
SIP (2017), vol. 6, e9, page 1 of 10 © The Authors, 2017.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/ATSIP.2017.9

industrial technology advances

AI, native supercomputing and the revival
of Moore’s Law
chien-ping lu

Artificial Intelligence (AI) was the inspiration that shaped computing as we know it today. In this article, I explore why and
how AI would continue to inspire computing and reinvent it when Moore’s Law is running out of steam. At the dawn of com-
puting, Alan Turing proposed that instead of comprising many different specific machines, the computing machinery for AI
should be a Universal Digital Computer, modeled after human computers, which carry out calculations with pencil on paper.
Based on the belief that a digital computer would be significantly faster, more diligent and patient than a human, he antici-
pated that AI would be advanced as software. In modern terminology, a universal computer would be designed to understand
a language known as an Instruction Set Architecture (ISA), and software would be translated into the ISA. Since then, uni-
versal computers have become exponentially faster and more energy efficient through Moore’s Law, while software has grown
more sophisticated. Even though software has not yet made a machine think, it has been changing how we live fundamen-
tally. The computing revolution started when the software was decoupled from the computing machinery. Since the slowdown
of Moore’s Law in 2005, the universal computer is no longer improving exponentially in terms of speed and energy efficiency.
It has to carry ISA legacy, and cannot be aggressively modified to save energy. Turing’s proposition of AI as software is chal-
lenged, and the temptation of making many domain-specific AI machines emerges. Thanks to Deep Learning, software can
stay decoupled from the computing machinery in the language of linear algebra, which it has in common with supercom-
puting. A new universal computer for AI understands such language natively to then become a Native Supercomputer. AI
has been and will still be the inspiration for computing. The quest to make machines think continues amid the slowdown of
Moore’s Law. AI might not only maximize the remaining benefits of Moore’s Law, but also revive Moore’s Law beyond current
technology.

Keywords: Moore’s Law, AI, Deep Learning, Supercomputing, Alan Turing

Received 1 December 2016; Revised 21 July 2017

I . A I AND THE UN IVERSAL
COMPUTER

What kind of computing machinery do we need to advance
Artificial Intelligence (AI) to human level? At the dawn
of computing, one of the founding fathers, Alan Turing,
believed that AI could be approached as software running
on a universal computer. This was a revolutionary idea
given that during his time, the term “computer” was gen-
erally referred to as a human hired to do calculations with
pencil on paper. Turing referred to a machine as a “digital
computer” to distinguish it from the human one.
In the context of AI, Alan Turing is remembered for

his Imitation Game, or later referred to as Turing Test, in
which amachine strives to exhibit intelligence tomake itself
indistinguishable from a human in the eyes of an inter-
rogator. In his landmark paper, “Computing Machinery

Novumind Inc, Hardware Engineering, Santa Clara, California, USA

Corresponding author:
C.-P. Lu
Email: cpl@novumind.com

and Intelligence” [1], he tried to address the ultimate AI
question, “Can machines think?” He reframed the question
more precisely and unambiguously by asking how well a
machine does in the imitation game. Turing hypothesized
that human intelligence is “computable,” which has a pre-
cise mathematical meaning famously established by himself
[2], as a bag of discrete state machines, and reframed the
ultimate AI question as

Are there discrete machines that would do well
(in the imitation game)? [1]

But what exactly are the discrete state machines to win
the imitation game? Apparently, he did not know during
his time; but witnessing the extreme difficulty of building
a non-human, electronic computer himself [3], he envi-
sioned only one machine, the Universal Digital Computer
that could mimic any discrete state machine. Each dis-
crete state machine can be encoded as numbers to be pro-
cessed by a universal computer. The numbers that encode
a discrete state machine become software, and the com-
puting machinery became the “stored program computer”

1

mailto:cpl@novumind.com


2 chien-ping lu

envisioned by John von Neumann in his incomplete report
[4]. Thus, Turing concluded:

Considerations of speed apart, it is unnecessary to
design various new machines to do various com-
puting processes. They can all be done with one
digital computer, suitably programmed for each
case [1].

Thereafter, the history of computing has been mainly the
race to build faster universal computers to answer the fol-
lowing challenge:

Are there imaginable digital computers that would
do well (in the imitation game)? [1]

AI researchers and thinkers have been advancing AI with-
out worrying about the underlying computing machin-
ery. People might argue that this applies only to tradi-
tional rule-based AI. However, even connectionists have
to translate their connectionist systems into algorithms in
software to prove and demonstrate their ideas. We have
been seeing advances and innovations in Deep Learn-
ing completely decoupled from the underlying computing
machinery. Today, we use terms like “machines”, “networks”,
“neurons”, and “synapses”, without a second thought about
the fact that those entities do not have to exist physi-
cally. People ponder about a grand unified theory of Deep
Learning using ideas like “emergent behaviors”, “intuitions”,
“non-linear dynamics”, believing that those concepts could
be adequately represented or approximated by software.
According to Turing, any fixed-function Deep Learning
accelerator can be simulated in software, and there is
always a fallback path to software in applications using
such an accelerator. AI has been and will be advanced as
software.

I I . THE PERFECT MARR IAGE
BETWEEN THE UN IVERSAL
COMPUTER AND MOORE ’S LAW

Turing’s Universal Computer inspired von Neumann to
come up with a powerful computing paradigm, in which
complex functions were expressed in a simple yet com-
plete language, the Instruction Set Architecture (ISA), that
computing machinery could understand and execute. It
brought us computers, as well as the software industry. The
prevailing computing machinery in the era of von Neu-
mann paradigm is the microprocessor, now a synonym
of the Central Processing Unit (CPU), designed to run
instructions in stored programs sequentially. The CPU, the
Graphics Processing Unit (GPU), and the various kinds
of Digital Signal Processor and programmable alternatives
are all modern incarnations of such a Universal Digital
Computer.
But how would such a computer, emulating non-

intelligent and non-thinking behaviors of a human,

demonstrate human-level intelligence? Turing’s answer was
this:

Provided it could be carried out sufficiently quickly
the digital computer couldmimic the behaviour of
any discrete state machine [1].

As far as AI is concerned, Turing’s idea was that AI can fun-
damentally be approached through software running on a
Universal Digital Computer. It would be the responsibil-
ity of the architects of the computing machinery to make
it sufficiently fast. But how would we make it faster and at
what rate?
Moore’s Law, coined in Gordon Moore’s seminal paper

[5], has been followed by the semiconductor industry as a
consensus and commitment to double the number of tran-
sistors per area every 2 years. Based on the technology
scaling rule called Dennard Scaling, transistors have not
only become smaller, but also faster and more energy effi-
cient such that a chip now offers at least twice the per-
formance at roughly the same dollar and power budgets.
The performance growth mainly came from Moore’s Law
driving the clock speed exponentially faster. From 1982 to
2005, typical CPU clock speed grew by 500 times from 6
to 3GHz. Computing machinery vendors strived to build
more capable CPUs, through faster clock speeds and capac-
ity to do more than one thing at a time while maintaining
the sequential semantics of a universal computer. Software
vendors endeavored to explore new application scenarios
and solve the problems algorithmically. The decoupling of
software from the computing machinery and the scaling
power of Moore’s Law triggered the computing revolution
that has made today’s smart phones more powerful than
supercomputers two decades ago.
However, faster computers have not helped AI pass the

Turing Test yet. AI started out as a discipline to model intel-
ligence behaviors with algorithmic programs following the
von Neumann paradigm. It had been struggling to solve
real-world problems and waiting for even faster computers.
Unfortunately, the exponential performance growth of a
universal computer has ground to a halt.

I I I . THE SLOWDOWN OF
MOORE ’S LAW

The turning point happened in 2005, when the transistors,
while continuing to double in numbers, were neither faster
nor more energy efficient at the same rates as before due
to the breakdown of Dennard Scaling. Intel wasted little
time to bury the race for faster clock speed, and introduced
multi-core to keep up performance by running multiple
“cores” in parallel. A universal computer became a CPU
“core”. Multi-core has been a synonym of parallel comput-
ing in theCPU community. It was expected that therewould
be a smooth transition from von Neumann paradigm to
its parallel heir, and the race for faster clock speed would
be replaced with one for higher core count starting from
dual and quad cores, to eventually a sea of cores. Around



ai, native supercomputing and the revival of moore’s law 3

Fig. 1. Dark Silicon phenomenon: diminishing returns with more cores.

the same time, programmers were asked to take on the
challenge of writing and managing a sea of programs, or
“threads” [6].
Such a race to double core count has not happened. Intel

and the CPU industry have been struggling to add cores
aggressively due to the issue of lagging improvements in
transistor energy efficiency, manifested as the Dark Silicon
phenomenon. It implies that while being able to accommo-
date four timesmore cores on a die through two generations
of transistor shrinking, we could power up only half of the
cores. If this does not look serious enough, only one-quarter
of the cores can be powered up at the third generation of
transistor shrinking. Unless we reduce the core aggressively
to compensate for the lagging improvement in energy effi-
ciency, there might be no incentive to go with the fourth
generation of transistor shrinking as there will be negligible
performance improvement (see Fig. 1). To make the situa-
tion even worse, the gap between the speed of memory and
that of logic has been widening exponentially.
Such a limit applies to any computing machinery with

an ISA legacy to carry, including the GPU. Although the
GPU does not need to support ISA compatibility to every
bit, it still needs to support higher level standards such
as OpenGL and DirectX shading languages and OpenCL,
and intermediate-level standards such as SPIR-V. NVIDIA
needs to maintain the legacy in their propriety CUDA.
For software, managing the threads explicitly for a sea of
cores has turned out to be untenable unless we restrict the
communications among the threads to some patterns. Such
massive and unwieldy parallelism is not for the computing
machinery and software to tackle.
Some prominent research on Dark Silicon, such as

“Dark Silicon and the End of Multicore Scaling” by Hadi
Esmaeilzadeh [7], confused the physical limitation in semi-
conductor with that from Amdahl’s Law, and prematurely
declared the death of parallelism along with the slowdown
of Moore’s Law. There is abundant parallelism in AI with
Deep Learning as we will see later.

I V . A I AND MOORE ’S LAW

Turing was not specific about the performance and energy
efficiency of a universal computer. He assumed that com-
puters would always be sufficiently fast, and would not be
a gating factor for the quest for human-level AI; but if
passing the Turing Test is the ultimate criteria for machine
intelligence, he would have suggested that the comput-
ers must achieve a certain level of performance and effi-
ciency to exhibit intelligence; otherwise, the interrogator
would be suspicious if it takes too long for a computer to
respond to questions or consumes toomany resources in the
effort.
Turing envisioned his digital computer as one that mod-

els the slow thinking process of a human doing calculations
with a pencil on a piece of paper. The Universal Digital
Computerwas named to imply that it was designed tomodel
after a human “computer”. According to Turing:

The human computer is supposed to be follow-
ing fixed rules; he has no authority to deviate from
them in any detail [1].

In other words, such a Universal Digital Computer does
not think, but follows the instructions provided by soft-
ware. It is the software that makes it think. Following
fixed rules strictly requires intensive concentration and
is an energy-consuming and slow process for a human
brain. Try to multiply 123 by 456 in your head while you
are running. It will slow you down. Interestingly, what is
energy consuming for human is also for computers. To
accomplish a task by executing one instruction at a time
takes relatively more energy than doing it natively with-
out the intermediate ISA. Approaching AI as software in
the von Neumann paradigm is like mimicking fast and
effortless human mental functions, such as intuition, with
a machine that is based on the slow mental process of a
human.



4 chien-ping lu

Turing did not foresee that a universal computer would
run out of steam. If we are to stay with the von Neumann
computing paradigm, we need to put an army of univer-
sal computers in a machine to continue the quest. These
universal computers would have to communicate data and
coordinate tasks among them. However, the slowdown of
Moore’s Law and the legacy of the von Neumann paradigm
suggest that we will not be able to supply sufficient energy
to keep such an army growing in size. There needs to be a
paradigm shift for AI and computing.
Turing did foresee that it would be difficult for human

programmers to write all the software to achieve human-
level AI. He suggested that we build a learning machine. He
said:

Instead of trying to produce a programme to simu-
late the adult mind, why not rather try to produce
one which simulates the child’s? If this were then
subjected to an appropriate course of education
one would obtain the adult brain [1].

This idea points to Deep Learning. Although Turing did not
predict the emergence of Deep Learning, he was aware of
the approach with Neural Networks:

It is generally thought that there was always an
antagonism between programming and the “con-
nectionist” approach of neural networks. But Tur-
ing never expressed such a dichotomy, writing that
both approaches should be tried [8].

If Turing was alive today and witnessed the emergence
of Deep Learning, he would have revised his proposition
on the computing machinery for AI. Since we only need
to simulate the child’s mind, and educate it, the comput-
ing machinery can model a child’s ability to learn and an
adult’s capability to leverage the learned knowledge. Such a
machine would be different from the universal computer he
envisioned.

V . DEEP LEARN ING AND THE
NEW A I MACH INE

Deep Learning has been transforming and consolidating
AI since it came to the center stage of computing in 2012.
With Deep Learning, the intelligence is not coded directly
by programmers but acquired indirectly by mining train-
ing data sets, and then encoded in the various forms of
Neural Networks. The acquisition and manifestation of the
intelligence can be formulated as computations dominated
by a compact set of linear algebra primitives analogous to
those defined in BLAS (Basic Linear Algebra Subprograms)
[9], the fundamental application programming interface
used in supercomputing and high-performance comput-
ing (HPC). AI with Deep Learning and supercomputing
effectively speak the same language with dialectical vari-
ances in numerical precisions, and minor differences in
domain-specific requirements.
As mentioned earlier, the massive and unwieldy paral-

lelism under the von Neumann paradigm is not for the

Fig. 2. Four basic collective communication operations.

computing machinery and software to tackle. On the other
hand, the patterns of parallelism in supercomputing can
be summarized as collective communications (see Fig. 2)
as described in Franck Cappello’s “Communication Deter-
minism in Parallel HPCApplications” [10]. Collective com-
munication has been proven to be scalable and manage-
able in large-scale distributed supercomputing systems. The
question is how to leverage the collective patterns on a chip.
Through Deep Learning, AI can potentially be liberated

from the vonNeumann architecture and talk to a native lin-
ear algebra machine with massive hardware parallelism, if
there is one.

A) Why linear algebra?
The fundamental primitives in Deep Learning are ten-
sors, high-dimensional data arrays used to represent layers
of Deep Neural Networks. A Deep Learning task can be
described as a tensor computation graph (Fig. 3):
A tensor computation graph is effectively a piece of AI

software. Tensors can be unfolded into two-dimensional
matrices, and matrix computations are handled through
matrix kernels (see Fig. 4). Matrix kernels refer to CPU
or GPU programs implementing different types of matrix
computations comprising many MAC (multiply accu-
mulate) operations. Such a matrix-centric approach is
described by Sharan Chetlur [11]. The MAC operations for
matrix multiplication are the most time-consuming part of

Fig. 3. A tensor computation graph.



ai, native supercomputing and the revival of moore’s law 5

Fig. 4. Matrix-centric platforms on the GPU and the Tensor Processing. Unit (TPU).

Deep Learning. One might ask if computations in Deep
Learning are predominantly MACs in matrix computa-
tions, why don’t we simplify a core all the way to a MAC
unit that does nothing but a MAC operation? In fact, why
does a MAC unit need to keep the legacy of being a core
at all?

B) The Tensor Processing Unit and systolic
arrays
In the highly anticipated paper, “In-Datacenter Perfor-
mance Analysis of a Tensor Processing Unit” [12], Google
disclosed the technical details and performance metrics
of the Tensor Processing Unit (TPU). The TPU was built
around a matrix multiply unit based on systolic arrays.
What is eye-catching is the choice by the TPU design team
to use a systolic array. A systolic array is a specific spatial
dataflow machine. A Processing Element (PE) in a systolic

array works in lock step with its neighbors. Each PE in a
systolic array is basically a MAC unit with some glue logic
to store and forward data. In comparison, a computing unit
equivalent to a PE in a mesh-connected parallel processor
is a full-featured processor core with its own frontend and
necessary peripherals, whereas a PE equivalent in a GPU
is a simplified processor core sharing a common frontend
and peripherals with other cores in the same compute clus-
ter. Among the three solutions, the density of MAC units is
the highest in a systolic array. These differences are shown
in Fig. 5:
A systolic array claims several advantages: simple and

regular design, concurrency and communication, and bal-
ancing computationwith I/O.However, until now, there has
been no commercially successful processor based on a sys-
tolic array. TheTPU is the first, and it is impressive, arguably
the largest systolic array implemented or even conceived.
Their design is reminiscent of an idea introduced by H.T.

Fig. 5. PEs in a systolic array, mesh-connected parallel processor and a GPU.



6 chien-ping lu

Kung [13]. However, due to the curse of the square shape, it
suffers from scalability issues as elaborated in the LinkedIn
article, “Should We All Embrace Systolic Arrays” [14].

V I . SPAT IAL DATAFLOW
ARCH ITECTURE

Like a systolic array, the building block of a generic spa-
tial dataflow machine is often referred to as the PE, which
is typically a MAC unit with some glue logic. Mesh topol-
ogy is a strikingly popular way to organize PEs, for example,
Google’s TPU [12], the DianNao family [15], MIT’s Eyeriss
[16] (see Fig. 6).
It seems logical to use a mesh topology to organize the

PEs on a two-dimensional chip when there are lots of PEs
and regularity is desirable. Such an arrangement leads to the
following twomesh-centric assumptions:

(1) The distance for a piece of data to travel across the
mesh in one clock period is fixed as that between two
neighboring PEs, even though it could be much further;

(2) A PE depends on the upstream neighboring PEs to com-
pute even though such a dependency mainly comes
more from the spatial order, rather than from true data
dependency.

Fig. 6. A PE and its neighbors in a mesh.

The first assumption is a legacy inherited from dis-
tributed parallel processors comprising many compute
nodes. Each compute node has to communicate among
themselves through intermediate nodes. It is analogous to
the situation when a high-speed train stops at every sin-
gle station on the way to the destination, as shown in
Fig. 7. Within one clock period, a piece of data could travel
over a distance equal to hundreds of the width of a MAC
unit without having to hop over every single MAC unit in
between. Restricting dataflows to PE hopping in a mesh
topology causes an increase in latency by several orders of
magnitude.
The second assumption is another legacy inherited from

distributed parallel processors. Each compute node not only
handles computations but also plays a part in the distributed
storage of the data. The nodes need to exchange data among
them to make forward progress. For an on-chip processing
mesh, however, the data come from the side interfacingwith
thememory. The dataflow through themesh and the results
are collected on the other side as shown in Fig. 8. Due to the
local topology, an internal PE has to get the data through
the PEs sitting between it and the memory. Likewise, it has
to contribute its partial result through the intermediate PEs

Fig. 8. Mesh-centric assumption 2.

Fig. 7. Mesh-centric assumption 1.



ai, native supercomputing and the revival of moore’s law 7

before reaching thememory. The resulting dataflows are due
to the spatial order of the PE in themesh, not as a result of true
data dependency.
Given the two mesh-centric assumptions, no matter

how many PEs and how much bandwidth you have, the
performance to solve a problem on a d-dimensional mesh
is limited by the dimensionality d of the mesh, not the
number of the PEs, nor the IO bandwidth. Suppose a
problem requires I inputs, K outputs, and T compu-
tations, then the asymptotic running time to solve the
problem on a d-dimensional mesh is given by Fisher’s
bound [17]:

t = �
(
max

(
d
√

I , d
√

K , d+1
√

T
))

.

Fisher’s bound implies there are upper bounds on the
number of PEs and bandwidth beyond which no further
running time improvement is achievable.
Applying Fisher’s bound to the inner product, the

running time to do an inner product is �(n) on a
one-dimensional mesh. If you can afford to have a
two-dimensional mesh, the running time is �(

√
n) Can

we do better? Instead of using one- or two-dimensional
mesh, we can feed the input to n PEs and add the prod-
ucts in pairs recursively. A �(log(n)) running time can
be achieved. However, it is not possible to achieve such
a performance on an either one- or two-dimensional
mesh unless we organize the PEs in the way shown
in Fig. 9.
The reasons for such a superoptimal result comparedwith

the theoretical limits on a mesh is that there is no PE hop-
ping, and it uses links of different lengths assuming that it
takes the same time for a piece of data to travel over links
with different lengths. If the distance is too long for a piece
of data to travel in one clock period, we can add flops in
the middle. It should be an implementation issue, not an
architectural one.

V I I . MATR IX MULT IPL ICAT ION
ACCORD ING TO
SUPERCOMPUT ING

Let us look at themost time-consuming part of Deep Learn-
ing: matrix multiplication, which has always been at the
heart of supercomputing. State-of-the-art parallel matrix
multiplication performance on modern supercomputers is
achieved with the following two major advancements:

(1) Scalable matrix multiplication algorithms,
(2) Efficient collective communications with logarithmic
overhead.

A) Scalable matrix multiplication algorithms
See Fig. 10 for the demonstration of matrix multiplication
in outer products. The computations are two-dimensional,
but both the data and the communications among them are
one-dimensional.
The width of a block column and a block row can be

a constant and is independent of the number of nodes.
On a systolic array, the computations are also broken
down into outer products. However, the width of the
block column/row must match the side length of the sys-
tolic array to achieve optimal performance. Otherwise,
the array is poorly occupied for problems with low inner
dimension.
Outer product-based matrix multiplication algorithms,

such as Scalable Universal MatrixMultiplication Algorithm
(SUMMA) [18], have been proven to be very scalable both
in theory and in practice in distributed systems.

B) Efficient collective communications with
logarithmic overhead
The communication patterns in SUMMA or similar algo-
rithms are based on collective communications defined for

Fig. 9. A faster inner products than Fisher’s bound.



8 chien-ping lu

Fig. 10. Matrix multiplication with outer products.

parallel computing on distributed systems. Advances in col-
lective communication for HPC with recursive algorithms
[19] reduce the communication overheads to be propor-
tional to a logarithmic of the number of nodes and have
been instrumental in the continuing performance growth
in supercomputing.

V I I I . NAT IVE SUPERCOMPUT ING

It is interesting to compare how matrix multiplication is
achieved with a systolic array and a supercomputer, even
though they are at completely different scales: one is on-chip
and each node is a PE; the other is at the scale of a data center
and each node is a compute cluster (Fig. 11).
Broadcasts are implemented as forwarding data right-

ward, and reductions (a synonym of “accumulate” in

the terminology of collective communications) are imple-
mented as passing partial sums downward in a systolic array
and accumulate along the way.
In comparison with an algorithm like SUMMA, broad-

casts on a supercomputer happen in two dimensions among
the nodes, while reductions are achieved in place at each
node. There is no dependency, thus no dataflow but collec-
tive communication among the participating nodes. Since
the reduction is in place, the number of nodes in either
dimension is independent of the inner dimension of the
matrices. As a matter of fact, the nodes do not even have
to be arranged physically in a two-dimensional topology
as long as collection communication can be supported
efficiently.
Today’s distributed supercomputers are descendants of

“Killer Micro” [20], which were considered aliens invading
the land of supercomputing in the early 90s. As a matter of

Fig. 11. Matrix multiplication on a systolic array and a supercomputer.



ai, native supercomputing and the revival of moore’s law 9

Fig. 12. Collective streaming versus collective communication.

fact, early supercomputerswere purposely built to domatrix
computations. Imagine that we build a supercomputer-on-
chip by

(1) Shrinking a compute cluster to a PE with only densely
packed MAC units,

(2) Building on-chip data delivery fabric to support collec-
tive streaming, reminiscent of collective communication
in supercomputing.

Just as efficient collective communication can be
achieved recursively, efficient collective streaming can be
accomplished recursively through the building block, col-
lective streaming Element (CE). The CEs are inserted
between the PEs and the memory to broadcast or scat-
ter the data hierarchically to the PEs, and to reduce or
gather the results recursively from the PEs. The four opera-
tions are analogous to the counterparts in collective com-
munication in supercomputing for the compute nodes to
exchange data among themselves as shown in Fig. 12. Com-
pared with systolic arrays, the PEs do not have to be
interlocked in a two-dimensional grid and the latency can
be within a constant factor of a logarithm of numbers
of PEs. Building a supercomputer-on-chip can be consid-
ered as an effort to return to the matrix-centric root of

supercomputing. It is effectively a Native Supercomputer
(see Fig. 13).

I X . WHY COLLECT IVE
STREAMING?

Inmany conventional parallel processors, including theGPU,
a core, as a universal computer, not only has to sup-
port many functions other than MAC, but also needs to
retrieve data from the memory, expecting the data to be
shared through memory hierarchy. As a result, it requires
a significant investment in area and energy for generic
functions, multiple levels of caches, scratch memory, and
register files. Collective streaming allows the computing
units to comprise only MAC units without a memory
hierarchy.
In a spatial dataflow machine, such as a systolic array, a

PE still keeps the legacy of a core having to communicate
with other PEs. This causes latency and makes it difficult to
scale. Collective streaming allows orders ofmagnitudemore
MAC units without sacrificing latency.
A programmable dataflow machine is expected to resolve

the dependencies among fine-grain data items. Given that
dependencies among data items are collective, the efficiency
of a programmable dataflow machine to handle generic

Fig. 13. From a mesh to a hierarchically organized PEs.



10 chien-ping lu

data dependencies will be worse than a spatial dataflow
machine.

X . CONCLUS ION

As mentioned earlier, Turing envisioned a universal AI
machine modeling a human computer hired to do calcu-
lations with a pencil on paper. According to Turing, it is
the software that tells it step by step what to do to make
it think. With Deep Learning, the software will be like
a CEO provisioning the resources and planning for the
workflow to educate the machine. It involves formulating
the time-consuming tasks through a software stack, run-
ning on legacy universal computers, into the most efficient
computing resources.
The new AI machine will be built on top of the achieve-

ments of the previous computing revolution. However, the
workhorse will be the computing resources that perform
linear algebraic tasks natively.
AI was the inspiration behind the previous computing

revolution. It shaped computing as we know it today. The
history of computing now comes full circle. AI is com-
ing back again to inspire computing. The quest to make
machines think continues amid the slowdown of Moore’s
Law. AI might not only maximize the remaining benefits
of Moore’s Law, but also revive Moore’s Law beyond the
current technology.

REFERENCES

[1] Turing, A.: Computing machinery and intelligence. Mind, 50 (1950),
433–460.

[2] Turing, A.: On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc. Ser. 2 42 (1936),
230–265.

[3] Turing, A.: Programmers’ Handbook for the Manchester Electronic
Computer,Manchester University, Manchester, England, 1950.

[4] Neumann, J.v.: First Draft of a Report on the EDVAC. 1945.
[Online]. Available: https://sites.google.com/site/michaeldgodfrey/
vonneumann/vnedvac.pdf?attredirects=0&d=1.

[5] Moore, G.: Cramming more components onto integrated circuits.
Electronics, 8 (1965), 82–85.

[6] Sutter, H.: The Free Lunch is Over: A Fundamental Turn Toward
Concurrency in Software. 2005. [Online]. Available: http://www.
gotw.ca/publications/concurrency-ddj.htm.

[7] Esmaeilzadeh, H.; Blem, E.; St. Amant, R.; Sankaralingam, K.; Burger,
D.: Dark silicon and the end ofmulticore scaling, in The 38th Interna-
tional Symposium on Computer Architecture (ISCA), 2011, 365–376.

[8] Hodges, A.: Alan Turing. 30 Sep 2013. [Online]. Available: https://
plato.stanford.edu/entries/turing/#Unc.

[9] BLAS (Basic Linear Algebra Subprograms). [Online]. Available:
http://www.netlib.org/blas/.

[10] Cappello, F.; Guermouche, A.; Snir, M.: On communication deter-
minism in parallel HPC applications, in Int. Conf. on Computer
Communication Networks, Zurich, Switzerland, 2010.

[11] Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.;
Catanzaro, B.; Shelhamer, E.: cuDNN: Efficient Primitives for
Deep Learning, 18 Dec 2014. [Online]. Available: https://arxiv.org/
abs/1410.0759.

[12] Jouppi, N.P.: In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit, Google, Inc, 2017. [Online]. Available: https://drive.
google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view.

[13] Kung, H.T.: Why systolic architecture? IEEE Comput., 15 (1) (1982),
37–46.

[14] Lu, C.-P.: Should We All Embrace Systolic Arrays? 28 April 2017.
[Online]. Available: https://www.linkedin.com/pulse/should-we-all-
embrace-systolic-arrays-chien-ping-lu.

[15] Luo, T.; Liu, S.; Li, L.; Wang, Y.; Zhang, S.; Chen, T.; Xu, A.; Temam,
O.; Chen, Y.: DaDianNao: a neural network supercomputer. IEEE
Trans. Comput. 66 (2017), 73–88.

[16] Sze, V.: Efficient Processing of Deep Neural Networks: A Tuto-
rial and Survey. 27 Mar 2017. [Online]. Available: https://arxiv.org/
1703.09039.

[17] Fisher, D.C.: Your favorite parallel algorithms might not be as fast as
you think. IEEE Trans. Comput., 37 (2) (1988), 211–213.

[18] Robert A. van de Geijn, J.W.: SUMMA: Scalable Universal Matrix
Multiplication Algorithm. Technical Report UT CS-95-28, pp. 255–
274, Vol. 9. Department of Computer Science, The University of
Texas at Austin, 1997.

[19] Thakur, R.; Rabenseifner, R.; Gropp, W.: Optimization of Collective
Communication Operations in MPICH. 2005. [Online]. Available:
http://www.mcs.anl.gov/∼thakur/papers/ijhpca-coll.pdf.

[20] Brooks, E.: The attack of killermicros, in Supercomputing 1989, Reno,
NV, 1989.

Dr. Chien-Ping Lu is currently the VP Hardware Engineering
at NovuMind Inc. He is responsible for the R&D of hardware
acceleration of Deep Neural Networks. Prior to NovuMind,
Dr. Lu was a senior director of advanced graphics develop-
ment at Intel. From 2011 to 2015, Dr. Lu was a senior director at
MediaTek, where he successfully led the in-house GPU project
from ground up, and co-founded HSA (Heterogeneous Sys-
tem Architecture) Foundation with AMD, ARM, Imagination,
TI, Qualcomm and Samsung to push Heterogeneous Com-
puting. From 2002 to 2011, Dr. Lu was GPU Architect and
Senior Architecture Manager at NVIDA. Dr. Lu participated
and delivered several important GPU products. Dr. Lu got his
PhD in Computer Science fromYale University in 1995. He was
one of the early researchers in Neural Networks in 90s. His
Orthogonal Iteration algorithm for pose estimation has been
widely adopted, cited and improved upon in Vision, Robotics
and Augmented Reality communities.

https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1
https://sites.google.com/site/michaeldgodfrey/vonneumann/vnedvac.pdf?attredirects=0&d=1
http://www.gotw.ca/publications/concurrency-ddj.htm.
http://www.gotw.ca/publications/concurrency-ddj.htm.
https://plato.stanford.edu/entries/turing/#Unc.
https://plato.stanford.edu/entries/turing/#Unc.
http://www.netlib.org/blas/
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1410.0759
https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view.
https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view.
https://www.linkedin.com/pulse/should-we-all-embrace-systolic-arrays-chien-ping-lu
https://www.linkedin.com/pulse/should-we-all-embrace-systolic-arrays-chien-ping-lu
https://arxiv.org/abs/1703.09039.
https://arxiv.org/abs/1703.09039.
http://www.mcs.anl.gov/~thakur/papers/ijhpca-coll.pdf

	I AI AND THE UNIVERSAL COMPUTER
	II THE PERFECT MARRIAGE BETWEEN THE UNIVERSAL COMPUTER AND MOORE'S LAW
	III THE SLOWDOWN OF MOORE'S LAW
	IV AI AND MOORE'S LAW
	V DEEP LEARNING AND THE NEW AI MACHINE
	A Why linear algebra?
	B The Tensor Processing Unit and systolic arrays

	VI SPATIAL DATAFLOW ARCHITECTURE
	VII MATRIX MULTIPLICATION ACCORDING TO SUPERCOMPUTING
	A Scalable matrix multiplication algorithms
	B Efficient collective communications with logarithmic overhead

	VIII NATIVE SUPERCOMPUTING
	IX WHY COLLECTIVE STREAMING?
	X CONCLUSION

