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industrial technology advances

Toward a signal-processing foundation for
computational sensing and imaging:
electro-optical basis and merit functions
david g. stork

We highlight the need for – and describe initial strategies to find – new digital-optical basis functions and performance merit
functions to serve as a foundation for designing, analyzing, characterizing, testing, and comparing a range of computational
imaging systems. Such functions will provide a firm theoretical foundation for computational sensing and imaging and enhanced
design software, thereby broadly speeding the development of computational imaging systems.

Keywords: Computational imaging, Digital-optical basis functions, Two-dimensional wavelet transform, Zernike polynomials,
Stephenson polynomials, Strehl ratio, Struve ratio, Rayleigh criterion, Modulation transfer function, Optical transfer function, Digital-
optical design software

Received 24 February 2017; Revised 5 June 2017

I . I NTRODUCT ION

Progress in both imaging optics and digital image process-
ing have depended upon the choice of basis andmerit func-
tions. In imaging optics, basis functions (such as Zernike
polynomials) are used to describe thewavefront error and in
image processing (such as two-dimensional discrete cosine
orwavelet functions) are used to represent the digital image.
In imaging optics, merit functions (such as root-mean-
square size of the point-spread function or the value of the
modulation transfer function) are used to judge the qual-
ity of an optical image and thus of the imaging system that
produced it. In digital image processing, merit functions
(such as peak signal-to-noise or root-mean-squared error
(RMSE)) are used to judge the quality of a digital image,
including the quality of processed or compressed images.
Such functions have been derived separately by the opti-
cal and the image-processing communities, are expressed
in different units, and are rarely integrated or used in
conjunction. In the recent era of computational imaging,
however – in which optics and digital image processing
are co-designed for a desired end-to-end function – prior
functions are not appropriate.
In this paper, we highlight the need for joint electro-optic

merit and basis functions and suggest a strategy for deriv-
ing them.We begin in Section II with a short history of basis
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function and their importance. Then we turn in Section III
to conceptual foundations for such functions for computa-
tional imaging, including desirable and useful properties.
We outline one approach to finding new such functions in
Section IV and conclude in Section V speculating on the
path forward.

I I . BR I EF H ISTORY OF MER IT AND
BAS IS FUNCT IONS IN OPT ICS AND
IMAGE PROCESS ING

For the first several centuries of optical imaging, system
designers were guided trial and error, ad hoc rules of thumb
and subjective visual assessment of the images produced
by their optical systems, such as telescopes, microscopes,
spectacles (eyeglasses), camera obscuras, and so on [1]. In
the 19th century, Petzval and Seidel and in the 20th cen-
tury Nijboer and Zernike provided a conceptual foundation
and ultimately a representation of wavefront error that was
mathematically complete and whose terms could be inter-
preted optically. For instance, defocus, coma, and other
aberrations each corresponded directly to individual terms
in an expansion of the wavefront error in terms of circu-
lar Zernike polynomials. Furthermore, the development of
principled performancemetrics such as the RMS aberration
error, Strehl ratio, Struve ratio, Rayleigh criterion, andmea-
sures of the Optical Transfer Function all greatly speeded
the understanding and development of optical imaging
technology. Rigorous theory of wave propagation related
the basis functions, point-spread functions, and optical

1

mailto:dstork@rambus.com


2 david g. stork

Fig. 1. In traditional or sequential optical design, one first designs the optics to yield a high-quality optical image on the image sensor, and then designs the digital
signal processing so as to yield a high-quality final digital image. For the first design stage, traditional optical representations and merit functions such as Zernike
polynomials and RMS point-spread-function size are used (red); for the second design stage, traditional image-processing representations and merit functions
such as Daubechies wavelets and RMS error are used (blue). In true joint design in computational imaging for end-to-end performance, new (digital-optical) basis
functions and merit functions are needed (purple) [4, 5].

imaging performance merit functions. Such bases and met-
rics have been incorporated into all optical design software,
thus reducing design time and improving the performance
of microscopes, telescopes, cameras, CMOS photolithogra-
phy systems, and indeed all imaging devices.
Analogously, in the last half of the 20th century, there

has been a great deal of work on basis functions and merit
functions in digital image processing, for use in image
analysis, image compression, and related tasks. Leading
area-based raster digital image representations include the
Discrete Cosine Transform or DCT (the foundation for
the JPEG image compression standard), numerous two-
dimensional wavelets (the foundation for JPEG 2000, ICER,
etc.), and others [2]. Likewise image quality metrics such as
mean-squared error (MSE) and its many variants (weighted
MSE, predictive MSE, etc.) have provided a foundation
for design and comparison of different image-processing
and compression algorithms. Nearly all these functions are
supported in commercial and research image-processing
software. (Here we will not consider color representa-
tion or image quality metrics that depend upon human
visual perception – a very difficult application-dependent
problem [3].)
To a large extent, the disciplines of optics and signal

processing developed separately, continue to be taught sepa-
rately, address different classes of problems, rely on different
theory and on different performance metrics, and exploit
different software tools. It is common for professionals in
optics to have no knowledge of image processing and for
professionals in image processing to have no knowledge of
optics. As an illustration, note that Born andWolf ’s updated
classic Principles of Optics (7th ed) [6] has no index entry on
wavelets andPratt’s classicDigital Image Processing (2nd ed.)
[7] has a total of just four pages on models of optics (which
are not used elsewhere in the book).

I I I . FOUNDAT IONS FOR
COMPUTAT IONAL IMAG ING

Over the past few years, the hybrid discipline of com-
putational imaging has shown new powerful imaging

architectures (e.g., plenoptic imaging) and new theory
(compressive sensing) [8]. In this new era of computational
imaging – in which the digital–optical system is viewed as
an information channel and the optics and signal process-
ing are co-designed for optimal end-to-end performance
(Fig. 1) – the traditional basis functions and merit func-
tions mentioned above are inadequate, and may even serve
as an impediment to progress. For instance, traditionalmet-
rics for optical metrology such as RMS spot size are not
appropriate in computational imaging, because a small spot
size may happen to have zeros in the optical transfer func-
tion thus leading to the loss of image information. Such
information cannot be recovered through signal processing
later in the overall imaging channel. Instead, a somewhat
large point-spread function whose optical transfer function
lacks zeros may be preferred because such a point-spread
function can preserve image information that can be ampli-
fied and thus recovered digitally. Thus as far as the final
digital image is concerned – the only image by which the
computational imager should be judged – some particu-
lar large point-spread function should be preferred over a
smaller one. This is precisely the opposite of what current
point-spread-function-based optical merit functions would
recommend.
Consider an illustration of the inadequacy of current

metric functions for describing and analyzing compu-
tational imaging systems, here a traditional rotationally
symmetric lens, linear photodetector array and linear
convolution-based signal processing. Suppose the lens is
imperfect or aberrated (i.e., does not yield an ideal, tradi-
tional optical image) yet we (somehow) design the overall
signal processing such that the overall imaging system takes
a point in the scene and produces a corresponding point
in the final digital image; thus this computational imager
produces a faithful digital representation of the scene. Sup-
pose to describe our system we use the traditional optical
basis set J o comprising the circular Zernike polynomials
as well as a signal processing basis set J s comprising two-
dimensional Gabor wavelet functions [9]. Suppose the sole
optical aberration of the lens is horizontal coma. The aber-
ration function then has a particular simple representation:
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�(ρ, θ) ∝ Z1
3(ρ, θ). The point-spread function and thus

the pattern of light on the image sensor would be some-
what complex and the required image processing would be
a extremely complicated – surely an infinite sum of Gabor
wavelets,

∑∞
r ,s=1 Gr ,s (x, y). Conversely, we might have a

very complex lens with whose aberration function is an
extremely complex infinite sum of Zernike polynomials
whose projected image would be corrected by very sim-
ple image processing, for instance convolution with a small
number of Gabor wavelets.
These examples show that a system representation based

jointly onZernike polynomials and two-dimensionalGabor
wavelets is not compact (simple systems require an infi-
nite number of terms in either the optical or the digital
domains or both), quite unbalanced (the representation
of typical computational imagers might be simple in one
domain while very complex in the other), and provide little
or no insight into the overall function of the computational
imaging system. Instead, we prefer a representation that is
compact (would not need infinite terms in typical cases), at
least for typical systems of interest. Such a representation
could be expressed in the general form

J (ρ, θ ; x, y) =
∑
j∈O

J o
j (ρ, θ) ·

∑
k∈S

J s
k (x, y), (1)

where J o represents basis components (indexed by j in a
set of optical values O) in the purely optical domain and
where J s represents basis components (indexed by k in a
set of digital signal-processing values S) in the purely two-
dimensional digital signal domain.

A) Desiderata for basis and merit functions
There are a number of desirable properties or desiderata
we seek for the full digital–optical representation implied
by equation (1). (Of course it is unlikely that all can be ful-
filled simultaneously; there will likely be tradeoffs.) These
properties include:

Mathematical completeness: The representation should be
able to describe any optical system and any linear digital
processing operation, and thus describe any linear trans-
formation from external (optical) scene to final digital
image.

Ortho-normality: Elements in the basis function set should
be linearly independent and therefore non-redundant.
This property is necessary for a representation of a com-
putational imaging system to be unique, and for trans-
formations to be invertible – at least when the system is
non-degenerate. (An overcomplete basis may be desir-
able, however, because it can enable the representation
of typical computational systems to be sparse.) The basis
elements should be normalized for ease of calculation
and for direct interpretation and comparison.

Interpretability: To the extent possible, the basis functions
should be interpretable or at least easily visualized to
facilitate understanding and scholarly presentation.

Computationally efficient: The representation should admit
efficient computation just as the computation of coef-
ficients in an expansion, such as the DCT admit very
fast implementations through the fast Fourier transform
(FFT).

Balanced complexity: The representation of “typical” or
“representative” computational imaging systems should
require a small number of terms (basis elements) in each
domain, optical, and digital. In an (undesirable) unbal-
anced joint representation, one might find that a single
basis element in one domain (e.g., optical) requires an
infinite number of basis functions in the other domain
(e.g., digital).

Low condition number for digital signal processing: All com-
putational imaging systems possess noise, such as
Poisson photon shot noise, sensor read noise, analog-
to-digital (A/D) conversion noise, and others. The condi-
tion number for a system matrix κ(R) = |λmax/λmin| ≥
1 – the ratio of the matrix’s largest to its smallest eigen-
value – should be small in order to compute accurately
the final image.

There are a number of properties or desiderata we seek
for end-to-end merit function. (Of course it is unlikely
that all can be fulfilled simultaneously; there will likely be
tradeoffs.) These properties include:

Scalar: The merit function should be a scalar (as are RMS
wavefront error, RMS point-size, digital image RMS
error, etc.), so that system designers can rank order can-
didate systems, and so that architects of computational
imaging design software can craft gradient-descent iter-
ative or other optimization routines.

Non-negative: The merit function should be non-negative
so that when the merit function value is zero, the ideal or
“perfect” digital–optical performance is obtained, just as
in the limit a vanishing RMS point-spread-function spot
size corresponds to a “perfect” optical image and a van-
ishing RMS pixel error corresponds to a “perfect” digital
image.

Scale and unit independent: The merit function should not
depend upon overall physical scale of the optical com-
ponent or number of pixels in the final digital repre-
sentation, so as to facilitate comparisons of designs and
imaging architectures independent of scale.

Extendable to alternate image estimation tasks: The merit
function should be naturally extendable/adaptable to
image-based tasks other than faithfully reproducing a
scene, for instance estimating visual motion, creating
scene depthmaps (appropriate for certain imaging archi-
tectures), and others.

We consider the current state of basis and merit func-
tion first in the optical domain (Section III.B), then in the
two-dimensional digital signal-processing domain (Section
III.C), then finally in the joint digital–optical domain
(Section III.D).
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Fig. 2. The 21 lowest-order circular Zernike polynomials, Zm
n (ρ, θ) (cf. equations (2)–(4), below): odd functions (red), even functions (green) and circularly

symmetric functions (purple).

B) Optical basis and merit functions
Current optical design (for axially symmetric systems) relies
heavily on the circular Zernike polynomials, Zm

n (ρ, θ),
defined as

Zm
n (ρ, θ) = Rm

n (ρ) cos(mθ) (even polynomials)

Z−m
n (ρ, θ) = Rm

n (ρ) sin(mθ) (odd polynomials) (2)

where ρ is the normalized radial distance from the optical
axis, θ the azimuthal angle, and n the order of the radial
polynomial

Rm
n (ρ)=

n−m/2∑
k=0

(−1)k(n − k)!

k!((n + m/2) − k)!((n − m/2) − k)!
ρn−2k,

(3)

for n − m even, and 0 for n − m odd [6, p. 523–525].
These circular polynomials obey the ortho-normalization

relation

∫ 2π

θ=0

∫ 1

ρ=0
Zm

n (ρ, θ)Zm′
n′ (ρ, θ) ρ dρdθ = εmπ

2(n + 1)
δn,n′δm,m′ ,

(4)

where the Neumann factor εm is 2 if m = 0 and 1 other-
wise and δ·,· is the standard discrete Dirac delta or indicator
function (Fig. 2). The difference between any wavefront on
a disk (e.g., exit pupil) and a spherical reference wavefront
can be represented as the linear sum of these basis functions
(Fig. 3). The coefficients in such a representation reveal the
class of aberration present and hence what optical correc-
tions are needed in order to reduce RMS wavefront error or
the RMS point-spread function spot size.
A number of alternative bases sets for circular Zernike

polynomials have been proposed, such as the Stephenson
polynomials [10], shown in Fig. 4. Some of the benefits
of this complete representation are that the mean-power
error is naturally expressed as a term in a wavefront
expansion. Moreover, if the wavefronts produced by two
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Fig. 3. Every complex wavefront (on a disk) can be represented as the sum of circular Zernike basis functions. Typically one represents the wavefront error – the
difference between the actual wavefront and an ideal, spherical wavefront – as a weighted sum of circular Zernike polynomials.

Fig. 4. The 15 lowest-order basis functions in the Stephenson basis set. Some of the lowest-order basis functions are equivalent to individual circular Zernike
polynomials but all others (an infinite number) differ from Zernike polynomials.

optical systems are very similar, their corresponding
Stephenson coefficients will generally be more similar
than will their corresponding Zernike coefficients. For this
reason, Stephenson polynomials have found increasing use
in searching lens design and optical patent databases, for
analyzing optical manufacturing constraints, and so on.
Finally, the coefficients in an expansion of the wavefront
error in terms of the Stephenson basis are independent of
pupil size and this property facilitates comparisons of opti-
cal systems at different scales. One drawback is that these
basis functions do not relate to traditional aberrations as
naturally as the Zernike polynomials do.
For the last several centuries, the vast majority of opti-

cal systems – especially optical imaging systems – have
employed circular apertures in large part because the lens
and mirror elements are easier to manufacture than other
apertures. As such, the circular Zernike polynomials have
served the optics community well and their use is justifiably
widespread. In the current era of computational imaging,
however – where there is greater freedom in design and
manufacture of optical components and where digital sig-
nal processing is an essential step in the data pipeline –
the circular Zernike basis will be less appropriate and will
likely present an impediment to progress. A basis set for
square or rectangular optical systems, analogous to the cir-
cular Zernike polynomials, differs rather markedly from
the circular Zernike polynomials (Fig. 5) [11]. It is unlikely
that even this basis will be appropriate for many com-
putational imaging systems. (Image-processing bases on
a square or rectangular support are likely to be simple,
however, because they may be separable into a product of
one-dimensional bases, i.e., G(x, y) = g (x)h(y).)

There are a number of traditional opticalmerit functions,
such as the RMS wavefront error, Strehl ratio, Rayleigh
criterion, the size of the point-spread function, or a num-
ber of measures of the Modulation Transfer Function or
Optical Transfer Function (Fig. 6). As mentioned above,
these measures are inappropriate for computational imag-
ing systems for a number of reasons. A small point-spread-
functionmay have zeros in its modulation transfer function
thereby losing spatial information that cannot be recov-
ered through digital signal processing. More generally and
importantly, such merit functions do not describe the full
end-to-end performance of a digital–optical computational
imager.

C) Signal-processing basis and merit
functions
There are a number of basis function sets that have been
used in image processing and image compression. The
simplest mathematically and computationally – and most
widely used – is based on the DCT, a separable product
of cosine functions (equation (5)). One can index pixels by
their discrete coordinates in orthogonal directions, n1 and
n2, and then the basis functions can be represented as:

Gk1,k2(n1, n2) = cos

[
π

N2

(
n2 + 1

2

)
k2

]

× cos

[
π

N1

(
n1 + 1

2

)
k1

]
, (5)

where k1 and k2 serve as components of a two-dimensional
discrete wave vector, and N1 and N2 denote the integral size
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Fig. 5. The first 20 basis functions in an extension of Zernike polynomials to imaging systems with a square aperture. These functions are derived from circular
Zernike polynomials by orthonormality defined over a square aperture support.

Fig. 6. (Left) An Airy disk with red circle indicating a spot size of half maximum. Traditional optical merit functions favor small spot sizes. (Right) A one-
dimensional Modulation Transfer Function (MTF) for a diffraction-limited imaging system, represented as a function of the normalized spatial frequency ν.
Aberrated systems have MTFs that are lower than such a physical limit.

of the the image block being transformed. Figure 7 shows
the 64 basis functions for a DCT appropriate for represent-
ing an 8-by-8-pixel image block. The harmonic nature and
separability of the DCT permits this transform to be eas-
ily computed using the FFT, either on uni-processors or on
digital signal processing hardware.
A widely recognized limitation of the DCT (and its JPEG

instantiation) is the appearance of “blockies,” or disconti-
nuities at the boundaries of the component image blocks
[12]. A limitation of particular relevance to computational
imaging is that the DCT incorporates no priors or other
information about the properties of aberrated and non-
standard optics. For instance the fact that an optical sub-
system may commonly be out of optical focus (and thus
produce optical images with certain statistical character-
istics) is not reflected in the image-processing basis set.
Moreover, theDCT is not radially symmetric, which is likely
appropriate when processing images produced by radially
symmetric optical subsystems. These limitations make the

DCT a very poor candidate for a component in representa-
tions for computational imaging systems.
A number of image representations based on wavelets

have been used to overcome the image-processing and com-
pression limitations inherent in the DCT, many of which
have been based on Daubechies filters [13]. and exploited in
compressionmethods such as the JPEG 2000 standard. This
standard has a number of both lossless and lossy modes, is
reversible and admits a number of efficient computational
implementations based on the hierarchical discrete wavelet
transform (DWT). Another class of image-processing basis
functions comprises Gabor wavelets of the form

G(x; k, φ0, �)= e−2π i(ktx+φ0)
1

2π |�|−1/2
e−1/2(x−x0)

t�−1(x−x0),

(6)

where x = (x, y) is a two-dimensional position in the
sensed image, k = (kx , ky) is a two-dimensional vector
describing the sinusoidal carrier and φ0 its phase, � is
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Fig. 7. The 64 8-by-8-pixel basis functions of the DCT for the case N1 = N2 = 8 and {k1, k2} ∈ [0 − 7] × [0 − 7] in equation (5).

a positive-definite matrix, t denotes transpose, and x0 =
(x0, y0) is the geometrical center of the basis function. A full
basis set consists of different orientations and phase, typ-
ically in quadrature phase for mathematical compactness
(Fig. 8).
Figure 9 shows a hierarchical wavelet representation

and synthesis of an image based on Symlets – Daubechies
wavelets modified to have spatial symmetry [14]. The dis-
play at the left is scale-space, where the upper-left corner
displays the small number of coefficients of large basis func-
tions and squares to the lower-right display the large num-
ber of coefficients of small basis functions. Squares that
lie off the diagonal represent coefficients for spatially ori-
ented basis functions: vertical bases at the upper right and
horizontal bases at the lower left.
Another general class of computational optical imagers

exploits the technique of compressive sensing [15, 16]. Such
imagers are typically based on optical subsystem that pro-
duces a high-quality image on a sensor array (even if that
“image” is a mere point on a single photodetector) fil-
tered by a spatial light modulator (SLM). Each component
image corresponds to a projection onto a subspace of the
high-dimensional space of all possible images. If the pat-
terns presented in the SLMhave certain desirable properties
of statistical independence, then a high-resolution image

can be computed from these projections, for instance by
Tikhonov regularization or relatedmethods. In practice, the
SLM patterns have been based on random partial Fourier
matrices, Hadamard matrices, Gaussian, Bernoulli, multi-
wavelet matrices, chirp matrices, all of which have prov-
ably goodmeasurement properties. More complexmatrices
which also have good statistical independence properties
have been generated by bipartite expander graphs [17]. Rep-
resentation in such a basis can be viewed as spatial filtering.
What if the optical image produced by the lens system is
degraded or aberrated? For example, what set of spatial fil-
ters, when paired with a lens system with severe coma aber-
ration, can lead to a high-quality digital image? This class of
problems at the foundation of computational imaging have
not yet been addressed.

D) Joint electro-optical basis and merit
functions
As mentioned above, currently optical design methodol-
ogy and software (such as Zemax, Code V, and OSLO) are
dominated by function representations based on Zernike
and Seidel polynomials and merit functions based on
RMS wavefront error, RMS spot size, Strehl ratio, and
measures of the modulation transfer function. Currently
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Fig. 8. A subset of the Gabor wavelet basis functions for � proportional to the identity matrix (circularly symmetric), and different orientations described by the
vector k and phases described by φ0 = 0 or π/2 in equation (6). Here red and blue denote positive and negative response values. Gabor wavelets have been used
in radially symmetric image representations, and thus may serve as guidance for a new class of orientation-selective image-processing bases for joint digital-optical
system representations.

image-processing methodology and software (such as
Matlab, Open CV, etc.) is dominated by function represen-
tations based on cosines and wavelets and merit functions
are based on mean-squared error (RMSE) and its variants,
such as peak RMS. The discipline of computational imag-
ing, and the software tools that serve it, lack an appropriate
end-to-end merit function.
Robinson and Stork [4] proposed an end-to-end merit

function base on the predictedMSE and used it for iterative
joint design of the optics and signal processing in simple
computational imagers:

MSEP = 1

n
Tr

[
(RH(�) − I)Cs (RH(�) − I)t + RCnRt

]
,

(7)

where n is the number of pixels in the final digital image,
R is the digital image-processing filter, H(�) is the optical
system matrix determined by the values of the optical vari-
ables � (focal lengths, lens separations, etc.), I is the n × n
identity matrix, Cs is the point-to-point source correlation
matrix, Cn is the noise correlation matrix, and Tr denotes
the trace operation. This merit function was sufficient for
gradient descent design in optical design parameters such as
lens curvatures and spacings and digital-processing param-
eters such as the values of filter taps. The value of MSEP

given in equation (7) is a limit, which in practice is well
approximated the actual MSE. It is not known which end-
to-end merit function might have properties superior to
that in equation (7), for instance in satisfying the desiderata
and constraints listed in Section III.A.
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Fig. 9. Awavelet synthesis of an image based on Symlets – a slight modification of Daubechies wavelets to ensure spatial symmetry. The left figure shows the wavelet
coefficients in a scale-space display, where the few coefficients for spatially large basis functions are displayed in the small square at the upper left, and the more
numerous coefficients for successively smaller basis functions are displayed in the other squares. Vertical bases to the right, horizontal to the left, joint along the
diagonal of the figure.

Fig. 10. The computational and mathematical process flow. First select a candidate optical basis set J o , a candidate image-processing basis set J s , and a scalar
merit function. Then, using a database of representative images, we will use a networked cluster of computers running Zemax to find optical and image-processing
parameters for the database of images. Then we will use a variety of statistical estimation, clustering and data mining methods, using penalties corresponding to
desiderata, in order to select or derive electro-optical basis functions.

In summary, despite some preliminary explorations and
acceptable candidates for end-to-endmerit functions, there
remains no true joint basis function set or widely accepted
end-to-end merit function derived especially for the needs
of computational imaging.

I V . MATHEMAT ICAL AND
COMPUTAT IONAL APPROACH

In seeking basis functions for computational imaging sys-
tems we view the optical and the digital subsystems in such
systems as stages in a visual information channel, which
takes visual information from the scene and represents it
in the final digital image [5]. This perspective conceptu-
ally unifies, to the extent possible, the digital and optical
domains. For this reason,many of the concepts andmuch of
the mathematical foundations of channel theory will guide
our work [18]. For instance, by analogy to the cases in clas-
sic signal channels, initial candidate merit functions will
be based on visual information channel capacity, predicted
MSE, rate distortion, noise models, or measures based on
the mutual entropy between the scene and final image
(measured in bits). Moreover, we shall employ techniques

from Fourier optics, as appropriate, because this framework
supports a natural expression of optical channel proper-
ties, such as information bandwidth [19]. Another class of
merit functions is based on the condition number of the
end-to-end system matrix which unifies the optical and
digital domains and expresses, implicitly, the overall sys-
tem’s robustness to noise. We are well aware of the funda-
mental differences between the two domains, for instance
that while image-processing filters can have positive and
negative values (“filter taps”), light carries only positive
values, that the noise in the optical portion is Poisson
photon noise while noise in the sensor is read noise, A/D
noise, and so forth.
Figure 10 illustrates a for the simulation process flow for

finding joint electro-optical merit and basis functions. First,
we propose a set of candidate optical basis functions most
appropriate to the general class of computational imager
under consideration (e.g., circular Zernike or Stephen-
son polynomials for axially symmetric systems, Zernike
extensions for square aperture systems, etc.), and select one
for simulations. We next do likewise for candidate image-
processing basis functions and likewise for a candidate end-
to-end merit function. Then we take a representative set of
images and design an electro-optical computational imager
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to reproduce the images accurately, as judged by the candi-
date merit function. These computational imaging system
design simulations will be performed on a large cluster of
computers each running Zemax, where its user defined opti-
mization operand is based on the candidate merit function
[20]. (The first simulations should be noise-free and later
simulations should incorporate realistic photon and sensor
noise models.) In this way, a set of computational imagers
with different optical and image-processing parameters will
be created.
The next step is to statistically analyze or “mine”

the resulting optical and parameter sets to extract a
low-dimensional set of such parameters for instance by
using standard statistical methods of principal compo-
nents, nonlinear principal component, independent com-
ponent analysis, machine learning, clustering, singular
value decomposition, modified Gram–Schmidt orthogo-
nalization, harmonic analysis [21], spectral clustering [22],
and so on [23]. There are a number of special feature extrac-
tion [24] and representation extractionmethods that will be
explored as well [25, 26].
The regularities in the resulting statistical dataset are

unlikely to be ideal or mathematically simple, and these
should be fit or projected onto bases in simpler function
spaces (e.g., ρ2.1 will be simplified to ρ2, sin(θ + .001θ2)

will be simplified to sin(θ), for instance). The next step is to
impose the basis function desiderata described above – e.g.,
choose tradeoffs between optical and digital – by means of
mathematical penalties on such functional fits.
Likewise, this general approach can be applied to com-

pressive imagers that rely on non-ideal optics. In this case,
the role of the image-processing basis functions is played
by the bases for spatial filters (generally implemented by
SLMs).While there have been extensive theoretical analyses
and simulation studies for spatial filters that have suitable
statistical properties, prior studies assume that the optics
is (in essence) “perfect” and that the computational task at
hand is to compress a sensed image that is otherwise of high
quality. Such studies do not address the problems described
above: finding filter basis sets to be paired with “imper-
fect” optical systems in order to yield high-quality digital
images and, furthermore, finding electro-optical bases sets
possessing the above desiderata appropriate for compressive
imagers.
The above simulation methods can be applied to new

apertures (e.g., square), to non-standard optics (e.g., diffrac-
tion gratings), and architectures (e.g., full light-field plenop-
tic). The power of the representations can be illustrated by
describing representative computational imaging systems
in traditional bases and in the new, extracted bases and use
these representations to study fundamental performance
bounds of computational imaging systems [27–29].

V . CONCLUS IONS

The work of a wide range of researchers and developers in
optics, optical design software creators, image-processing

algorithm developers, image-processing hardware design-
ers, and customers of computational imaging systems will
be improved and unified by the new basis and merit func-
tions, should they be found by the above approach.

Optical system designers: Optical designers will understand
and naturally incorporate digital processing into their
system design flows. Designers will broaden their con-
ceptual understanding of imaging to view optics as
performing just one stage in an overall optical–digital
information channel. Much of optical design rests on
informal heuristics and rules of thumb (such as what
sequence of lens types are likely to best serve a partic-
ular application); designers new develop new heuristics
and rules of thumb, thereby speeding the development of
improved computational imaging systems.

Optical design software tool creators: Academic and com-
mercial optical design software tool creators will be able
to unify the optical and digital domains and thus help
software tool designers speed and improve their over-
all designs. Digital–optical design tools will be able to
incorporate true joint digital–optical optimization rou-
tines in a principled way, thereby improving upon the
current approaches of sequential and of iterative optical-
then-digital optimization.

Image-processing experts: The statistics of sensed (interme-
diate) images in computational imaging systems differs
profoundly from those in traditional optical systems
based on nearly aberration-free optics [30]. As such, the
optimal algorithms, including compression algorithms
intermediate at the sensor.

Image-processing hardware developers: Just as DSP and
image-processing hardware developers designed their
processors to efficiently perform operations such as in
the FFT, so too will developers design processors to
compute efficiently the basis functions and core opera-
tions needed in computational imaging identified by our
project.

Customers: Currently customers of imaging devices give
design specifications in purely optical terms, such as line
pairs per millimeter, properties of the MTF, and so on;
such specifications are not appropriate for computational
imaging systems. Instead, specifications for the end-to-
end performance are appropriate – specifications thatwill
be expressed exploiting the foundations provided by the
proposed work.
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