’I ;h&-
~

(Repeated if L>1)

Fig. 5. CNN topology. Relu stands for rectified linear unit. The output layer
(ip2) has two units corresponding to speech and non-speech.
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Fig. 7. Preliminary evaluation by comparing various classifiers.

3) PRELIMINARY EVALUATION

Before going back to CENSREC-1-C, we checked the basic
performance of three classifiers and one clusterer using the
development data. The development data were processed
by augmented statistical noise suppression using the same
parameters as the training data. The processed data were
then divided into frames and classified by either DT, SVM,
CNN or k-means.

Figure 6 depicts the results obtained by the classifier
ensemble of DT and SVM with various sizes. Inter-frame
smoothing was not applied, so the graph shows the pure
performance of framewise classification. It should also be
noted that the classifier directly classifies the frame data, so
we obtain a single pair of FAR and FRR instead of the ROC
curve. The results indicated that SVM is superior to DT if
only few classifiers were used. However, it was reversed if we
have seven or more classifiers. AER was saturated at about
20 classifiers (SVM) or 4o classifiers (DT).

Figure 7 shows the comparison of simple thresholding, k-
means clustering, and various classifiers. If we apply simple
thresholding, AER was 21.29%. In the case of k-means clus-
tering, an additional bias # was introduced to play the role



of adjustable threshold. A frame is labeled as non-speech
if d,s —d, <0, where d, (d,;) is the distance between
the frame and the centroid of speech (non-speech) cluster.
Although AER was as high as 27.19% when 6§ = 0, it becomes
20.44% if the value of 6 was optimized. The AERs of DT and
SVM were clearly better than simple thresholding and k-
means. On the right-hand side of the figure, AERs obtained
by various CNNs are plotted, where L is the number of fully-
connected intermediate layers (rectangular block including
ip1+relur of Fig. 5). As we expected, CNN (NAT) provides
better results than CNN (clean), indicating that NAT was
effective. It is also found that the deeper the network is, the
more accurate classification results were obtained.

D) Evaluation using model-based classifiers

Finally, we applied various classifiers to CENSREC-1-C. The
evaluation procedure was the same as in the preliminary
evaluation, except that inter-frame smoothing was applied.
In addition, a gain adjustment factor was multiplied to to
input signal before applying DT, SVM, and CNN, in order
to compensate the unmatched data acquisition environ-
ment. The gain factor plays the role similar to the adjustable
threshold; a large gain factor is equivalent to a small thresh-
old, and vice versa. Therefore, we can obtain an ROC curve
by using various gain factors. The bias of k-means clustering
also serves to make an ROC curve.

Figure 8 shows the ROC curves obtained by k-menas,
DT, SVM, and CNNs with various number of intermedi-
ate layers. The results of threshold-based classifier, which
is exactly the same as 1 = 0.07 of Fig. 4, was added for
comparison. It is clear that the model-based classifiers
achieved better results than the threshold-based classifier.
However, unsupervised training by k-means clustering did
not improve the accuracy. As for CNNs, unlike the pre-
liminary evaluation, the shallowest network achieved the
most accurate VAD results. The different tendency regard-
ing to the number of layers can be attributed to the overfit-
ting effect. In the preliminary evaluation, the deeper CNN
can learn even small details of the training data which
can contribute only under the matched condition. In the
CENSREC-1-C evaluation, the shallower CNN has a more
generalized model, which contributes to avoid errors related
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Fig. 8. ROC curves for CENSREC-1-C obtained by various classifiers. DT and
SVM represent the voting results of 100 classifiers.
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Fig. 9. ROC curves for CENSREC-1-C obtained by the proposed algorithms.
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Fig. 10. Detail of CENSREC-1-C evaluation.

to the condition-specific features. That argument is sup-
ported by the fact that the superiority of DT over SVM is
not observed in the CENSREC-1-C evaluation, because DT
is more likely to overfit the training data even though it
includes some pruning algorithms.

So far, we have found that the combination of aug-
mented statistical noise suppression and CNN-based clas-
sifier achieved the best VAD accuracy among considered
algorithms. In Fig. 9, it is demonstrated how the ROC curve
shifted toward the left-bottom corner. SNS-thres, which
is the copy of Q(I) of Fig. 1, is our starting point, and it
was greatly improved by augmented statistical noise sup-
pression, resulted in ASNS-thres. There was some addi-
tional improvement by introducing CNN, and the final
ROC curve was plotted as ASNS-CNN. We also plot-
ted some published results using CENSREC-1-C, such as
using CRF [16], SKF [19], and SKF with Gaussian pruning
(SKF/GP) [31], and confirmed that the proposed algorithm
outperformed them.

Following the convention of CENEREC-1-C, the details
of the VAD results obtained by ASNS-CNN are show in
Fig. 10.

E) Computational complexity

In addition to the VAD accuracy, we confirmed the pro-
cessing time and latency of the proposed algorithm. Table 3
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Table 3. Processing Time for CENSREC-1-C.

Time (s) RTF
Noise suppression 236.33 0.037
Classification by CNN 93.17 0.014
Total 329.80 0.051

shows the processing time for the 144 files of CENSREC-
1-C dataset (6465.33 s). The noise suppression and classifi-
cation programs were implemented separately on Ubuntu
16.04 running on Intel Core i7 processor (3.6 GHz) with
16 GB RAM. Although the programs were not optimized in
terms of speed, the real-time factor (RTF) was 0.051, mean-
ing that the total processing time was about 1/20 of the real
time.

Regardless of the processing speed, the proposed
algorithm cannot avoid the framing latency. Noise suppres-
sion causes a half-frame (16 ms) latency and VAD causes five
half-overlapping frame latency (60 ms). The total latency up
to 84 ms (including 8 ms frame boundary adjustment) is not
negligible, but the speech recognition system uses similar
number of successive frames as the input feature. Therefore,
the latency does not matter if the proposed VAD algorithm
is used for speech recognition.

VI. CONCLUSIONS

In this paper, we analyzed state-of-the-art VAD algorithms
from the perspective of statistical noise suppression and
framewise speech/non-speech classification. Based on the
analysis, we proposed two modification approaches. First,
statistical noise suppression was augmented using addi-
tional parameters so that all the unreliable spectral com-
ponents were removed. Second, CNN-based classifier was
introduced to improve the accuracy of the framewise classi-
fier. Evaluation experiments using the CENSREC-1-C pub-
lic framework demonstrated that each of the modifications
achieved noticeable improvements in VAD accuracy. The
results of the proposed algorithm were also compared with
results reported in the literature, indicating that the pro-
posed algorithm is better than SKF/GP, which was shown
in [31] to be superior to the standard VAD algorithms
such as ITU-T Recommendation G.729 Annex B [32], ETSI
Advanced Front-End [33], and Sohn’s algorithm [17].

A comparison between matched and unmatched con-
ditions indicated that it is important to avoid overfitting
problem under unmatched conditions; hence a relatively
shallow CNN is appropriate in general. The effect of the
overfitting problem would also be related to the size and
variety of the training data; however, this remains an open
problem for future study.
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