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Global and local uncertainty principles for
signals on graphs
nathanael perraudin1, benjamin ricaud2, david i shuman3 and pierre vandergheynst2

Uncertainty principles such as Heisenberg’s provide limits on the time-frequency concentration of a signal, and constitute an
important theoretical tool for designing linear signal transforms. Generalizations of such principles to the graph setting can
inform dictionary design, lead to algorithms for reconstructing missing information via sparse representations, and yield new
graph analysis tools. While previous work has focused on generalizing notions of spreads of graph signals in the vertex and
graph spectral domains, our approach generalizes the methods of Lieb in order to develop uncertainty principles that provide
limits on the concentration of the analysis coefficients of any graph signal under a dictionary transform. One challenge we
highlight is that the local structure in a small region of an inhomogeneous graph can drastically affect the uncertainty bounds,
limiting the information provided by global uncertainty principles. Accordingly, we suggest new notions of locality, and develop
local uncertainty principles that bound the concentration of the analysis coefficients of each atom of a localized graph spectral
filter frame in terms of quantities that depend on the local structure of the graph around the atom’s center vertex. Finally, we
demonstrate how our proposed local uncertainty measures can improve the random sampling of graph signals.
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I . I NTRODUCT ION

A major research pursuit in the area of signal process-
ing on graphs [1, 2] has been to design multiscale wavelet
and vertex-frequency transforms [3–24]. Objectives of these
transforms are to sparsely represent different classes of
graph signals and/or efficiently reveal relevant structural
properties of high-dimensional data on graphs. As wemove
forward, it is important to test both of these transforms on
myriad applications, as well as to develop additional theory
to help answer the question of which transforms are best
suited to which types of data.

Uncertainty principles such as the ones presented in
[25–32] are an important tool in designing and evaluating
linear transforms for processing “classical” signals such as
audio signals, time series, and images residing on Euclidean
domains. It is desirable that the dictionary atoms are jointly
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localized in time and frequency, and uncertainty prin-
ciples characterize the resolution tradeoff between these
two domains. Moreover, while “the uncertainty principle

is [often] used to show that certain things are impossible”,
Donoho and Stark [26] present “examples where the gener-
alized uncertainty principle shows something unexpected
is possible; specifically, the recovery of a signal or image
despite significant amounts of missing information”. In par-
ticular, uncertainty principles can provide guarantees that if
a signal has a sparse decomposition in a dictionary of inco-
herent atoms, this is indeed a unique representation that can
be recovered via optimization [27, 28]. This idea underlies
the recent wave of sparse signal processing techniques, with
applications such as denoising, source separation, inpaint-
ing, and compressive sensing. While there is still limited
theory showing that different mathematical classes of graph
signals are sparsely represented by the recently proposed
transforms (see [33] for one preliminary work along these
lines), there is far more empirical work showing the poten-
tial of these transforms to sparsely represent graph signals
in various applications.

Many of the multiscale transforms designed for graph
signals attempt to leverage intuition from signal processing
techniques designed for signals on Euclidean data domains
by generalizing fundamental operators and transforms to
the graph setting (e.g., by checking that they correspond
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on a ring graph). While some intuition, such as the notion
of filtering with a Fourier basis of functions that oscillate
at different rates (see, e.g., [1]) carries over to the graph
setting, the irregular structure of the graph domain often
restricts our ability to generalize ideas. One prime exam-
ple is the lack of a shift-invariant notion of translation
of a graph signal. As shown in [34, 35] and discussed in
[23, Section 3.2], the concentration of the Fourier basis func-
tions is another example where the intuition does not carry
over directly. Complex exponentials, the basis functions for
the classical Fourier transform, have global support across
the real line.On the other hand, the eigenvectors of the com-
binatorial or normalized graph Laplacians, which are most
commonly used as the basis functions for a graph Fourier
transform, are sometimes localized to small regions of the
graph. Because the incoherence between the Fourier basis
functions and the standard normal basis underlies many
uncertainty principles, we demonstrate this issue with a
short example.

Motivating Example (Part I: Laplacian eigenvector local-
ization). Let us consider the twomanifolds (surfaces) embed-
ded in R3 and shown in the first row of Fig. 1. The first one
is a flat square. The second is identical except for the center
where it contains a spike. We sample both of these mani-
folds uniformly across the x-y plane and create a graph by
connecting the 8 nearest neighbors with weights depending
on the distance (Wi j = e−di j /σ ). The energy of each Lapla-
cian eigenvector of the graph arising from the first manifold is
not concentrated on any particular vertex; i.e., maxi ,� |u�(i)|
� 1, where u� is the eigenvector associated with eigenvalue
λ�. However, the graph arising from the second manifold does
have a few eigenvectors, such as eigenvector 3 shown in the
middle row Fig. 1, whose energy is highly concentrated on the
region of the spike; i.e: maxi ,� |u�(i)| ≈ 1. Yet, the Laplacian
eigenvectors of this second graphwhose energy resides primar-
ily on the flatter regions of themanifold, such as eigenvector 17
shown in the bottom row of Fig. 1, are not too concentrated on
any single vertex. Rather, they more closely resemble some of
the Laplacian eigenvectors of the graph arising from the first
manifold.

Below we discuss three different families of uncertainty
principles, and their extensions to the graph setting, both in
prior work and in this contribution.

• The first family of uncertainty principles measure the
spreading around some reference point, usually the mean
position of the energy contained in the signal. The well-
known Heisenberg uncertainty principle [36, 37] belongs
to this family. It views the modulus square of the signal
in both the time and Fourier domains as energy proba-
bility density functions, and takes the variance of those
energy distributions as measures of the spreading in each
domain. The uncertainty principle states that the product
of variances in the time and in the Fourier domains cannot
be arbitrarily small. The generalization of this uncertainty
principle to the graph setting is complex since there does

Fig. 1. Concentration of graph Laplacian eigenvectors. We discretize two dif-
ferent manifolds by sampling uniformly across the x-y plane. Due to its bumpy
central part, the graph arising from manifold 2 has a graph Laplacian eigenvec-
tor (shown in themiddle row of the right column) that is highly concentrated in
both the vertex and graph spectral domains. However, the eigenvectors of this
graph whose energy primarily resides in the flatter parts of the manifold (such
as the one shown in the bottom row of the right column) are less concentrated,
and some closely resemble the Laplacian eigenvectors of the graph arising from
the flat manifold 1 (such as the corresponding eigenvector shown in the bottom
row of the left column.

not exist a simple formula for the mean value or the vari-
ance of graph signals, in either the vertex or the graph
spectral domains. For unweighted graphs, Agaskar and
Lu [38–40] also view the square modulus of the signal
in the vertex domain as an energy probability density
function and use the geodesic graph distance (shortest
number of hops) to define the spread of a graph signal
around a given center vertex. For the spread of a sig-
nal f in the graph spectral domain, Agaskar and Lu use
the normalized variation ( f �L f )/|| f ||22, which captures
the smoothness of a signal. They then specify uncertainty
curves that characterize the tradeoff between the smooth-
ness of a graph signal and its localization in the vertex
domain. This idea is generalized to weighted graphs in
[41]. As pointed out in [40], the tradeoff between smooth-
ness and localization in the vertex domain is intuitive as
a signal that is smooth with respect to the graph topol-
ogy cannot feature values that decay too quickly from
the peak value. However, as shown in Fig. 1 (and subse-
quent examples in Table 1), graph signals can indeed be
simultaneously highly localized or concentrated in both
the vertex domain and the graph spectral domain. This
discrepancy is because the normalized variation used as
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Table 1. Numerical values of the uncertainty bound maxi ,k ‖Ti gk‖2 of Example 5 for various graphs of 64 nodes.
Graph Gabor Spectrum-Adapted Log-Warped Spectrum-Adapted

Graph μG (Uniform Translates) Graph Gabor Wavelets Wavelets
Ring 0.12 0.33 0.28 0.44 0.45
Random sensor network 0.90 0.70 0.69 0.68 0.69
Random regular 0.43 0.41 0.40 0.57 0.53
Erdos Renyi 0.93 0.68 0.68 0.68 0.67
Comet 0.98 0.70 0.70 0.70 0.70
Path 0.18 0.45 0.38 0.51 0.51
Modified path: W12 = 0.1 0.48 0.69 0.66 0.57 0.58
Modified path: W12 = 0.01 0.70 0.71 0.68 0.70 0.65

the spectral spread in [40] is one method to measure the
spread of the spectral representation around the eigen-
value 0, rather than around some mean of that signal in
the graph spectral domain. In fact, using the notion of
spectral spread presented in [40], the graph signalwith the
highest spectral spread on a graph G is the graph Lapla-
cian eigenvector associated with the highest eigenvalue.
The graph spectral representation of that signal is a Kro-
necker delta whose energy is completely localized at a
single eigenvalue. One might argue that its spread should
in fact be zero. So, in summary, while there does exist a
tradeoff between the smoothness of a graph signal and its
localization around any given center vertex in the vertex
domain, the classical idea that a signal cannot be simulta-
neously localized in the time and frequency domains does
not always carry over to the graph setting.While certainly
an interesting avenue for continued investigation, we do
not discuss uncertainty principles based on spreads in
the vertex and graph spectral domains any further in this
paper.

• The second family of uncertainty principles involve the
absolute sparsity or concentration of a signal. The key
quantities are typically either support measures count-
ing the number of non-zero elements, or concentration
measures, such as �p-norms. An important distinction is
that these sparsity and concentration measures are not
localization measures. They can give the same values for
different signals, independent of whether the predomi-
nant signal components are clustered in a small region of
the vertex domain or spread across different regions of the
graph. An example of a recent work from the graph sig-
nal processing literature that falls into this family is [42],
in which Tsitsvero et al. propose an uncertainty principle
that characterizes how jointly concentrated graph signals
can be in the vertex and spectral domains. Generalizing
prolate spheroidal wave functions [43], their notion of
concentration is based on the percentage of energy of a
graph signal that is concentrated on a given set of ver-
tices in the vertex domain and a given set of frequencies
in the graph spectral domain. Another example of graph
uncertainty principle is presented in Theorems 5.1 and
5.2 of [44]. It is a trade-off between the Poincare con-
stant �S that measures the size (capacity) of a set S and
the bandlimit frequency w of the functions living on that
space.

Since we can interpret signals defined on graphs as
finite-dimensional vectors with well-defined �p-norms,

we can also apply directly the results of existing uncer-
tainty principles for finite dimensional signals. As one
example, the Elad–Bruckstein uncertainty principle of
[28] states that if α and β are the coefficients of a vector
f ∈ RN in two different orthonormal bases, then

||α||0 + ||β||0
2

≥
√

||α||0 · ||β||0 ≥ 1

μ
, (1)

where μ is the maximum magnitude of the inner prod-
uct between any vector in the first basis with any vector
in the second basis. In Section III-A, we apply (1) to graph
signals by taking one basis to be the canonical basis ofKro-
necker delta functions in the graph vertex domain and the
other to be a Fourier basis of graph Laplacian eigenvec-
tors. We also apply other such finite dimensional uncer-
tainty principles from [32, 36, 45] to the graph setting. In
Section III-B, we adapt the Hausdorff–Young inequality
[46, Section IX.4], a classical result for infinite dimen-
sional signals, to the graph setting. These results typi-
cally depend on the mutual coherence between the graph
Laplacian eigenvectors and the canonical basis of deltas.
For the special case of shift-invariant graphs with circu-
lant graph Laplacians [47, Section 5.1], such as ring graphs,
these bases are incoherent, and we can attain meaning-
ful uncertainty bounds. However, for less homogeneous
graphs (e.g., a graph with a vertex with a much higher or
lower degree than other vertices), the two bases can be
more coherent, leading to weaker bounds. Moreover, as
we discuss in Section II, the bounds are global bounds, so
even if themajority of a graph is for example very homoge-
nous, inhomogeneity in one small area can prevent the
result from informing the behavior of graph signals across
the rest of the graph.

• The third family of uncertainty principles characterize
a single joint representation of time and frequency. The
short-time Fourier transform (STFT) is an example of a
time-frequency representation that projects a function f
onto a set of translated andmodulated copies of a function
g . Usually, g is a function localized in the time-frequency
plane, for example a Gaussian, vanishing away from some
known reference point in the joint time and frequency
domain. Hence this transformation reveals local proper-
ties in time and frequency of f by separating the time–
frequency domain into regions where the translated and
modulated copies of g are localized. This representation
obeys an uncertainty principle: the STFT coefficients can-
not be arbitrarily concentrated. This can be shown by
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Fig. 2. The concentration s p(·) of four different example signals (all with
2-norm equal to 1), for various values of p. Note that the position of the sig-
nal coefficients does not matter for this concentration measure. Different values
of p lead to different notions of concentration; for example, f2 is more con-
centrated than f3 if p = ∞ (it has a larger maximum absolute value), but less
concentrated if p = 1.

estimating the different �p-norms of this representation
(note that the concentration measures of the second fam-
ily of uncertainty principles are used). For example, Lieb
[48] proves a concentration bound on the ambiguity func-
tion (e.g., the STFT coefficients of the STFT atoms). Lieb’s
approach ismore general than theHeisenberg uncertainty
principle, because it handles the case where the signal is
concentrated around multiple different points (see, e.g.,
the signal f3 in Fig. 2).

In Section V, we generalize Lieb’s uncertainty princi-
ple to the graph setting to provide upper bounds on the
concentration of the transform coefficients of any graph
signal under (i) any frame of dictionary atoms, and (ii) a
special class of dictionaries called localized spectral graph
filter frames, whose atoms are of the form Ti gk , where Ti

is a localization operator that centers on vertex i a pattern
described in the graph spectral domain by the kernel ĝk .

While the second family of uncertainty principles above
yields global uncertainty principles, we can generalize the
third family to the graph setting in a way that yields local
uncertainty principles. In the classical Euclidean setting, the
underlying domain is homogenous, and thus uncertainty
principles apply to all signals equally, regardless of where on
the real line they are concentrated. However, in the graph
setting, the underlying domain is irregular, and a change
in the graph structure in a single small region of the graph
can drastically affect the uncertainty bounds. For instance,
the second family of uncertainty principles all depend on
the coherence between the graph Laplacian eigenvectors
and the standard normal basis of Kronecker deltas, which
is a global quantity in the sense that it incorporates local
behavior from all regions of the graph. To see how this can
limit the usefulness of such global uncertainty principles,
we return to the motivating example from above.

Motivating Example (Part II: Global versus local uncer-
tainty principles). In Section III-A, we show that a direct
application of a result from [32] to the graph setting yields the
following uncertainty relationship, which falls into the second
family described above, for any signal f ∈ RN :(‖ f ‖2

‖ f ‖1

)(‖ f̂ ‖2

‖ f̂ ‖1

)
≤ max

i ,�
|u�(i)|. (2)

Each fraction in the left-hand side of (2) is a measure of
concentration that lies in the interval [(1/

√
N), 1] (N is the

number of vertices), and the coherence between the graph
Laplacian eigenvectors and the Kronecker deltas on the right-
hand side lies in the same interval. On the graph arising from
manifold 1, the coherence is close to 1/

√
N , and (2) yields

a meaningful uncertainty principle. However, on the graph
arising from manifold 2, the coherence is close to 1 due to
the localized eigenvector 3 in Fig. 1. In this case, (2) is triv-
ially true for any signal in RN from the properties of vector
norms, and thus the uncertainty principle is not particularly
useful. Nevertheless, far away from the spike, signals should
behave similarly on manifold 2 to how they behave on mani-
fold 1. Part of the issue here is that the uncertainty relationship
holds for any graph signal f , even those concentrated on the
spike, which we know can be jointly localized in both the ver-
tex and graph spectral domains. An alternative approach is
to develop a local uncertainty principle that characterizes the
uncertainty in different regions of the graph on a separate
basis. Then, if the energy of a given signal is concentrated
on a more homogeneous part of the graph, the concentration
bounds will be tighter.

In Section VI, we generalize the approach of Lieb to
build a local uncertainty principle that bounds the con-
centration of the analysis coefficients of each atom of a
localized graph spectral filter frame in terms of quantities
that depend on the local structure of the graph around the
center vertex of the given atom. Thus, atoms localized to
different regions of the graph feature different concentra-
tion bounds. Such local uncertainty principles also have
constructive applications, and we conclude with an exam-
ple of non-uniform sampling for graph inpainting, where
the varying uncertainty levels across the graph suggest a
strategy of sampling more densely in areas of higher uncer-
tainty. For example, if we were to take M measurements of
a smooth signal on manifold 2 in Fig. 1, this method would
lead to a higher probability of sampling signal values near
the spike, and a lower probability of sampling signal values
in the more homogenous flat parts of the manifold, where
reconstruction of the missing signal values is inherently
easier.

I I . NOTAT ION AND GRAPH S IGNAL
CONCENTRAT IO

In this section, we introduce some notation and illustrate
further how certain intuition from signal processing on
Euclidean spaces does not carry over to the graph setting.
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A) Notation
Throughout the paper, we consider signals residing on an
undirected, connected, and weighted graph G = {V , E , W},
whereV is a finite set of N vertices (|V| = N),E is a finite set
of edges, andW is theweight or adjacencymatrix. The entry
Wi j of W represents the weight of an edge connecting ver-
tices i and j . We denote the complement of a set S by Sc . A
graph signal f : V → C is a function assigning one value to
each vertex. Such a signal f can be written as a vector of size
N with the nth component representing the signal value at
the nth vertex. The generalization of Fourier analysis to the
graph setting requires a graph Fourier basis {u�}�∈{0,1,...,N−1}.
Themost commonly used graphFourier bases are the eigen-
vectors of the combinatorial (or non-normalized) graph
Laplacian, which is defined as L = D − W, where D is
the diagonal degree matrix with diagonal entries Di i =∑N

j=1 Wi j , and i ∈ V , or the eigenvectors of the normalized
graph Laplacian L̃ = D−(1/2)LD−(1/2). However, the eigen-
bases (or Jordan eigenbases) of other matrices such as the
adjacencymatrix have also been used as graph Fourier bases
[2, 49]. All of our results in this paper hold for any choice of
the graph Fourier basis. For concreteness, we use the combi-
natorial Laplacian, which has a complete set of orthonormal
eigenvectors {u�}�∈{0,1,...,N−1} associated with the real eigen-
values 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1 = λmax.We denote
the entire Laplacian spectrum by σ(L) = {λ0, . . . , λN−1}.
The graph Fourier transform f̂ ∈ CN of a function f ∈ CN

defined on a graph G is the projection of the signal onto the
orthonormal graph Fourier basis {u�}�=0,1,...,N−1, which we
take to be the eigenvectors of the graph Laplacian associated
with G:

f̂ (λ�) = 〈 f , u�〉 =
N∑

n=1

f (n)u�(n),

� ∈ {0, 1, . . . , N − 1}. (3)

See, for example, [50] for more details on spectral graph
theory, and [1] for more details on signal processing on
graphs.

B) Concentration measures
In order to discuss uncertainty principles, we must first
introduce some concentration/sparsitymeasures. Through-
out the paper, we use the terms sparsity and concentration
somewhat interchangeably, but we reserve the term spread
to describe the spread of a function around some mean or
center point, as discussed in the first family of uncertainty
principles in Section I. The first concentration measure is
the support measure of f , denoted ‖ f ‖0, which counts the
number of non-zero elements of f . The second concentra-
tion measure is the Shannon entropy, which is used often in
information theory and physics:

H( f ) = −
∑

n

| f (n)|2 ln | f (n)|2,

where the variable n has values in {1, 2, . . . , N} for func-
tions on graphs and {0, 1, . . . , N − 1} in the graph Fourier
representation. Another class of concentration measures is
the �p-norms, with p ∈ [1, ∞]. For p �= 2, the sparsity of f
may be measured using the following quantity:

s p( f ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖ f ‖2

‖ f ‖p
, if 1 ≤ p ≤ 2

‖ f ‖p

‖ f ‖2
, if 2 < p ≤ ∞

.

For any vector f ∈ CN and any p ∈ [1, ∞], s p( f ) ∈
[N−|(1/p)−(1/2)|, 1]. If s p( f ) is high (close to 1), then f is
sparse, and if s p( f ) is low, then f is not concentrated.
Figure 2 uses some basic signals to illustrate this notion of
concentration, for different values of p. In addition to spar-
sity, one can also relate �p-norms to the Shannon entropy
via Renyi entropies (see, e.g., [51, 52] for more details).

C) Concentration of the graph Laplacian
eigenvectors
The spectrum of the graph Laplacian replaces the frequen-
cies as coordinates in the Fourier domain. For the special
case of shift-invariant graphs with circulant graph Lapla-
cians [47, Section 5.1], the Fourier eigenvectors can still
be viewed as pure oscillations. However, for more general
graphs (i.e., all but the most highly structured), the oscil-
latory behavior of the Fourier eigenvectors must be inter-
preted more broadly. For example, [1, Fig. 3] displays the
number of zero crossings of each eigenvector; that is, for
each eigenvector, the number of pairs of connected ver-
tices where the signs of the values of the eigenvector at
the connected vertices are opposite. It is generally the case
that the graph Laplacian eigenvectors associated with larger

Fig. 3. Coherence between the graph Fourier basis and the canonical basis for
the graphs described in Example 1. Top left: Comet graphs with k = 6 and
k = 12 branches, all of length one except for one of length ten. Top right: Evolu-
tion of the graph Fourier coherence μG with respect to k. Bottom left: Example
of a modified path graph with 10 nodes. Bottom right: Evolution of the coher-
ence of the modified path graph with respect to the distance between nodes
1 and 2. As the degree of the comet’s center vertex increases or the first node
of the modified path is pulled away, the coherence μG tends to the limit value√

((N − 1)/N).
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eigenvalues contain more zero crossings, yielding a notion
of frequency to the graph Laplacian eigenvalues. However,
despite this broader notion of frequency, the graph Lapla-
cian eigenvectors are not always globally-supported, pure
oscillations like the complex exponentials. In particular,
they can feature sharp peaks, meaning that some of the
Fourier basis elements can be much more similar to an ele-
ment of the canonical basis of Kronecker deltas on the ver-
tices of the graph. As we will see, uncertainty principles for
signals on graphs are highly affected by this phenomenon.

One way to compare a graph Fourier basis to the canon-
ical basis is to compute the coherence between these two
representations.

Definition 1 (Graph Fourier Coherence μG). Let G be a
graph of N vertices. Let {δi }i∈{1,2,...,N} denote the canonical
basis of �2(CN) of Kronecker deltas and let {u�}�∈{0,1,...,N−1} be
the orthonormal basis of eigenvectors of the graph Laplacian
of G. The graph Fourier coherence is defined as:

μG = max
i ,�

|〈δi , u�〉| = max
i ,�

|u�(i)| = max
�

s∞(u�).

This quantity measures the similarity between the two
sets of vectors. If the sets possess a common vector, then
μG = 1 (the maximum possible value for μG). If the two
sets are maximally incoherent, such as the canonical and
Fourier bases in the standard discrete setting, then μG =
1/

√
N (the minimum possible value).

Because the graph Laplacian matrix encodes the weights
of the edges of the graph, the coherence μG clearly depends
on the structure of the underlying graph. It remains an
open question exactly how structural properties of weighted
graphs such as the regularity, clustering, modularity, and
other spectral properties can be linked to the concentra-
tion of the graph Laplacian eigenvectors. For certain classes
of random graphs [53–55] or large regular graphs [56], the
eigenvectors have been shown to be non-localized, globally
oscillating functions (i.e., μG is low). Yet, empirical studies
such as [34] show that graph Laplacian eigenvectors can be
highly concentrated (i.e., μG can be close to 1), particularly
when the degree of a vertex is much higher or lower than
the degrees of other vertices in the graph. The following
example illustrates how μG can be influenced by the graph
structure.

Example 1. In this example, we discuss two classes of graphs
that can have high graph Fourier coherences. The first, called
comet graphs, are studied in [35, 57]. They are composed of a
star with k vertices connected to a center vertex, and a single
branch of length greater than one extending from one neigh-
bor of the center vertex (see Fig. 3, top). If we fix the length of
the longest branch (it has length 10 in Fig. 3), and increase
k, the number of neighbors of the center vertex, the graph
Laplacian eigenvector associated with the largest eigenvalue
approaches a Kronecker delta centered at the center vertex of
the star. As a consequence, the coherence between the graph
Fourier and the canonical bases approaches 1 as k increases.

Fig. 4. Eigenvectors associated with the largest graph Laplacian eigenvalue of
the modified path graph with 100 nodes, for different values of W12. As the dis-
tance between the first two nodes increases, the eigenvector becomes sharply
peaked.

The second class are the modified path graphs, which we
use several times in this contribution. We start with a stan-
dard path graph of 10 nodes equally spaced (all edge weights
are equal to one) and we move the first node out to the left;
i.e., we reduce the weight between the first two nodes (see
Fig. 3, bottom). The weight is related to the distance by W12 =
1/d(1, 2) with d(1, 2) being the distance between nodes 1
and 2. When the weight between nodes 1 and 2 decreases,
the eigenvector associated with the largest eigenvalue of the
Laplacian becomes more concentrated, which increases the
coherenceμG . These two examples of simple families of graphs
illustrate that the topology of the graph can impact the graph
Fourier coherence, and, in turn, uncertainty principles that
depend on the coherence.

In Fig. 4, we display the eigenvector associated with the
largest graph Laplacian eigenvalue for a modified path graph
of 100 nodes, for several values of the weight W12. Observe
that the shape of the eigenvector has a sharp local change at
node 1.

Example 1 demonstrates an important point to keep in
mind. A small local change in the graph structure can
greatly affect the behavior of one eigenvector, and, in turn,
a global quantity such as μG . However, intuitively, a small
local change in the graph should not drastically change the
processing of signal values far away, for example in a denois-
ing or inpainting task. For this reason, in Section VI, we
introduce a notion of local uncertainty that depicts how the
graph is behaving locally.

Note that not only special classes of graphs or patholog-
ical graphs yield highly localized graph Laplacian eigenvec-
tors. Rather, graphs arising in applications such as sensor or
transportation networks, or graphs constructed from sam-
pled manifolds (such as the graph sampled frommanifold 2
in Fig. 1) can also have graph Fourier coherences close to 1
(see, e.g., [23, Section 3.2] for further examples).

I I I . GLOBAL UNCERTA INTY
PR INC IPLES RELAT ING THE
CONCENTRAT ION OF GRAPH
S IGNALS IN TWO DOMA INS

In this section, we derive basic uncertainty principles using
concentration measures and highlight the limitations of
those uncertainty principles.
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A) Direct applications of uncertainty
principles for discrete signals
We start by applying five known uncertainty principles for
discrete signals to the graph setting.

Theorem 1. Let f ∈ CN be a non-zero signal defined
on a connected, weighted, undirected graph G, let
{u�}�=0,1,...,N−1 be a graph Fourier basis for G, and let μG =
maxi ,� |〈δi , u�〉|. We have the following five uncertainty
principles:

(i) the support uncertainty principle [28]

‖ f ‖0 + ‖ f̂ ‖0

2
≥
√

‖ f ‖0‖ f̂ ‖0 ≥ 1

μG
. (4)

(ii) The �p-norm uncertainty principle [32]

‖ f ‖p‖ f̂ ‖p ≥ μ
1−(2/p)

G ‖ f ‖2
2, p ∈ [1, 2]. (5)

(iii) The entropic uncertainty principle [45]

H( f ) + H( f̂ ) ≥ −2 ln μG . (6)

(iv) The “local” uncertainty principle [36]∑
i∈VS

| f (i)|2 ≤ |VS |‖ f ‖2
∞ ≤ |VS |μ2

G‖ f̂ ‖2
1 (7)

for any subset VS of the vertices V in the graph G.
(v) The strong annihilating pair uncertainty principle [31]√∑

i∈V c
S

| f (i)|2 +
√∑

λ�∈�c
T

| f̂ (λ�)|2

≥
(

1 + 1

1 − μG
√|VS ||�T |

)−1

‖ f ‖2, (8)

for any subsetsVS of the verticesV in the graphG and�T

of the graph Laplacian spectrum σ(L) of G satisfying

|VS ||�T | <
1

μ2
G

.

The first uncertainty principle is given by a direct appli-
cation of the Elad–Bruckstein inequality [28]. It states that
the sparsity of a function in one representation limits the
sparsity in a second representation. As displayed in (1), the
work of [28] holds for representations in any two bases. As
we have seen, if we focus on the canonical basis {δi }i=1,...,N

and the graph Fourier basis {u�}�=0,...,N−1, the coherence
μG depends on the graph topology. For the ring graph,
μG = 1/

√
N , and we recover the result from the standard

discrete case (regular sampling, periodic boundary condi-
tions). However, for graphs where μG is closer to 1, the
uncertainty principle (4) is much weaker and therefore less
informative. For example, ‖ f̂ ‖0‖ f ‖0 ≥ (1/μ2

G) ≈ 1 is triv-
ially true of non-zero signals. The same caveat applies to
(5), (6), and (8), the first two of which follow directly from

[32, 45], respectively, by once again specifying the canonical
and graph Fourier bases.

The inequality (7) is an adaptation of [36, Eq. (4.1)] to
the graph setting, using the Hausdorff–Young inequality of
Theorem 2 (see next section). It states that the energy of a
function in a subset of the domain is bounded from above
by the size of the selected subset and the sparsity of the func-
tion in the Fourier domain. If the subset VS is small and the
function is sparse in the graph Fourier domain, this uncer-
tainty principle limits the amount of energy of f that fits
inside of the subset of VS . Because VS can be chosen to be
a local region of the domain (the graph vertex domain in
our case), Folland and Sitaram [36] refer to such princi-
ples as “local uncertainty inequalities”. However, the term
μG in the uncertainty bound is not local in the sense that it
depends on the whole graph structure and not just on the
topology of the subgraph containing vertices in VS . The last
inequality (8), a direct application of the Ghobber–Jaming
inequality [31, Theorem A], also limits the extent to which
a signal can be simultaneously compressed in two different
bases; specifically, if a graph signal’s energy is concentrated
heavily enough on vertices VS in the vertex domain and fre-
quencies�T in the spectral domain, then these sets cannot
both be small.

The following example illustrates the relation between
the graph, the concentration of a specific graph signal,
and one of the uncertainty principles from Theorem 1. We
return to this example in Section III-C to discuss further the
limitations of these uncertainty principles featuring μG .

Example 2. Figure 5 shows the computation of the quantities
involved in (5), with p = 1 and different G’s taken to be the
modified path graphs of Example 1, with different distances
between the first two vertices. We show the left-hand side of
(5) for two different Kronecker deltas, one centered at ver-
tex 1, and one centered at vertex 10. We have seen in Fig. 3
that as the distance between the first two vertices increases,

Fig. 5. Numerical illustration of the �p-norm uncertainty principle on a
sequence ofmodified path graphs with differentmutual coherences between the
canonical basis of deltas and the graph Laplacian eigenvectors. For each modi-
fied path graph, the weight W12 of the edge between the first two vertices is the
reciprocal of the distance shown on the horizontal axis. The black crosses show
the lower bound on the right-hand side of (5), with p = 1. The blue and red
lines show the corresponding uncertainty quantity on the left-hand side of (5),
for the graph signals δ1 and δ10, respectively.
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the coherence increases, and therefore the lower bound on the
right-hand side of (5) decreases. For δ1, the uncertainty quan-
tity on the left-hand side of (5) follows a similar pattern. The
intuition behind this is that as the weight between the first two
vertices decreases, a few of the eigenvectors start to have local
jumps around the first vertex (see Fig. 4). As a result, we can
sparsely represent δ1 as a linear combination of those eigen-
vectors and ||δ̂1||1 is reduced. However, since there are not
any eigenvectors that are localized around the last vertex in
the path graph, we cannot find a sparse linear combination of
the graph Laplacian eigenvectors to represent δ10. Therefore,
its uncertainty quantity on the left-hand side of (5) does not
follow the behavior of the lower bound.

B) The Hausdorff–Young inequalities for
signals on graphs
The classical Hausdorff–Young inequality [46, Section IX.4]
is a fundamental harmonic analysis result behind the intu-
ition that a high degree of concentration of a signal in one
domain (time or frequency) implies a low degree of con-
centration in the other domain. This relation is used in the
proofs of the entropy and �p-norm uncertainty principles
in the continuous setting. In this section, as we continue
to explore the role of μG and the differences between the
Euclidean and graph settings, we extend the Hausdorff–
Young inequality to graph signals.

Theorem 2. Let μG be the coherence between the graph
Fourier and canonical bases of a graphG. Let p, q > 0 be such
that (1/p) + (1/q) = 1. For any signal f ∈ CN defined on
G and 1 ≤ p ≤ 2, we have

‖ f̂ ‖q ≤ μ
1−(2/q)

G ‖ f ‖p . (9)

Conversely, for 2 ≤ p ≤ ∞, we have

‖ f̂ ‖q ≥ μ
1−(2/q)

G ‖ f ‖p . (10)

The proof of Theorem 2, given in the Appendix, is an
extension of the classical proof using the Riesz–Thorin
interpolation theorem. In the classical (infinite dimen-
sional) setting, the inequality only depends on p and q
[58]. On a finite graph, it depends on μG and hence on the
structure of the graph. On a ring graph with N vertices,
substitutingμG = 1/

√
N into (9) coincides with the bound

on the norm of the DFT that is calculated by Gilbert and
Rzeszotnik in [59].

Dividing both sides of each inequality in Theorem 2 by
‖ f ‖2 leads to bounds on the concentrations (or sparsity
levels) of a graph signal and its graph Fourier transform.

Corollary 1. Let p, q > 0 be such that (1/p) + (1/q) = 1.
For any signal f ∈ CN defined on the graph G, we have

s p( f )sq ( f̂ ) ≤ μ
|1−(2/q)|
G .

Theorem 2 and Corollary 1 assert that the concentration
or sparsity level of a graph signal in one domain (vertex or
graph spectral) limits the concentration or sparsity level in

(a)

(b)

Fig. 6. Illustration of the bounds of theHausdorff–Young inequalities for graph
signals on the modified path graphs with f = δ1. (a) The quantities in (9) and
(10) for q = 1, 4

3 , 4, and∞. (b) The quantities in Corollary 1 for the same values
of q .

the other domain. However, once again, if the coherence
μG is close to 1, the result is not particularly informative
as s p( f )sq ( f̂ ) is trivially upper bounded by 1. The follow-
ing numerical experiment illustrates the quantities involved
in the Hausdorff–Young inequalities for graph signals. We
again see that as the graph Fourier coherence increases, sig-
nals may be simultaneously concentrated in both the vertex
domain and the graph spectral domain.

Example 3. Continuing with the modified path graphs of
Examples 1 and 2, we illustrate the bounds of the Hausdorff–
Young inequalities for graph signals in Fig. 6. For this example,
we take the signal f to be δ1, a Kronecker delta centered on
the first node of the modified path graph. As a consequence,
‖δ1‖p = 1 for all p, which makes it easier to compare the
quantities involved in the inequalities. For this example, the
bounds of Theorem 2 are fairly close to the actual values of
‖δ̂1‖q .

Finally, we briefly examine the sharpness of these graph
Hausdorff–Young inequalities. For p = q = 2, (9) and (10)
becomes equalities. Moreover, for p = 1 or p = ∞, there
is always at least one signal for which the inequalities (9)
and (10) become equalities, respectively. Let i1 and �1 sat-
isfy μG = maxi ,� |u�(i)| = |u�1(i1)|. For p = 1, let f = δi1 .
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Then || f ||1 = 1, and || f̂ ||∞ = max� |〈δi1 , u�〉| = μG , and
thus (9) is tight. For p = ∞, let f = u�1 . Then || f ||∞ =
μG , || f̂ ||1 = ||û�1 ||1 = 1, and thus (10) is tight. The red
curve and its bound in Fig. 6 show the tight case for p = 1
and q = ∞.

C) Limitations of global concentration-based
uncertainty principles in the graph setting
The motivation for this section was twofold. First, we
wanted to derive the uncertainty principles for graph sig-
nals analogous to some of those that are so fundamental for
signal processing on Euclidean domains. However, we also
want to highlight the limitations of this approach (the sec-
ond family of uncertainty principles described in Section I)
in the graph setting. The graph Fourier coherence is a global
parameter that depends on the topology of the entire graph.
Hence, it may be greatly influenced by a small localized
change in the graph structure. For example, in the modi-
fied path graph examples above, a change in a single edge
weight leads to an increased coherence, and in turn signifi-
cantlyweakens the uncertainty principles characterizing the
concentrations of the graph signal in the vertex and spectral
domains. Such examples call into question the ability of such
global uncertainty principles for graph signals to accurately
describe phenomena in inhomogeneous graphs. This is the
primary motivation for our investigation into local uncer-
tainty principles in Section VI. However, before getting
there, we consider global uncertainty principles from the
third family of uncertainty principles described in Section I
that bound the concentration of the analysis coefficients of
a graph signal in a time-frequency transform domain.

I V . GRAPH S IGNAL PROCESS ING
OPERATORS AND D ICT IONAR IES

As mentioned in Section I, uncertainty principles can
inform dictionary design. In the next section, we present
uncertainty principles characterizing the concentration of
the analysis coefficients of graph signals in different trans-
form domains. We focus on three different classes of dic-
tionaries for graph signal analysis: (i) frames, (ii) localized
spectral graph filter frames, and (iii) graphGabor filter bank
frames. Localized spectral graph filter frames are a subclass
of frames, and graph Gabor filter bank frames are a subclass
of localized spectral graph filter frames. In this section, we
define these different classes of dictionaries, and highlight
some of their mathematical properties. Note that our nota-
tion uses dictionary atoms that are double indexed by i and
k, but these could be combined into a single index j for the
most general case.

Definition 2 (Frame). A dictionary D = {gi ,k} is a frame
if there exist constants A and B called the lower and upper
frame bounds such that for all f ∈ CN :

A‖ f ‖2
2 ≤

∑
i ,k

|〈 f , gi ,k〉|2 ≤ B‖ f ‖2
2.

If A = B , the frame is said to be a tight frame.

For more properties of frames, see, e.g., [60–62]. Most
of the recently proposed dictionaries for graph signals are
either orthogonal bases (e.g., [6, 15, 20]) , which are a subset
of tight frames, or overcomplete frames (e.g., [13, 22, 23]).

In order to define localized spectral graph filter frames,
we need to first recall one way to generalize the translation
operator to the graph setting.

Definition 3 (Generalized localization/translation opera-
tor on graphs [13, 23]). We localize (or translate) a kernel ĝ
to center vertex i ∈ {1, 2, . . . , N} by applying the localization
operator Ti , whose action is defined as

Ti g (n) =
√

N
N−1∑
�=0

ĝ (λ�)u�(i)u�(n).

Note that this generalized localization operator applies
to a kernel defined in the graph spectral domain. It does not
translate an arbitrary signal defined in the vertex domain to
different regions of the graph, but rather localizes a pattern
defined in the graph spectral domain to be centered at dif-
ferent regions of the graph. The smoothness of the kernel
ĝ (·) to be localized can be used to bound the localization
of the translated kernel around a center vertex i ; i.e., if a
smooth kernel ĝ (·) is localized to center vertex i , then the
magnitude of Ti g (n) decays as the distance between i and n
increases [13, Section 5.2], [23, Section 4.4]. Except for spe-
cial cases such as when G is a circulant graph with μG =

1√
N
and the Laplacian eigenvectors are the discrete Fourier

transform (DFT) basis, the generalized localization oper-
ator of Definition 3 is not isometric. Rather, the following
lemma provides bounds on ||Ti g ||2.
Lemma 1 ([23], Lemma 1). For any g ∈ CN ,

|ĝ (0)| ≤ ||Ti g ||2 ≤
√

Nνi ||ĝ ||2 ≤
√

NμG ||ĝ ||2, (11)

which yields the following upper bound on the operator norm
of Ti :

||Ti ||op = sup
g∈CN

||Ti g ||2
||ĝ ||2 ≤

√
Nνi ≤

√
NμG ,

where νi = max� |u�(i)|.
It is interesting to note that although the norm is not pre-

served when a kernel is localized on an arbitrary graph, it is
preserved on average when translated to separately to every
vertex on the graph:

1

N

N∑
i=1

‖Ti g‖2
2 =

N∑
i=1

N−1∑
�=0

∣∣ĝ (λ�)ū�(i)
∣∣2

=
N−1∑
�=0

∣∣ĝ (λ�)
∣∣2 N∑

i=1

|ū�(i)|2 = ‖ĝ‖2
2. (12)

The following example presents more precise insights on
the interplay between the localization operator, the graph
structure, and the concentration of localized functions.
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Fig. 7. The heat kernel ĝ (λ�) = e−10(λ�/λmax) (upper left), and the norms of the localized heat kernels, {||Ti g ||2}i=1,2,...,N , on various graphs. For each graph and
each center node i , the color of vertex i is proportional to the value of ‖Ti g‖2. Within each graph, nodes i that are relatively less connected to their neighborhood
seem to yield a larger norm ‖Ti g‖2.

Example 4. Figure 7 illustrates the effect of the graph struc-
ture on the norms of localized functions. We take the kernel
to be localized to be a heat kernel of the form ĝ (λ�) = e−τλ� ,
for some constant τ > 0. We localize the kernel ĝ to be cen-
tered at each vertex i of the graph with the operator Ti ,
and we compute and plot their �2-norms ‖Ti g‖2. The figure
shows that when a center node i and its surrounding vertices
are relatively weakly connected, the �2-norm of the localized
heat kernel is large, and when the nodes are relatively well
connected, the norm is smaller. Therefore, the norm of the
localized heat kernel may be seen as a measure of vertex cen-
trality.1 Moreover, in the case of the heat kernel, we can relate
the �2-norm of Ti g to its concentration s1(T1g ). Localized
heat kernels are comprised entirely of non-negative compo-
nents; i.e., Ti g (n) ≥ 0 for all i and n. This property comes
from (i) the fact that Ti g (n) = (ĝ (L))in (see [13]), and (ii)
the non-trivial property that the entries of ĝ (L) are always
non-negative for the heat kernel [63]. Since Ti g (n) ≥ 0 for all
i and n, we have

‖Ti g‖1 =
N∑

n=1

Ti g (n) =
√

Nĝ (0) =
√

N , (13)

where the second equality follows from [23, Corollary 1]. Thus,
recalling that a large value for s1(Ti g ) means that Ti g is con-
centrated, we can combine (11) and (13) to derive an upper
bound on the concentration of Ti g :

s1(Ti g ) = ||Ti g ||2
||Ti g ||1 = ||Ti g ||2√

N
≤ νi ||ĝ ||2.

1In fact, the square norm of the localized heat kernel at vertex i is, up
to constants, the average diffusion distance from i to all other vertices. It is
therefore a genuine measure of centrality.

Thus, ||Ti g ||2 serves as a measure of concentration, and
according to the numerical experiments of Fig. 7, localized
heat kernels centered on the relatively well-connected regions
of a graph tend to be less concentrated than the ones centered
on relatively less well-connected areas. Intuitively, the values
of the localized heat kernels can be linked to the diffusion of a
unit of energy from the center vertex to surrounding vertices
over a fixed time. In the well-connected regions of the graph,
energy diffuses faster, making the localized heat kernels less
concentrated.

The main class of dictionaries for graph signals that we
consider is localized spectral graph filter frames.

Definition 4 (Localized spectral graph filter frame). Let
g = {ĝ0(·), ĝ1(·), . . . , ĝ K−1(·)} be a sequence of kernels (or
filters), where each ĝk : σ(L) → C is a function defined on
the graph Laplacian spectrum σ(L) of a graph G. Define
the quantity G(λ) := ∑K−1

k=0 |ĝk(λ�)|2. Then Dg = {gi ,k} =
{Ti gk} is a localized spectral graph filter dictionary, and it
forms a frame if G(λ) > 0 for all λ ∈ σ(L).

In practice, each filter ĝk(·) is often defined as a contin-
uous function over the interval [0, λmax] and then applied
to the discrete set of eigenvalues in σ(L). The following
lemma characterizes the frame bounds for a localized spec-
tral graph filter frame.

Lemma 2 ([22], Lemma 1). Let Dg = {gi ,k} = {Ti gk}
be a localized spectral graph filter frame of atoms on
a graph G generated from the sequence of filters g =
{ĝ0(·), ĝ1(·), . . . , ĝ K−1(·)}. The lower and upper frame
bounds for Dg are given by A = N · minλ∈σ(L) G(λ) and
B = N · maxλ∈σ(L) G(λ), respectively. If G(λ) is constant
over σ(L), thenDg is a tight frame.
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Examples of localized spectral graph filter frames include
the spectral graph wavelets of [13], the Meyer-like tight
graph wavelet frames of [16, 64], the spectrum-adapted
wavelets and vertex-frequency frames of [22], and the
learned parametric dictionaries of [65]. The dictionary con-
structions in [13, 22] choose the filters so that their energies
are localized in different spectral bands. Different choices
of filters lead to different tilings of the vertex-frequency
space, and can for example lead to wavelet-like frames or
vertex-frequency frames (analogous to classical windowed
Fourier frames). The frame condition that G(λ) > 0 for all
λ ∈ σ(L) ensures that these filters cover the entire spec-
trum, so that no band of information is lost during analysis
and reconstruction.

In this paper, in order to generalize classical windowed
Fourier frames, we often use a localized graph spectral fil-
ter bank where the kernels are uniform translates, which we
refer to as a graph Gabor filter bank.

Definition 5 (Graph Gabor filter bank). When the K ker-
nels used to generate the localized graph spectral filter frame
are uniform translates of each other2, we refer to the result-
ing dictionary as a graph Gabor filter bank or a graph Gabor
filter frame. If we use the warping technique of [22] on these
uniform translates3, we refer to the resulting dictionary as a
spectrum-adapted graph Gabor filter frame.

Graph Gabor filter banks are generalizations of the short
time Fourier transform. When ĝ is smooth, the atoms
are localized in the vertex domain [23, Theorem 1 and
Corollary 2]. In this contribution, for all graph Gabor fil-
ter frames, we use the following mother window: ĝ (t) =
sin
(
0.5π cos(π(t − 0.5))2

)
, for t ∈ [−0.5, 0.5] and 0 else-

where. A few desirable properties of this choice of window
are (a) it is perfectly localized in the spectral domain in
[−0.5, 0.5], (b) it is smooth enough to be approximated by a
low order polynomial, and (c) the frame formed by uniform
translates (with an even overlap) is tight.

Definition 6 (Analysis operator). The analysis operator of
a dictionaryD = {gi ,k} to a signal f ∈ CN is given by

AD f (i , k) = 〈 f , gi ,k〉.

When D = {gi ,k} = {Ti gk} is a localized spectral graph fil-
ter frame, we denote it with Ag. In all cases, we view AD
as a function from CN to C|D|, and thus we use ||AD f ||p

(or ||Ag f ||p) to denote a vector norm of the analysis
coefficients.

2The kernels are defined as ĝk(λ) = ĝ (λ − ka), where a is the spacing
between two kernels.

3Warping consists in modifying the frequency axis with a continuous
function w: gk(λ) = g (w(λ) − ka).

V . GLOBAL UNCERTA INTY
PR INC IPLES BOUND ING THE
CONCENTRAT ION OF THE
ANALYS IS COEFF IC I ENTS OF A
GRAPH S IGNAL IN A TRANSFORM
DOMA IN

Lieb’s uncertainty principle in the continuous one-
dimensional setting [48] states that the cross-ambiguity
function of a signal cannot be too concentrated in the time-
frequency plane. In this section, we transpose these state-
ments to the discrete periodic setting, and then generalize
them to frames and signals on graphs.

A) Discrete version of Lieb’s uncertainty
principle
The following discrete version of Lieb’s uncertainty princi-
ple is partially presented in [66, Proposition 2].

Theorem 3. Define the discrete Fourier transform (DFT) as

f̂ [k] = 1√
N

N−1∑
n=0

f [n] exp

(−i2πkn

N

)
,

and the discrete windowed Fourier transform (or discrete
cross-ambiguity function) as (see, e.g., [37, Section 4.2.3])

ADDWF T f [u, k] =
N−1∑
n=0

f [n]g [n − u] exp

(−i2πkn

N

)
.

For two discrete signals of period N , we have for 2 ≤ p < ∞

‖ADDWF T f ‖p =
(

N∑
u=1

N−1∑
k=0

|ADDWF T f [u, k]|p

) 1
p

≤ N
1
p ‖ f ‖2‖g‖2, (14)

and for 1 ≤ p ≤ 2

‖ADDWF T f ‖p =
(

N∑
u=1

N−1∑
k=0

|ADDWF T f [u, k]|p

) 1
p

≥ N1/p‖ f ‖2‖g‖2. (15)

These inequalities are proven in the Appendix. Note
that the minimizers of this uncertainty principle are the
so-called “picket fence” signals, trains of regularly spaced
diracs.

B) Generalization of Lieb’s uncertainty
principle to frames
Theorem 4. LetD = {gi ,k} be a frame of atoms in CN , with
lower and upper frame bounds A and B , respectively. For any
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signal f ∈ CN and any p ≥ 2, we have

‖AD f ‖p ≤ B1/p

(
max

i ,k
‖gi ,k‖2

)1−(2/p)

‖ f ‖2. (16)

For any signal f ∈ CN and any 1 ≤ p ≤ 2, we have

‖AD f ‖p ≥ A1/p

(
max

i ,k
‖gi ,k‖2

)1−(2/p)

‖ f ‖2. (17)

Combining (16) and (17), for any p ∈ [1, ∞], we have

s p(AD f ) ≤ Bmin{(1/2), (1/p)}

Amax{1/2, 1/p}

(
max

i ,k
‖gi ,k‖2

)|1−(2/p)|
. (18)

WhenD is a tight frame with frame bound A, (18) reduces to

s p(AD f ) ≤ A
−
∣∣∣(1/2) − (1/p)

∣∣∣
(max

i ,k
‖gi ,k‖2)

|1−(2/p)|.

A proof is included in the Appendix. The proof of
Theorem 3 in the Appendix also demonstrates that this
uncertainty principle is indeed a generalization of the dis-
crete periodic variant of Lieb’s uncertainty principle.

C) Lieb’s uncertainty principle for localized
spectral graph filter frames
Lemma 1 implies that

max
i ,k

||Ti gk||2 ≤
√

NμG max
k

‖ĝk‖2.

Therefore the following is a corollary to Theorem 4 for the
case of localized spectral graph filter frames.

Theorem 5. Let Dg = {gi ,k} = {Ti gk} be a localized spec-
tral graph filter frame of atoms on a graph G generated from
the sequence of filters g = {ĝ0(·), ĝ1(·), . . . , ĝ K−1(·)}. For any
signal f ∈ CN on G and for any p ∈ [1, ∞], we have

s p(Ag f ) ≤ Bmin{(1/2), (1/p)}

Amax{(1/2), (1/p)}

(
max

i ,k
‖gi ,k‖2

)|1−(2/p)|

≤ Bmin{(1/2), (1/p)}

Amax{(1/2), (1/p)}

(√
NμG max

k
‖ĝk‖2

)|1−(2/p)|
,

(19)

where A = minλ∈σ(L) G(λ) is the lower frame bound and
B = maxλ∈σ(L) G(λ) is the upper frame bound. When D is
a tight frame with frame bound A, (19) reduces to

s p(Ag f ) ≤ A−|(1/2)−(1/p)|
(

max
i ,k

‖gi ,k‖2

)|1−(2/p)|

≤ A−|(1/2)−(1/p)|
(√

NμG max
k

‖ĝk‖2

)|1−(2/p)|
.

(20)

The bounds depend on the frame bounds A and B ,
which are fixed with the design of the filter bank. However,

in the tight frame case, we can choose the filters in a man-
ner such that the bound A does not depend on the graph
structure. For example, if the ĝk are defined continuously
on the interval [0, λmax] and

∑M−1
k=0

∣∣ĝk(λ)
∣∣2 is equal to a

constant for all λ, A is not affected by a change in the val-
ues of the Laplacian eigenvalues, e.g., from a change in the
graph structure. The second quantity,maxi ,k ‖gi ,k‖2, reveals
the influence of the graph. The maximum �2-norm of the
atoms depends on the filter design, but also, as discussed
previously in Section IV, on the graph topology. However,
the bound is not local as it depends on themaximum ‖gi ,k‖2

over all localizations i and filters k, which takes into account
the entire graph structure.

The second bounds in (19) and (20) also suggest how
the filters can be designed so as to improve the uncertainty
bound. The quantity ‖ĝk‖2 = (

∑
� |ĝk(λ�)|2) depends on

the distribution of the eigenvaluesλ�, and, as a consequence,
on the graph structure. However, the distribution of the
eigenvalues can be taken into account when designing the
filters in order to reduce or cancel this dependency [22].

In the following example, we compute the first uncer-
tainty bound in (20) for different types of graphs and fil-
ters. It provides some insight on the influence of the graph
topology and filter bank design on the uncertainty bound.

Example 5. We use the techniques of [22] to construct four
tight localized spectral graph filter frames for each of eight dif-
ferent graphs. Figure 8 shows an examples of the four sets of
filters for a 64 node sensor network. For each graph, two of the

(a) (b)

(c) (d)

Fig. 8. Four different filter bank designs of [22], shown for a random sensor
network with 64 nodes. Each colored curve is a filter defined continuously on
[0, λmax], and each filter bank has 16 such filters. They are designed such that
G(λ) = 1 for all λ (black line), and thus all four designs yield tight localized
spectral graph filter frames. The frame bounds here are A = B = N .
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Fig. 9. Graph Gabor transform of four different signals fτ = T1hτ , with each row corresponding to a signal with a different value of the parameter τ . Each of the
signals is a kernel localized to vertex 1, with the kernel to be localized equal to ĥτ (λ) = e−(λ2/λ2

max)τ
2 . The underlying graph is a random sensor network of 100

vertices. First column: the kernel hτ (λ) is shown in red and the localized kernel f̂τ is shown in blue, both in the graph spectral domain. Second column: the signal
fτ in the vertex domain (the center vertex 1 is circled). Third column: |AgT1hτ (i , k)|, the absolute value of the Gabor transform coefficients for each vertex i and
each of the 20 frequency bands k. Fourth column: since it is hard to see where on the graph the transform coefficients are concentrated when the nodes are placed
on a line in the third column, we display the value

∑19
k=0 |AgT1hτ (i , k)| on each vertex i in the network. This figure illustrates the tradeoff between the vertex and

the frequency concentration.

sets of filters (b and d in Fig. 8) are adapted via warping to the
distribution of the graph Laplacian eigenvalues so that each
filter contains an appropriate number of eigenvalues (roughly
equal in the case of translates and roughly logarithmic in the
case of wavelets). Thewarping avoids filters containing zero or
very few eigenvalues at which the filter has a non-zero value.
These tight frames are designed such that A = N , and thus
Theorem 5 yields

s∞(Ag f ) = ‖Ag f ‖∞
‖Ag f ‖2

≤ N−(1/2) max
i ,k

‖Ti gk‖2

≤ μG max
k

||ĝk||2.

Table 1 displays the values of the first concentration bound
maxi ,k ‖Ti gk‖2 for each graph and frame pair. The uncer-
tainty bound is largest when the graph is far from a regular
lattice (ring or path). As expected, the worst cases are for
highly inhomogeneous graphs like the comet graph or a mod-
ified path graph with one isolated vertex. Note also that the
coherence μG is very large (0.90) for the random sensor net-
work. Because of randomness, there is a high probability that

one node will be isolated, hence creating a large coherence.
The choice of the filter bank may also decrease or increase the
bound, depending on the graph.

The uncertainty principle in Theorem 5 bounds the con-
centration of the graph Gabor transform coefficients. In the
next example, we examine these coefficients for a series of
signals with different vertex and spectral domain localiza-
tion properties.

Example 6 (Concentration of the graph Gabor coeffi-
cients for signalswith varying vertex and spectral domain
concentrations.). In Fig. 9, we analyze a series of signals on
a random sensor network of 100 vertices. Each signal is cre-
ated by localizing a kernel ĥτ (λ) = e−(λ2/λ2

max)τ
2 to be centered

at vertex 1 (circled in black). To generate the four different
signals, we vary the value of the parameter τ in the heat ker-
nel. We plot the four localized kernels in the graph spectral
and vertex domains in the first two columns, respectively. The
more we “compress” ĥ in the graph spectral domain (i.e. we
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reduce its spectral spreading by increasing τ ), the less con-
centrated the localized atom becomes in the vertex domain.
The joint vertex-frequency representation |AgT1hτ (i , k)| of
each signal is shown in the third column, which illustrates the
trade-off between concentration in the vertex and the spectral
domains. The concentration of these graph Gabor transform
coefficients is the quantity bounded by the uncertainty prin-
ciple presented in Theorem 5. In the last row of the Fig. 9,
τ = ∞ which leads to a Kronecker delta for the kernel and a
constant on the vertex domain. On the contrary, when the ker-
nel is constant, with τ = 0 (top row), the energy of the graph
Gabor coefficients stays concentrated around one vertex but
spreads along all frequencies.

V I . LOCAL UNCERTA INTY
PR INC IPLES FOR S IGNALS ON
GRAPHS

In the previous section, we defined a global bound for the
concentration of the localized spectral graph filter frame
analysis coefficients. In the classical setting, such a global
bound is also local in the sense that each part of the domain
has the same structure, due to the regularity of the underly-
ing domain. However, this is not the case for the graph set-
ting where the domain is irregular. Example 1 shows that a
“bad” structure (a weakly connected node) in a small region
of the graph reduces the uncertainty bound even if the rest
of the graph is well behaved. Functions localized near the
weakly connected node can be highly concentrated in both
the vertex and frequency domains, whereas functions local-
ized away from it are barely impacted. Importantly, theworst
case determines the global uncertainty bound. As another
example, suppose one has two graphs G 1 and G 2 with two
different structures, each of them having a different uncer-
tainty bound. The uncertainty bound for the graph G that is
the union of these two disconnected graphs is theminimum
of the uncertainty bounds of the two disconnected graphs,
which is suboptimal for one of the two graphs.

In this section, we ask the following questions. Where
does this worse case happen? Can we find a local principle
that more accurately characterizes the uncertainty in other
parts of the graph? In order to answer this question, we
investigate the concentration of the analysis coefficients of
the frame atoms, which are localized signals in the vertex
domain. This technique is used in the classical continuous
case by Lieb [48], who defines the (cross-) ambiguity func-
tion, the STFT of a short-time Fourier atom. The result is
a joint time-frequency uncertainty principle that does not
depend on the localization in time or in frequency of the
analyzed atom.

Thus, we start by generalizing to the graph setting the
definition of ambiguity (or cross-ambiguity) functions from
time-frequency analysis of one-dimensional signals.

Definition 7 (Ambiguity function). The ambiguity func-
tion of a localized spectral frame D = {gi ,k} = {Ti gk} is

defined as:

Ag(i0, k0, i , k) = AgTi0 gk0(i , k) = 〈Ti0 gk0 , Ti gk〉

When the kernels {ĝk}k=0,1,...,M−1 are appropriately
warped uniform translates, the operator Ag becomes a
generalization of the short-time Fourier transform. Addi-
tionally, the ambiguity function assesses the degree of
coherence (linear dependence) between the atoms Ti0 gk0

and Ti gk . In the following, we use this ambiguity function
to probe locally the structure of the graph, and derive local
uncertainty principles.

A) Local uncertainty principle
In order to probe the local uncertainty of a graph, we take
a set of localized kernels in the graph spectral domain and
center them at different local regions of the graph in the
vertex domain. The atoms resulting from this construction
are jointly localized in both the vertex and graph spectral
domains, where “localized” means that the values of the
function are zero or close to zero away from some refer-
ence point. By ensuring that the atoms are localized or have
support within a small region of the graph, we focus on
the properties of the graph in that region. In order to get
a local uncertainty principle, we apply the frame operator
to these localized atoms, and analyze the concentration of
the resulting coefficients. In doing so, we develop an uncer-
tainty principle relating these concentrations to the local
graph structure.

To prepare for the theorem, we first state a lemma that
gives a hint to how the scalar product of two localized func-
tions depends on the graph structure and properties. In the
following, we multiply two kernels ĝ and ĥ in the graph
spectral domain. For notation, we represent the product of
these two kernels in vertex domain as g · h.

Lemma 3. For two kernels ĝ , ĥ and two nodes i , j , the
localization operator satisfies

〈Ti g , Tj h〉 =
√

NTi (g · h)( j), (21)

and (∑
i

∣∣〈Ti g , Tj h〉∣∣p )1/p

=
√

N‖Tj (g · h)‖p . (22)

Equation (21) shows more clearly the conditions on the
kernels and nodes under which the scalar product is small.
Let us take two examples. First, suppose ĝ and ĥ have a com-
pact support on the spectrum and do not overlap (kernels
localized in different places), then ĝ · ĥ is zero everywhere
on the spectrum, and therefore the scalar product on the
left-hand side of (21) is also equal to zero. Second, assume
i and j are distant from each other. Then |Ti (g · h)( j)| is
small if ĝ and ĥ are reasonably smooth. In other words,
the two atoms Ti g and Tj h must be localized both in the
same area of graph in the vertex domain and the same spec-
tral region in order for the scalar product to be large. This
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localization depends on the atoms, but also on the graph
structure.

Proof of Lemma 3:

〈Ti g , Tj h〉

= 〈T̂i g , T̂j h〉 = N
N−1∑
�=0

ĝ (λ�)u�(i)
¯̂h(λ�)ū�( j)

= N
N−1∑
�=0

(ĝ · ĥ)(λ�)u�(i)ū�( j) =
√

NTi (g · h)( j).

Moreover, a direct computation shows(∑
i

∣∣〈Ti g , Tj h〉∣∣p )1/p

=
(∑

i

∣∣∣√NTj (g · h)(i)
∣∣∣p )1/p

= N1/2‖Tj (g · h)‖p . �

The inequalities in the following theorem constitute a
local uncertainty principle. The local bound depends on the
localization of the atom Ti0 gk0 in the vertex and spectral
domains. The center vertex i0 and kernel ĝk0 can be chosen
to be any vertex and kernel; however, the locality property
of the uncertainty principle appears when Ti0 gk0 is concen-
trated around node i0 in the vertex domain and around a
small portion of the spectrum in the graph spectral domain.
We again measure the concentration with �p-norms.

Theorem6 (Local uncertainty). Let {Ti gk}{i∈[1,N],k∈[0,M−1]}
be a localized spectral graph filter frame with lower frame
bound Aand upper frame bound B . For any i0 ∈ [1, N], k0 ∈
[0, M − 1] such that ‖Ti0 gk0‖2 > 0, the quantity

‖AgTi0 gk0‖p =
( M∑

k=1

N∑
i=1

∣∣〈Ti gk , Ti0 gk0〉
∣∣p )1/p

=
√

N

( M∑
k=1

‖Ti0(gk0 · gk)‖p
p

)1/p

, (23)

satisfies for p ∈ [1, ∞]

s p(AgTi0 gk0)

≤
Bmin{(1/p), 1−(1/p)}‖Tĩi0,k0

gk̃i0,k0
‖|1−(2/p)|

2

A1/2

≤
Bmin{(1/p), 1−(1/p)}(

√
Nνĩi0,k0

‖gk̃i0,k0
‖2)

|1−(2/p)|

A1/2
, (24)

where νi is defined in Lemma 1,

k̃i0,k0 = arg max
k

‖Ti0(gk0 · gk)‖∞, and

ĩi0,k0 = arg max
i

∣∣∣Ti0(gk0 · gk̃i0,k0
)(i)

∣∣∣ .
The bound in (24) is local, because we get a different

bound for each i0, k0 pair. For each such pair, the bound

depends on the quantities ĩi0,k0 , k̃i0,k0 , which are maximizers
over a set of all vertices and kernels, respectively; however,
as we discuss in Example 7 below, ĩi0,k0 is typically close to i0,
and k̃i0,k0 is typically close to k0. For this reason, this bound
typically depends only on local quantities.

Proof of Theorem 6: For notational brevity in this proof,
we omit the indices i0, k0 for the quantities ĩ and k̃. First,
note that

‖AgTi0 gk0‖∞ = max
k

√
N‖Ti0(gk0 · gk)‖∞

≤ ‖Tĩ gk̃‖2‖Ti0 gk0‖2,

where k̃i0,k0 = arg maxk ‖Ti0(gk0 · gk)‖∞ and ĩi0,k0 =
arg mini

∣∣Ti0(gk0 · gk̃)(i)
∣∣. Let us then interpolate the two

following expressions:

‖AgTi0 gk0‖2 ≤ B
1
2 ‖Ti0 gk0‖2 (25)

and ‖AgTi0 gk0‖∞ ≤ ‖Tĩ gk̃‖2‖Ti0 gk0‖2. (26)

We use the Riesz–Thorin Theorem (Theorem 8) with
p1 = q1 = p2 = 2, q2 = ∞, Mp = B

1
2 and Mq = ‖Tĩ gk̃‖2.

Note that Ag is a bounded operator from the Hilbert
space spanned by Ti0 gk0 (isomorphic to a one-dimensional
Hilbert space) to the one spanned by {Ti0 gk0}i ,k . We take
t = 2/r2 and find r1 = 2, leading to

‖AgTi0 gk0‖r2 ≤ B1/r2‖Tĩ gk̃‖1−(2/r2)
2 ‖Ti0 gk0‖2.

Since Ag is a frame, we also have ‖AgTi0 gk0‖2 ≥ A
1
2 ‖Ti0

gk0‖2, which yields:

‖AgTi0 gk0‖2

||AgTi0 gk0‖p
≥ A1/2

B
1
p ‖Tĩ gk̃‖1−(2/p)

2

.

Finally, thanks toHölder’s inequality, we have for p ≤ 2 and
(1/p) + (1/q) = 1

‖AgTi0 gk0‖2

‖AgTi0 gk0‖p
≤ ‖AgTi0 gk0‖q

‖AgTi0 gk0‖2

≤ B1/q‖Tĩ gk̃‖1−(2/p)
2

A1/2

≤ B1−(1/p)‖Tĩ gk̃‖(2/p)−1
2

A
1
2

≤ B1−(1/p)(
√

Nνĩ‖gk̃‖2)
(2/p)−1

A1/2
. �

The next corollary shows that in many cases, the local
uncertainty inequality (24) is sharp (becomes an equality).
To obtain this, we require that the frame Ag is tight and
|〈Ti gk , Ti0 gk0〉| is maximized when k = k0 and i = i0.

Corollary 2. Under the assumptions of Theorem 6 and,
assuming additionally

(i) Ag is a tight frame with frame-bound A,
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(ii) k0 = arg maxk ‖Ti0(gk · gk0)‖∞, and
(iii) i0 = arg max j |Ti0 g

2
k0
( j)|,

we have

s∞(AgTi0 gk0) = ‖AgTi0 gk0‖∞
‖AgTi0 gk0‖2

= ‖Ti0 gk0‖2

A
1
2

. (27)

Proof : The proof follows directly from the two following
equalities. For the denominators, since the frame is tight, we
have:

‖AgTi0 gk0‖2 = A
1
2 ‖Ti0 gk0‖2.

For the numerators, we have

‖AgTi0 gk0‖∞ = max
i ,k

|〈Ti gk , Ti0 gk0〉|

=
√

N max
i ,k

|Ti0(gk · gk0)(i)| (28)

=
√

N max
k

‖Ti0(gk · gk0)‖∞

=
√

N‖Ti0 g
2
k0
‖∞ (29)

=
√

N|Ti0 g
2
k0
(i0)| (30)

= 〈Ti0 gk0 , Ti0 gk0〉 (31)

= ‖Ti0 gk0‖2
2,

where (28) and (31) follow from (21), (29) follows from the
second hypothesis, and (30) follows from the third hypoth-
esis. �

Corollary 3. Under the assumptions of Theorem 6, we have

s∞(AgTi0 gk0) = ‖AgTi0 gk0‖∞
‖AgTi0 gk0‖2

≥ ‖Ti0 gk0‖2

B
1
2

, (32)

which is a lower bound on the concentration measure.

Proof : We have

‖AgTi0 gk0‖∞ = max
i ,k

|〈Ti gk , Ti0 gk0〉|

≥ ∣∣〈Ti0 gk0 , Ti0 gk0〉
∣∣ = ‖Ti0 gk0‖2

2. (33)

Additionally, because {Ti gk}i=1,2,...,N ;k=0,1,...,M−1 is a frame,
we have

‖AgTi0 gk0‖2 ≤ B1/2‖Ti0 gk0‖2. (34)

Combining (33) and (34) yields the desired inequality in
(32). �

Together, Theorem 6 and Corollary 3 yield lower and
upper bounds on the local sparsity levels s∞(AgTi0 gk0):

‖Tĩ gk̃‖2

A
1
2

≥ s∞(AgTi0 gk0)

= ‖AgTi0 gk0‖∞
‖AgTi0 gk0‖2

≥ ‖Ti0 gk0‖2

B
1
2

.

B) Illustrative examples
In order to better understand this local uncertainty princi-
ple, we illustrate it with some examples.

Example 7 (Local uncertainty on a sensor network). Let
us concentrate on the case where p = ∞. Theorem 6 tells
us that

‖AgTi0 gk0‖∞
‖AgTi0 gk0‖2

≤
‖Tĩi0,k0

gk̃i0,k0
‖2

A
1
2

≤
(
√

Nνĩi0,k0
‖gk̃i0,k0

‖2)

A
1
2

, (35)

meaning that the concentration of AgTi0 gk0 is limited by
1/‖Tĩ gk̃i0,k0

‖2. One question is to what extent this quantity
is local or reflects the local behavior of the graph. As a general
illustration for this discussion, we present in Fig. 10 quantities
related to the local uncertainty of a random sensor network of
100 nodes evaluated for two different values of k (one in each
column) and all nodes i .

The first row (not counting the top figure) shows the local
sparsity levels ofAgTi0 gk0 in terms of the �∞-norm (left hand
side of (35)) at each node of the graph. The second row
shows the values of the upper bound on local sparsity for
each node of the graph (middle term of (35)). The values of
both rows are strikingly close. Note that for this type of graph,
local sparsity/concentration is lowest where the nodes are well
connected.

We focus now on the values of k̃ and ĩ as they are cru-
cial in Theorem 6. We also give insights that explain when a
tight bound is obtained, as stated in Corollary 2. There is not
a simple way to determine the value of k̃, because it depends
not only on the node i0 and the filters ĝk , but also on the graph
Fourier basis. However, the definition k̃ = argmaxk‖Ti0(gk ·
gk0)‖∞ implies that the two kernels ĝ k̃ and ĝk0 have to overlap
“as much as possible” in the graph Fourier domain in order
to maximize the infinity-norm. In the case of a Gabor filter
bank like the one presented in the first line of Fig. 10, k0 = k̃
for most of the nodes. This happens because the filters ĝk and
ĝk0 do not overlap much if k �= k0, i.e when

‖ĝk0
2‖2

2 =
∑

�

(
ĝk0

2(λ�)
)2

�
∑

�

(
ĝk0(λ�)ĝk(λ�)

)2 = ‖ĝk · ĝk0‖2
2.

In fact, in the case of Fig. 10, k̃ is bounded between k0 − 1
and k0 + 1 because there is no overlap with the other filters.
In Fig. 10, we plot k̃(i) for k0 = 0 and k0 = 1. For the first
filter, we have k̃i0,k0 = k0 for all vertices i0. The second filter
follows the same rule except for two nodes. The isolated node
on the north east is less connected to the rest and there is a
Laplacian eigenvector well localized on it. As a consequence,
the localization on the graph is affected in a counter-intuitive
manner.

Let us now concentrate on the second important variable:
ĩ . Under the assumption that the kernels ĝk are smooth, the
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Fig. 10. Illustration of Theorem 6 and related variables ĩ and k̃ for a random sensor graph of 100 nodes. Top figure: the 8 uniformly translated kernels {ĝk}k
(in 8 different colors) defined on the spectrum and giving a tight frame. Each row corresponds to quantities related to the local uncertainty principle. The first
column concerns the kernel (filter) in blue on the top figure, the second is associated with the orange one. On a sensor graph, the local uncertainty level (inversely
proportional to the local sparsity level plotted here) is far from constant from one node to another or from one frequency band to another.
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energy of localized atoms Ti0 gk reside inside a ball centered at
i0 [23]. Thus, the node j maximizing |Ti0(gk0 gk̃)( j)| cannot
be far from the node i0. Let us define the hop distance hG(i , j)
as the length of the shortest path4 between nodes i and j .
If the kernels ĝk are polynomial functions of order K , the
localization operator Ti0 concentrates all of the energy of Ti0 gk

inside a K -radius ball centered in i0. Since the resulting ker-
nel ĝk0 ĝ k̃ is a polynomial of order 2K , ĩ will be at a distance
of at most of 2K hops from the node i0. In general, ĩ is close
to i0. In fact, the distance hG(i , ĩ) is related to the smoothness
of the kernel ĝk0 ĝ k̃ [23]. To illustrate this effect, we present
in Fig. 11 the average and maximum hop distance hG(i , ĩ). In
this example, we control the concentration of a kernel ĝ with a
dilation parameter a: ĝa(x) = ĝ (ax). Increasing the factor a
compresses the kernel in the Fourier domain and increases the
spread of the localized atoms in the vertex domain. Note that
even for high spectral compression, the hop distance hG(i , ĩ)
remains low. Additionally, we also compute the mean relative
error between ‖Ti g 2‖∞ and |Ti g 2(i)|. This quantity asserts
howwell ‖Ti g‖2

2 estimates ‖Ti g 2‖∞.5 Returning to Fig. 10, the
fourth row shows the hop distance between i0 and ĩ . It never
exceeds 3 for both the first and the second filter, so ĩk0,i0 is close
to i0.

In practice we cannot always determine the values of k̃ and
ĩ , but as we have seen, the quantity B− 1

2 ‖Ti gk0‖2 may still
be a good estimate of the local sparsity level. Row 5 of Fig. 10
shows these estimates, and the last row shows the relative error
between these estimates and the actual local sparsity levels.
We observe that for the first kernel, the estimate gives a suf-
ficiently rough approximation of the local sparsity levels. For
the second kernel, the approximation error is low for most of
the nodes, but not all.

In the next example, we compare the local and global
uncertainty principles on a modified path graph.

Example 8. On a 64 node modified path graph (see Exam-
ple 1 for details), we compute the graph Gabor transform of
the signals f1 = T1g0 and f2 = T64g0. In Fig. 12, we show
the evolution of the graph Gabor transforms of the two sig-
nals with respect to the distance d = 1/W12 from the first
to the second vertex in the graph. As the first node is pulled
away, a localized eigenvector appears centered on the isolated
vertex. Because of this, as this distance increases, the signal
f1 becomes concentrated in both the vertex and graph spec-
tral domains, leading to graph Gabor transform coefficients
that are highly concentrated (see the top right plot in Fig. 12).
However, since the graph modification is local, it does not
drastically affect the graph Gabor transform coefficients of the
signal f2 (middle row of Fig. 12), whose energy is concentrated
on the far end of the path graph.

4A path in a graph is a tuple of vertices (v1, v2, . . . , vp) with the prop-
erty that [vi , vi+p] ∈ E for 1 ≤ i ≤ p − 1. Two nodes vi , v j are connected
by a path if there is exist such tuple with v1 = vi and vp = v j . The length
of a path is defined as the cardinality of the path tuple minus one.

5From Lemma 3, when ‖Ti g 2‖∞ = |Ti g 2(i)|, then ‖Ti g 2‖∞ =
‖Ti g‖2

2.

Fig. 11. Localization experiment using the sensor graph of Fig. 10. The heat
kernel (top) is defined as ĝ (ax) = e− 10·ax

λmax and the wavelet kernel (middle) is
defined as ĝ (ax) = √

40 · ax · e− 40·ax
λmax . For a smooth kernel ĝ , the hop distance

hG between i and ĩ = arg max j |Ti g ( j)| is small.

In Fig. 13, we plot the evolution of the uncertainty bounds
as well as the concentration of the Gabor transform coef-
ficients of f1 and f2. The global uncertainty bound from
Theorem 5 tells us that

s1(Ag f ) ≤ max
i ,k

||Ti gk||2, for any signal f .

The local uncertainty bound from Theorem 6 tells us that

s1(AgTi0 gk0) ≤ ||Tĩi0,k0
gk̃i0,k0

||2, for all i0 and k0.

Thus, we can view the global uncertainty bound as an upper
bound on all of the local uncertainty bounds. In fact the
bumps in the global uncertainty bound in Fig. 13 correspond to
the local bound with i0 = 1 and different frequency bands k0.
We plot the local bounds for i0 = 1 and k0 = 0 and k0 = 2.
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Fig. 12. GraphGabor transforms of f1 = T1g0 and f2 = T64g0 for 5 different distances between vertices 1 and 2 of themodified path graph. The distance d = 1/W12
is the inverse of the weight of the edge connecting the first two vertices in the path. The node 64 is not affected by the change in the graph structure, because its energy
is concentrated on the opposite side of the path graph. The graph Gabor coefficients of f1, however, become highly concentrated as a graph Laplacian eigenvector
becomes localized on vertex 1 as the distance increases. The bottom row shows that as the distance between the first two vertices increases, the atom T1g0 also
converges to a Kronecker delta centered on vertex 1.

Fig. 13. Concentration of the graph Gabor coefficients of f1 = T1g0 and
f2 = T64g0 with respect to the distance between the first two vertices in the
modified path graph, along with the upper bounds on this concentration from
Theorem 5 (global uncertainty) and Theorem 6 (local uncertainty). Each bump
of the global bound corresponds to a local bound of a given spectral band of
node 1. For clarity, we plot only bands ĝ0 and ĝ2 for node 1. For node 64, the
local bound is barely affected by the change in graph structure, and the spar-
sity levels of the graph Gabor transform coefficients of T64g0 also do not change
much.

C) Single kernel analysis
Let us focus on the case where we analyze a single kernel
ĝ . Such an analysis is relevant when we model the signal
as a linear combination of different localizations of a single
kernel:

f (n) =
N∑

i=1

wi Ti g (n)

This model has been proposed in different contributions
[67–69], and has also been used as an interpolation model,
e.g., in [70] and [24, Section V.C]. In this case, we could
ask the following question. If we measure the signal value
at node j , how much information do we get about w j ? We

can answer this by looking at the overlap between the atom
Tj g and the other atoms.When Tj g has a large overlap with
the other atoms, the value of f ( j) does not tell us much
about w j . However, in the case where Tj g has a very small
overlap with the other atoms (an isolated node for exam-
ple), knowing f ( j) gives an excellent approximation for the
value ofw j . The following theorem uses the sparsity level of
g (L)Tj g to analyze the overlap between the atom Tj g and
the other atoms.

Theorem 7. For a kernel ĝ , the overlap between the atom
localized to center vertex j and the other atoms satisfies

Op( j) = (
∑

i

∣∣〈Ti g , Tj g 〉∣∣p)1/p

(
∑

i

∣∣〈Ti g , Tj g 〉∣∣2)1/2

= ||g (L)Tj g‖p

||g (L)Tj g‖2
= ‖Tj g 2‖p

‖Tj g 2‖2

Proof : This result follows directly from the application
of (22) in Lemma 3. �

D) Application: non-uniform sampling
Example 9 (Non-uniform sampling for graph inpaint-
ing). In order to motivate Theorem 7 from a practical signal
processing point of view, we use it to optimize the sampling
of a signal over a graph. To asses the quality of the sampling,
we solve a small inpainting problem where only a part of a
signal is measured and the goal is to reconstruct the entire
signal. Assuming that the signal varies smoothly in the vertex
domain, we can formulate the inverse problem as:

arg min
x

xTLx s. t. y = Mx, (36)

where y is the observed signal, M the inpainting masking
operator and xTLx the graph Tikhonov regularizer (L being
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Fig. 14. Comparison of random uniform sampling and random non-uniform sampling according to a distribution based on the local sparsity values. Top row:
(a)-(b) The random non-uniform sampling distribution is proportional to ‖Ti g 2‖2 (for different values of i), which is shown here for sensor and community graphs
with 300 vertices. (c)-(d) the errors resulting from using the different sampling methods on each graph, with the reconstruction in (36). Bottom row: an example
of a single inpainting experiment. (e) the smooth signal, (f)-(g) the locations selected randomly according to the uniform and non-uniform sampling distributions,
(h)-(i) the reconstructions resulting from the two different sets of samples.

the Laplacian). In order to generate the original signal, we
filter Gaussian noise on the graph with a low pass kernel ĥ.
The frequency content of the resulting signal will be close to
the shape of the filter ĥ. For this example, we use the low pass
kernel ĥ(x) = 1/(1 + (100/λmax)x) to generate the smooth
signal.

For a given number of measurements, the traditional idea
is to randomly sample the graph. Under that strategy, the
measurements are distributed across the network. Alterna-
tively, we can use our local uncertainty principles to create an
adapted mask. The intuitive idea that nodes with less uncer-
tainty (higher local sparsity values) should be sampled with
higher probability because their value can be inferred less eas-
ily from other nodes. Another way to picture this fact is the
following. Imagine that we want to infer a quantity over a
random sensor network. In the more densely populated parts
of the network, the measurements are more correlated and
redundant. As result, a lower sampling rate is necessary. On
the contrary, in the parts where there are fewer sensors, the
information has less redundancy and a higher sampling rate is
necessary. The heat kernel ĝ (x) = e−τ x is a convenient choice
to probe the local uncertainty of a graph, because ĝ 2(x) =
e−2τ x is also a heat kernel, resulting in a sparsity level depend-
ing only on ‖Tj g 2‖2. Indeed we have ‖Tj g 2‖1 = √

N . The
local uncertainty bound of Theorem 7 becomes:

O1( j) = ‖Tj g 2‖1

‖Tj g 2‖2
=

√
N

‖Tj g 2‖2
.

Based on this measure, we design a second random sam-
pled mask with a probability proportional to ‖Ti g 2‖2; that
is, the higher the overlap level at vertex j , the smaller the

probability that vertex j is chosen as a sampling point, and
vice-versa. For each sampling ratio, we performed 100 exper-
iments and averaged the results. For each experiment, we also
randomly generated new graphs. The experiment was car-
ried out using open-source code: the UNLocBoX [71] and the
GSPBox [72]. Figure 14 presents the result of this experiment
for a sensor graph and a community graph. In the sensor
graph, we observe that our localmeasure of uncertainty varies
smoothly on the graph and is higher in the more dense part.
Thus, the likelihood of sampling poorly connected vertices is
higher than the likelihood of sampling well connected vertices.
In the community graph, we observe that the uncertainty is
highly related to the size of the community. The larger the
community, the larger the uncertainty (or, equivalently, the
smaller the local sparsity value). In both cases, the adapted,
non-uniform random sampling performs better than random
uniform sampling.

Other works are also starting to use uncertainty prin-
ciples to develop sampling theory for signals on graphs.
In [73] and in [74, Algorithm 2], the cumulative coherence
is used to optimize the sampling distribution. This can be
seen as sampling proportionally to ‖Ti g‖2

2, where ĝ is a spe-
cific rectangular kernel, in order tominimize the cumulative
coherence of band-limited signals. In [42], Tsitsvero et al.
make a link between uncertainty and sampling to obtain
a non-probabilistic sampling method. Non-uniform ran-
dom sampling is only an illustrative example in this paper.
However, for the curious reader, they exists many contri-
butions addressing the slightly different problem of active
sampling [75, 76].
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V I I . CONCLUS ION

The global uncertainty principles discussed in Section III
may be less informative when applied to signals residing
on inhomogeneous graphs, because the structure of a spe-
cific area of the graph can affect global quantities such as
the coherence μG , which play a key role in the uncertainty
bounds. Our main contribution was to suggest a new way
of considering uncertainty by incorporating a notion of
locality; specifically, we focused on the concentration of the
analysis coefficients under a linear transform whose dictio-
nary atoms are generated by localizing kernels defined in
the graph spectral domain to different areas of the graph.
The equivalent physical approach would be to say that the
uncertainty on the measurements depends on the medium
where the particle is located. Comparing the first inequal-
ity in (24) from the local uncertainty Theorem 6 with the
first inequality in (19) from the global uncertainty Theorem
5, we see that the latter global bound can be viewed as the
maximum of the local bounds over all regions of the graph
and all regions of the spectrum.6 This supports our view that
the benefit of the global uncertainty principle is restricted to
the behavior in the region of the graph with the least favor-
able structure. The local uncertainty principle, on the other
hand, provides information about each region of the graph
separately.

The key quantities {||Ti gk||2}i ,k appear in both the
global and local uncertainty principles.While we know that
smoother kernels ĝk lead to atoms of the form Ti gk being
more concentrated in the vertex domain, further study of
the norms of these atoms is merited, as they seem to carry
some notions of both uncertainty and centrality.

Finally, we showed in Example 9 how this local notion
of uncertainty can be used constructively in the context
of a sampling and interpolation experiment. The uncer-
tainty quantities suggest to sample non-uniformly, often
with higher weight given to less connected vertices. We
envision future work applying these local uncertainty prin-
ciples to other signal processing tasks, as well as extending
the notion of local uncertainty to other types of dictionaries
for graph signals.
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APPEND IX A : HAUSDORFF–
YOUNG INEQUAL IT I ES FOR
GRAPH S IGNALS

To prove the Hausdorff–Young inequalities for graph sig-
nals, we start by restating the Riesz–Thorin interpolation
theorem, which can be found in [46, Section IX.4]. This
theorem is valid for any measure spaces with σ -finite mea-
sures, and hence in the finite dimensional case.

Theorem 8 (Riesz–Thorin). Assume T is a bounded linear
operator from �p1 to �p2 and from �q1 to �q2 ; i.e., there exist
constants Mp and Mq such that

‖T f ‖p2 ≤ Mp‖ f ‖p1 and ‖T f ‖q2 ≤ Mq‖ f ‖q1 .

Then for any t between 0 and 1, T is also a bounded operator
from �r1 to �r2 :

‖T f ‖r2 ≤ Mr ‖ f ‖r1 ,

with
1

r1
= t

p1
+ 1 − t

q1
,

1

r2
= t

p2
+ 1 − t

q2
,

and
Mr = Mt

p M1−t
q .
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We shall also need the following reverse form of the
result:

Corollary 4. Assume T is a bounded invertible linear oper-
ator from �p1 to �p2 and from �q1 to �q2 , with bounded
left-inverse from �p2 to �p1 and from �q2 to �q1 ; i.e., there exist
constants Np and Nq such that

‖T −1g‖p1 ≤ Np‖g‖p2 and ‖T −1g‖q1 ≤ Nq‖g‖q2 ,
(A.1)

or, equivalently, there exist constants Mp and Mq such that

‖T f ‖p2 ≥ Mp‖ f ‖p1 and ‖T f ‖q2 ≥ Mq‖ f ‖q1 . (A.2)

Then for any t between 0 and 1,

‖T f ‖r2 ≥ Mr ‖ f ‖r1 , (A.3)

with
1

r1
= t

p1
+ 1 − t

q1
,

1

r2
= t

p2
+ 1 − t

q2
,

and
Mr = Mt

p M1−t
q .

Proof : If T is invertible and has a left-inverse T −1 that
satisfies T −1T f = f for all f , then the equivalence of (A.1)
and (A.2) follows from taking g = T f , f = T −1g , Mp =
N−1

p , and Mq = N−1
q . The proof of (A.3) follows from the

application of Theorem 8, with T replaced by T −1 and f
by T f . �

Proof of Theorem 2 (Hausdorff–Young inequalities for
graph signals): First, we have the Parseval equality ‖ f ‖2

2 =
‖ f̂ ‖2

2. Second, we have

‖ f̂ ‖∞ = max
�

∣∣∣∣∣
N∑

n=1

u∗
�(n) f (n)

∣∣∣∣∣
≤ max

�

N∑
n=1

∣∣u∗
�(n) f (n)

∣∣
≤ μG

N∑
n=1

| f (n)| = μG‖ f ‖1.

Applying the Riesz–Thorin theorem with p1 = 2, p2 = 2,
Mp = 1, q1 = 1, q2 = ∞, Mq = μG , t = 2/q , r1 = p, and
r2 = q leads to the first inequality (9). The proof of the
converse is similar, as we have

‖ f ‖∞ = max
i

∣∣∣∣∣
N−1∑
�=0

u�(i) f̂ (�)

∣∣∣∣∣
≤ max

i

N−1∑
�=0

∣∣∣u�(i) f̂ (�)

∣∣∣
≤ μG

N−1∑
�=0

| f̂ (�)| = μG‖ f̂ ‖1.

The graph Fourier transform is invertible, so (10) then
follows from Corollary 4, with p1 = ∞, p2 = 1, Mp =

μ−1
G , q1 = 2, q2 = 2, Mq = 1, t = (2/q) − 1, r1 = p, and

r2 = q . �

APPEND IX B : VAR IAT IONS OF
L I EB ’S UNCERTA INTY PR INC IPLE

B.1 Generalization of Lieb’s uncertainty
principle to frames

Proof of Theorem 4: Let D = {gi ,k} be a frame of atoms
in CN , with lower and upper frame bounds A and B ,
respectively. We show the following two inequalities, which
together yield (18). First, for any signal f ∈ CN and any
p ≥ 2,

s p(AD f ) = ‖AD f ‖p

‖AD f ‖2
≤ B1/p

A1/2
(max

i ,k
‖gi ,k‖2)

1−(2/p).

(B.1)

Second, for any signal f ∈ CN and any 1 ≤ p ≤ 2,

1

s p(AD f )
= ‖AD f ‖p

‖AD f ‖2
≥ A(1/p)

B1/2
(max

i ,k
‖gi ,k‖2)

1−(2/p).

(B.2)

For any f , the frameD satisfies
√

A‖ f ‖2 ≤ ‖AD f ‖2 ≤
√

B‖ f ‖2. (B.3)

The computation of the sup-norm gives

‖AD f ‖∞ = max
i ,k

∣∣〈 f , gi ,k〉
∣∣ ≤ ‖ f ‖2 max

i ,k
‖gi ,k‖2. (B.4)

From (B.3), AD is a linear bounded operator form �2 to �2

by
√

B . Similarly, from (B.4), this operator is also bounded
from �2 to �∞ by maxi ,k ‖gi ,k‖2. Interpolating between �2

and �∞ with the Riesz–Thorin theorem leads to

‖AD f ‖p ≤ B1/p(max
i ,k

‖gi ,k‖2)
1−(2/p)‖ f ‖2. (B.5)

We combine (B.3) and (B.5) to obtain (B.1). The second
inequality (B.2) is obtained using the following instance of
Hölder’s inequality:

‖AD f ‖2
2 ≤ ‖AD f ‖∞‖AD f ‖1,

which implies that

‖AD f ‖1 ≥ ‖AD f ‖2
2

‖AD f ‖∞
≥ A‖ f ‖2

maxi ,k ‖gi ,k‖2
. (B.6)

We then use Corollary 4, the converse of Riesz–Thorin, to
interpolate between (B.6) and (B.3), and we find for p ∈
[1, 2]:

‖AD f ‖p ≥ A1/p

(
max

i ,k
‖gi ,k‖2

)1−(2/p)

‖ f ‖2. (B.7)

Combining (B.7) with the second inequality in (B.3) yields
(B.2). �
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B.2 Discrete version of Lieb’s uncertainty
principle
Proof of Theorem 3: Theorem 3 is actually a partic-

ular case of Theorem 4. To see why, we need to
understand the transformation between the graph frame-
work used in this contribution and the classical dis-
crete periodic case. The DFT basis vectors {uk(n) =
(1/

√
N) exp((i2πkn)/N)}k=0,1,...,N−1 can also be chosen as

the eigenvectors of the graph Laplacian for a ring graph
with N vertices [77]. The frequencies of the DFT, which
correspond up to a sign to the inverse of the period of the
eigenvectors, are not the same as the graph Laplacian eigen-
values on the ring graph, which are all positive. We can,
however, form a bijection between the set σ(L) of graph
Laplacian eigenvalues and the set of N frequencies of the
DFT, by associating one member from each set sharing the
same eigenvector. At this point, instead of considering graph
filters as continuous functions evaluated on the Laplacian
eigenvalues, we can define a graph filter as a mapping from
each individual eigenvalue to a complex number. Note that
an eigenvalue withmultiplicity 2 can have two different out-
puts (e.g., λ3 = λ4 = 1, but the filter has different values at
λ3 and λ4). With this bijection and view of the graph spec-
tral domain, we can recover the classical discrete periodic
setting by forming a ring graph with N vertices. Because
the classical translation and modulation preserve 2-norms,
the discrete windowed Fourier atoms of the form

gu,k[n] = g [n − u] exp

(
i2πkn

N

)
all have the same norm ||g ||2. Together these N2 atoms
comprise a tight frame on the ring graphwith frame bounds
A = B = N‖g‖2

2. Inserting these values into (16) and (17)
yields (14) and (15). �

For the case of p ≥ 2, we also provide an alternative
direct proof following similar ideas to those used in Lieb’s
proof for the continuous case [48]. The arguments below
follow the sketch of the proof of Proposition 2 in [66]
and supporting personal communication from Bruno Tor-
résani. We need two lemmas. The first one is a direct
application of Theorem 2, where here μG = 1/

√
N .

Lemma 4. Let f ∈ CN and p be the Hölder conjugate of p′

((1/p) + (1/p′) = 1). Then for 1 ≤ p ≤ 2, we have

‖ f̂ ‖p′ ≤ N(1/p′) − (1/2)‖ f ‖p .

Conversely, for 2 ≤ p ≤ ∞, we have

‖ f̂ ‖p′ ≥ N(1/p′) − (1/2)‖ f ‖p .

The second lemma is an equivalent of Young’s inequal-
ity in the discrete case. We denote the circular convolution
between two discrete signals f , g by f ∗ g . The circular
convolution satisfies f̂ ∗ g = f̂ · ĝ .

Lemma 5. Let f ∈ L p , g ∈ Lq , where 1 ≤ p, q , r ≤ ∞
satisfy 1 + (1/r ) = (1/p) + (1/q). Then

‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q .

Proof : The proof is based on the following inequalities
[78, p. 174]

‖ f ∗ g‖1 ≤ ‖ f ‖1‖g‖1, (B.8)

‖ f ∗ g‖∞ ≤ ‖ f ‖∞‖g‖1, (B.9)

‖ f ∗ g‖∞ ≤ ‖ f ‖p‖g‖p′ , (B.10)

where (1/p) + (1/p′) = 1. For a fixed function g ∈ Lq ,
we define an operator Tg by (Tg f )(n) = ( f ∗ g )(n). Using
(B.8) and (B.9), we observe that this operator is bounded
from L 1 to L 1 by ‖g‖1 and from L∞ to L∞ by ‖g‖1. Thus,
we can apply the Riesz–Thorin theorem to this operator to
get

‖ f ∗ g‖p ≤ ‖ f ‖p‖g‖1. (B.11)

Similarly, for a fixed function f ∈ L p , we define another
operator Tf by (Tf g )(n) = ( f ∗ g )(n). From (B.11) and
(B.10), we observe that this new operator is bounded from
L 1 to L p by ‖ f ‖p and from L p′ to L∞ by ‖ f ‖p . One
more application of the Riesz–Thorin theorem leads to the
desired result:

‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q ,

where 1 + (1/r ) = (1/p) + (1/q). �

Alternative proof of Theorem 3 for the case p ≥ 2:
Suppose p > 2 and let (1/p) + (1/p′) = 1. We denote the
DFT by F . Noting that (p/p′) > 1, we have

‖ADDWF T f ‖p
p

=
N∑

u=1

N−1∑
k=0

|ADDWF T f [u, k]|p

= N p/2
N∑

u=1

N−1∑
k=0

|F{ f [·]g [u − ·]}[k]|p

= N p/2
N∑

u=1

‖F{ f [·]g [u − ·]}‖p
p

≤ N p/2
N∑

u=1

N
p
2 − p

p′ ‖ f [·]g [u − ·]‖p
p′ (B.12)

= N p−(p/p′)
N∑

u=1

(
N∑

n=1

| f [n]g [u − n]|p′
)p/p′

= N p−(p/p′)
N∑

u=1

(
N∑

n=1

| f p′
[n]||g p′

[u − n]|
)p/p′
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= N p−(p/p′)
N∑

u=1

(
(| f p′ | ∗ |g p′ |)[u]

)p/p′

= N p−(p/p′)
∥∥∥| f p′ | ∗ |g p′ |

∥∥∥p/p′

p/p′

≤ N p−(p/p′)‖ f p′ ‖p/p′
α ‖g p′ ‖p/p′

β (B.13)

= N‖ f p′ ‖p/p′
α ‖g p′ ‖p/p′

β ,

for any 1 ≤ α, β ≤ ∞ satisfying (1/α) + (1/β) = p′.
Equation (B.12) follows from the Hausdorff–Young

inequality given in Lemma 4 and (B.13) follows from the
Young inequality given in Lemma 5 with r = p/p′. Nowwe
can perform a change variable a = αp′ and b = βp′ so that
(1/a) + (1/b) = 1, and (B.13) becomes

‖ADDWF T f ‖p
p ≤ N‖ f p′ ‖p/p′

α ‖g p′ ‖p/p′
β = N‖ f ‖p

a ‖g‖p
b .

(B.14)

Finally, we take a = b = 2 and take the pth root of (B.14)
to show the first half of Theorem 3. Note that we cannot fol-
low the same line of logic for the case 1 ≤ p ≤ 2 without a
converse of the Young’s inequality in Lemma 5. �
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