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Dynamic polygon clouds: representation and
compression for VR/AR

eduardo pavez1, philip a. chou2,3, ricardo l. de queiroz4and antonio ortega1

We introduce the polygon cloud, a compressible representation of three-dimensional geometry (including attributes, such as
color), intermediate between polygonal meshes and point clouds. Dynamic polygon clouds, like dynamic polygonal meshes and
dynamic point clouds, can take advantage of temporal redundancy for compression. In this paper, we propose methods for
compressing both static and dynamic polygon clouds, specifically triangle clouds. We compare triangle clouds to both triangle
meshes and point clouds in terms of compression, for live captured dynamic colored geometry. We find that triangle clouds can
be compressed nearly as well as triangle meshes, while being more robust to noise and other structures typically found in live
captures, which violate the assumption of a smooth surface manifold, such as lines, points, and ragged boundaries. We also find
that triangle clouds can be used to compress point clouds with significantly better performance than previously demonstrated
point cloud compression methods. For intra-frame coding of geometry, our method improves upon octree-based intra-frame
coding by a factor of 5–10 in bit rate. Inter-frame coding improves this by another factor of 2–5. Overall, our proposed method
improves over the previous state-of-the-art in dynamic point cloud compression by 33 or more.
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I . I NTRODUCT ION

With the advent of virtual and augmented reality comes the
birth of a new medium: live captured three-dimensional
(3D) content that can be experienced from any point of
view. Such content ranges from static scans of compact 3D
objects to dynamic captures of non-rigid objects such as
people, to captures of rooms including furniture, public
spaces swarming with people, and whole cities in motion.
For such content to be captured at one place and delivered to
another for consumption by a virtual or augmented reality
device (or by more conventional means), the content needs
to be represented and compressed for transmission or stor-
age. Applications include gaming, tele-immersive commu-
nication, free navigation of highly produced entertainment
as well as live events, historical artifact and site preserva-
tion, acquisition for special effects, and so forth. This paper
presents a novel means of representing and compressing the
visual part of such content.

Until this point, two of the more promising approaches
to representing both static and time-varying 3D scenes have
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been polygonal meshes and point clouds, along with their
associated color information. However, both approaches
have drawbacks. Polygonal meshes represent surfaces very
well, but they are not robust to noise and other structures
typically found in live captures, such as lines, points, and
ragged boundaries that violate the assumptions of a smooth
surface manifold. Point clouds, on the other hand, have a
hard time modeling surfaces as compactly as meshes.

We propose a hybrid between polygonal meshes and
point clouds: polygon clouds. Polygon clouds are sets of
polygons, often called a polygon soup. The polygons in
a polygon cloud are not required to represent a coherent
surface. Like the points in a point cloud, the polygons in
a polygon cloud can represent noisy, real-world geometry
captures without any assumption of a smooth 2Dmanifold.
In fact, any polygon in a polygon cloud can be collapsed into
a point or line as a special case. The polygonsmay also over-
lap. On the other hand, the polygons in the cloud can also be
stitched together into a watertight mesh if desired to repre-
sent a smooth surface. Thus polygon clouds generalize both
point clouds and polygonal meshes.

For concreteness, we focus on triangles instead of arbi-
trary polygons, and we develop an encoder and decoder for
sequences of triangle clouds. We assume a simple group of
frames (GOF) model, where each GOF begins with an Intra
(I) frame, also called a reference frame or a key frame, which
is followed by a sequence of Predicted (P) frames, also called
inter frames. The triangles are assumed to be consistent
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across frames. That is, the triangles’ vertices are assumed
to be tracked from one frame to the next. The trajectories
of the vertices are not constrained. Thus the triangles may
change from frame to frame in location, orientation, and
proportion.

For geometry encoding, redundancy in the vertex trajec-
tories is removed by a spatial orthogonal transform followed
by temporal prediction, allowing low latency. For color
encoding, the triangles in each frame are projected back to
the coordinate system of the reference frame. In the refer-
ence frame the triangles are voxelized in order to ensure that
their color textures are sampled uniformly in space regard-
less of the sizes of the triangles, and in order to construct
a common vector space in which to describe the color tex-
tures and their evolution from frame to frame. Redundancy
of the color vectors is removed by a spatial orthogonal trans-
form followed by temporal prediction, similar to redun-
dancy removal for geometry. Uniform scalar quantization
and entropy coding matched to the spatial transform are
employed for both color and geometry.

We compare triangle clouds to both triangle meshes and
point clouds in terms of compression, for live captured
dynamic colored geometry. We find that triangle clouds
can be compressed nearly as well as triangle meshes while
being farmore flexible in representing live captured content.
We also find that triangle clouds can be used to compress
point cloudswith significantly better performance than pre-
viously demonstrated point cloud compression methods.
Since we are motivated by virtual and augmented reality
(VR/AR) applications, for which encoding and decoding
have to have low latency, we focus on an approach that can
be implemented at low computational complexity. A pre-
liminary part of this work with more limited experimental
evaluation was published in [1].

The paper is organized as follows as follows. After a sum-
mary of related work in Section II, preliminary material
is presented in Section III. Components of our compres-
sion system are described in Section IV, while the core of
our system is given in Section V. Experimental results are
presented in Section VI. The conclusion is in Section VII.

I I . RELATED WORK

A) Mesh compression
3D mesh compression has a rich history, particularly from
the 1990s forward. Overviews may be found in [2–4]. Fun-
damental is the need to codemesh topology, or connectivity,
such as in [5, 6]. Beyond coding connectivity, coding the
geometry, i.e., the positions of the vertices is also important.
Many approaches have been taken, but one significant and
practical approach to geometry coding is based on “geom-
etry images” [7] and their temporal extension, “geometry
videos” [8, 9]. In these approaches, the mesh is partitioned
into patches, the patches are projected onto a 2D plane as
charts, non-overlapping charts are laid out in a rectangular
atlas, and the atlas is compressed using a standard image or

video coder, compressing both the geometry and the tex-
ture (i.e., color) data. For dynamic geometry, the meshes
are assumed to be temporally consistent (i.e., connectivity is
constant frame-to-frame) and the patches are likewise tem-
porally consistent. Geometry videos have been used for rep-
resenting and compressing free-viewpoint video of human
actors [9]. Key papers on mesh compression of human
actors in the context of tele-immersion include [10, 11].

B) Motion estimation
A critical part of dynamicmesh compression is the ability to
track points over time. If a mesh is defined for a keyframe,
and the vertices are tracked over subsequent frames, then
the mesh becomes a temporally consistent dynamic mesh.
There is a huge body of literature in the 3D tracking, 3D
motion estimation or scene flow, 3D interest point detection
and matching, 3D correspondence, non-rigid registration,
and the like.We are particularly influenced by [12–14], all of
which produce in real time, given data from one or more
RGBD sensors for every frame t, a parameterized map-
ping fθt : R3 → R3 that maps points in frame t to points
in frame t + 1. Though corrections may need to be made
at each frame, chaining the mappings together over time
yields trajectories for any given set of points. Compressing
these trajectories is similar to compressing motion capture
(mocap) trajectories, which has been well studied. [15] is
a recent example with many references. Compression typ-
ically involves an intra-frame transform to remove spatial
redundancy and either temporal prediction (if low latency is
required) or a temporal transform (if the entire clip or GOF
is available) to remove temporal redundancy, as in [16].

C) Graph signal processing
Graph Signal Processing (GSP) has emerged as an extension
of the theory of linear shift invariant signal processing to
the processing of signals on discrete graphs, where the shift
operator is taken to be the adjacency matrix of the graph, or
alternatively the Laplacianmatrix of the graph [17, 18]. Criti-
cally sampled perfect reconstruction wavelet filter banks on
graphs were proposed in [19, 20]. These constructions were
used for dynamic mesh compression in [21, 22]. In partic-
ular [21], simultaneously modifies the point cloud and fits
triangular meshes. These meshes are time consistent, and
come at different levels of resolution, which are used for
multi-resolution transform coding of motion trajectories
and color.

D) Point cloud compression using octrees
Sparse Voxel Octrees (SVOs) were developed in the 1980s
to represent the geometry of 3D objects [23, 24]. Recently
SVOs have been shown to have highly efficient implemen-
tations suitable for encoding at video frame rates [25]. In
the guise of occupancy grids, they have also had significant
use in robotics [26–28]. Octrees were first used for point
cloud compression in [29]. They were further developed
for progressive point cloud coding, including color attribute
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compression, in [30]. Octrees were extended to the cod-
ing of dynamic point clouds (i.e., point cloud sequences)
in [31]. The focus of [31] was geometry coding; their color
attribute coding remained rudimentary. Their method of
inter-frame geometry coding was to take the exclusive-
OR (XOR) between frames and code the XOR using an
octree. Their method was implemented in the Point Cloud
Library [32].

E) Color attribute compression for static point
clouds
To better compress the color attributes in static voxelized
point clouds, Zhang et al. used transform coding based
on the Graph Fourier Transform (GFT), recently proposed
in the context of GSP [33]. While transform coding based
on the GFT has good compression performance, it requires
eigen-decompositions for each coded block, and hencemay
not be computationally attractive. To improve the compu-
tational efficiency, while not sacrificing compression per-
formance, Queiroz and Chou developed an orthogonal
Region-Adaptive Hierarchical Transform (RAHT) along
with an entropy coder [34]. RAHT is essentially a Haar
transform with the coefficients appropriately weighted to
take the non-uniform shape of the domain (or region) into
account. As its structure matches the SVO, it is extremely
fast to compute. Other approaches to non-uniform regions
include the shape-adaptive discrete cosine transform [35]
and color palette coding [36]. Further approaches based on
a non-uniform sampling of an underlying stationary pro-
cess can be found in [37], which uses the Karhunen–Loève
transform matched to the sample, and in [38], which uses
sparse representation and orthogonal matching pursuit.

F) Dynamic point cloud compression
Thanou et al. [39, 40] were the first to deal fully with
dynamic voxelized points clouds, by finding matches
between points in adjacent frames, warping the previous
frame to the current frame, predicting the color attributes
of the current frame from the quantized colors of the
previous frame, and coding the residual using the GFT-
based method of [33]. Thanou et al. used the XOR-based
method of Kammerl et al. [31] for inter-frame geometry
compression. However, the method of [31] proved to be
inefficient, in a rate-distortion sense, for anything except
slowly moving subjects, for two reasons. First, the method
“predicts” the current frame from the previous frame, with-
out any motion compensation. Second, the method codes
the geometry losslessly, and so has no ability to perform
a rate-distortion trade-off. To address these shortcomings,
Queiroz and Chou [41] used block-based motion compen-
sation and rate-distortion optimization to select between
coding modes (intra or motion-compensated coding) for
each block. Further, they applied RAHT to coding the
color attributes (in intra-frame mode), color prediction
residuals (in inter-frame mode), and the motion vectors

(in inter-frame mode). They also used in-loop deblock-
ing filters. Mekuria et al. [42] independently proposed
block-basedmotion compensation for dynamic point cloud
sequences. Although they did not use rate-distortion opti-
mization, they used affine transformations for eachmotion-
compensated block, rather than just translations. Unfor-
tunately, it appears that block-based motion compensa-
tion of dynamic point cloud geometry tends to produce
gaps between blocks, which are perceptually more dam-
aging than indicated by objective metrics such as the
Haussdorf-based metrics commonly used in geometry
compression [43].

G) Key learnings
Some of the key learnings from the previous work, taken as
a whole, are that

• Point clouds are preferable to meshes for resilience to
noise and non-manifold signals measured in real-world
signals, especially for real-time capture where the com-
putational cost of heavy duty pre-processing (e.g., surface
reconstruction, topological denoising, charting) can be
prohibitive.
• For geometry coding in static scenes, point clouds appear

to be more compressible than meshes, even though the
performance of point cloud geometry coding seems to be
limited by the lossless nature of the current octree meth-
ods. In addition, octree processing for geometry coding is
extremely fast.
• For color attribute coding in static scenes, both point

clouds and meshes appear to be well compressible. If
charting is possible, compressing the color as an image
may win out due to the maturity of image compression
algorithms today. However, direct octree processing for
color attribute coding is extremely fast, as it is for geome-
try coding.
• For both geometry and color attribute coding in dynamic

scenes (or inter-frame coding), temporally consistent
dynamic meshes are highly compressible. However, find-
ing a temporally consistent mesh can be challenging from
a topological point of view aswell as from a computational
point of view.

In this work, we aim to achieve the high compression effi-
ciency possible with the intra-frame point cloud compres-
sion and inter-frame dynamic mesh compression, while
simultaneously achieving the high computational efficiency
possible with octree-based processing, as well as its robust-
ness to real-world noise and non-manifold data. We attain
higher computational efficiency for temporal coding, by
first exploiting availablemotion information for inter-frame
prediction, instead of performing motion estimation at the
encoder side as in [21, 39, 40]. In practice, motion trajec-
tories can be obtained in real time using several existing
approaches [12–14]. Second, for efficient and low complexity
transform coding, we follow [34].
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H) Contributions and main results
Our contributions, which are summarized in more detail in
Section VII, include

(i) Introduction of triangle clouds, a representation inter-
mediate between triangle meshes and point clouds,
for efficient compression as well as robustness to real-
world data.

(ii) A comprehensive algorithm for triangle cloud com-
pression, employing novel geometry, color, and tempo-
ral coding.

(iii) Reduction of inter- and intra-coding of color and
geometry to compression of point clouds with different
attributes.

(iv) Implementation of a low complexity point cloud trans-
form coding system suitable for real time applications,
including a new fast implementation of the transform
from [34].

We demonstrate the advantages of polygon clouds for com-
pression throughout the extensive coding experiments eval-
uated using a variety of distortion measures. Our main
findings are summarized as follows:

• Our intra-frame geometry coding is more efficient than
previous intra-frame geometry coding based on point
clouds by 5–10x or more in geometry bitrate,
• Our inter-frame geometry coding is better than our intra-

frame geometry coding by 3x ormore in geometry bitrate,
• Our inter-frame color coding is better than our/previous

intra-frame color coding by up to 30 in color bitrate,
• Our temporal geometry coding is better than recent

dynamicmesh compression by 6x in geometry bitrate, and
• Our temporal coding is better than recent point cloud

compression by 33 in overall bitrate.

Our results also reveal the hyper-sensitivity of color distor-
tion measures to geometry compression.

I I I . PREL IM INAR IES

A) Notation
Notation is given in Table 1.

B) Dynamic triangle clouds
A dynamic triangle cloud is a numerical representation of
a time changing 3D scene or object. We denote it by a
sequence {T (t)} where T (t) is a triangle cloud at time t.
Each frame T (t) is composed of a set of vertices V (t), faces
(polygons) F (t), and color C(t).

The geometry information (shape and position) consists
of a list of verticesV (t) = {v(t)

i : i = 1, . . . , Np}, where each
vertex v

(t)
i = [x(t)

i , y(t)
i , z(t)

i ] is a point in 3D, and a list of
triangles (or faces) F (t) = { f (t)

m : m = 1, . . . , N f }, where
each face f (t)

m = [i (t)
m , j (t)

m , k(t)
m ] is a vector of indices of ver-

tices from V (t). We denote by V(t) the Np × 3 matrix whose
i-th row is the point v(t)

i , and similarly, we denote by F(t) the

Table 1. Notation.

Symbol Description

[N] Set of integers {1, 2, . . . , N}
t Time or frame index
vi or v

(t)
i 3D point with coordinates xi , yi , zi

fm or f (t)
m Face with vertex indices im, jm, km

cn or c(t)
n Color with components Yn , Un , Vn

ai or a(t)
i Generic attribute vector ai1, . . . , ain

V or V(t) Set of Np points {v1, . . . , vNp }
F orF (t) Set of N f faces { f1, . . . , fN f }
C or C(t) Set of Nc colors {c1, . . . , cNc }
A orA(t) Set of Na attribute vectors {a1, . . . , aNa }
T or T (t) Triangle cloud (V , F , C) or (V , F , A)

P or P(t) Point cloud (V , C) or (V , A)

V or V(t) Np × 3 matrix with i-th row [xi , yi , zi ]
F or F(t) N f × 3 matrix with m-th row [im, jm, km]
C or C(t) Nc × 3 matrix with n-th row [Yn , Un , Vn]
A List (i.e., matrix) of attributes
TA List of transformed attributes
M, Mv , M1 Lists of Morton codes
W,Wv ,Wrv Lists of weights
I, Iv , Irv Lists of indices
V̂, Ĉ, Â, . . . Lists of quantized or reproduced quantities
V̂v or V̂(t)

v List of voxelized vertices
Vr List of refined vertices
V̂rv orV̂

(t)
rv List of voxelized refined vertices

Cr = C List of colors of refined vertices
Crv orC

(t)
rv List of colors of voxelized refined vertices

J Octree depth
U Upsampling factor
�motion Motion quantization stepsize
�color ,intra Intra-frame color quantization stepsize
�color ,inter Inter-frame color quantization stepsize

N f × 3 matrix whose m-th row is the triangle f (t)
m . The tri-

angles in a triangle cloud do not have to be adjacent or form
a mesh, and they can overlap. Two or more vertices of a tri-
angle may have the same coordinates, thus collapsing into a
line or point.

The color information consists of a list of colors C(t) =
{c (t)

n : n = 1, . . . , Nc}, where each color c (t)
n = [Y (t)

n , U (t)
n ,

V (t)
n ] is a vector in YUV space (or other convenient color

space). We denote by C(t) the Nc × 3 matrix whose n-th
row is the color c (t)

n . The list of colors represents the col-
ors across the surfaces of the triangles. To be specific, c (t)

n
is the color of a “refined” vertex v(t)

r (n), where the refined
vertices are obtained by uniformly subdividing each trian-
gle in F (t) by upsampling factor U , as shown in Fig. 1(b)
for U = 4. We denote by V(t)

r the Nc × 3 matrix whose
n-th row is the refined vertex v(t)

r (n). V(t)
r can be com-

puted from V (t) and F (t), so we do not need to encode it,
but we will use it to compress the color information. Thus
frame t of the triangle cloud can be represented by the triple
T (t) = (V(t), F(t), C(t)).

Note that a triangle cloud can be equivalently represented
by a point cloud given by the refined vertices and the color
attributes (V(t)

r ,C(t)). For each triangle in the triangle cloud,
there are (U + 1)(U + 2)/2 color values distributed uni-
formly on the triangle surface, with coordinates given by the
refined vertices (see Fig. 1(b)). Hence the equivalent point
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(a) (b)

Fig. 1. Triangle cloud geometry information. (b) A triangle in a dynamic triangle cloud is depicted. The vertices of the triangle at time t are denoted by v
(t)
i , v

(t)
j , v

(t)
k .

Colored dots represent “refined” vertices, whose coordinates can be computed from the triangle’s coordinates using Alg. 5. Each refined vertex has a color attribute.
(a)Manmesh. (b) Correspondences between two consecutive frames.

cloud has Nc = N f (U + 1)(U + 2)/2 points.Wewillmake
use of this point cloud representation property in our com-
pression system. The up-sampling factor U should be high
enough so that it does not limit the color spatial resolu-
tion obtainable by the color cameras. In our experiments,
we setU = 10 or higher. SettingU higher does not typically
affect the bit rate significantly, though it does affect memory
and computation in the encoder and decoder. Moreover, for
U = 10, the number of triangles is much smaller than the
number of refined vertices (N f � Nc ), which is one of the
reasons we can achieve better geometry compression using
a triangle cloud representation instead of a point cloud.

C) Compression system overview
In this section, we provide an overview of our system for
compressing dynamic triangle clouds.We use aGOFmodel,
in which the sequence is partitioned into GOFs. The GOFs
are processed independently. Without loss of generality, we
label the frames in a GOF t = 1 . . . , N . There are two types
of frames: reference and predicted. In each GOF, the first
frame (t = 1) is a reference frame and all other frames (t =
2, . . . , N) are predicted. Within a GOF, all frames must
have the same number of vertices, triangles, and colors:

∀t ∈ [N], V(t) ∈ RNp×3, F(t) ∈ [Np]N f×3 and C(t) ∈ RNc×3.
The triangles are assumed to be consistent across frames
so that there is a correspondence between colors and ver-
tices within the GOF. In Fig. 1(b), we show an example of
the correspondences between two consecutive frames in a
GOF.DifferentGOFsmayhave different numbers of frames,
vertices, triangles, and colors.

We compress consecutive GOFs sequentially and inde-
pendently, so we focus on the system for compressing an
individual GOF (V(t), F(t), C(t)) for t ∈ [N]. The overall
system is shown in Fig. 2, where C(t) is known as C(t)

r for
reasons to be discussed later.

For all frames, our system first encodes geometry, i.e.
vertices and faces, and then color. The color compression
depends on the decoded geometry, as it uses a transform
that reduces spatial redundancy.

For the reference frame at t = 1, also known as the intra
(I) frame, the I-encoder represents the vertices V(1) using
voxels. The voxelized vertices V(1)

v are encoded using an
octree. The connectivity F(1) is compressed without a loss
using an entropy coder. The connectivity is coded only once
perGOF since it is consistent across theGOF, i.e.,F(t) = F(1)

for t ∈ [N]. The decoded vertices V̂(1) are refined and used
to construct an auxiliary point cloud (V̂(1)

r , C(1)
r ). This point

Fig. 2. Encoder (left) and decoder (right). The switches are in the t = 1 position, and flip for t > 1.
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cloud is voxelized as (V̂(1)
rv , C(1)

rv ), and its color attributes are
then coded as T̂C

(1)
rv using the region adaptive hierarchical

transform (RAHT) [34], uniform scalar quantization, and
adaptive Run-LengthGolomb-Rice (RLGR) entropy coding
[44]. Here,T denotes the transform and hat denotes a quan-
tity that has been compressed and decompressed. At the
cost of additional complexity, the RAHT transform could be
replaced by transforms with higher performance [37, 38].

For predicted (P) frames at t > 1, the P-encoder com-
putes prediction residuals from the previously decoded
frame. Specifically, for each t > 1 it computes a motion
residual�V(t)

v = V(t)
v − V̂(t−1)

v and a color residual�C(t)
rv =

C(t)
rv − Ĉ(t−1)

rv . These residuals are attributes of the following
auxiliary point clouds (V̂(1)

v , �V(t)
v ), (V̂(1)

rv , �C(t)
rv ), respec-

tively. Then transform coding is applied using again the
RAHT followed by uniform scalar quantization and entropy
coding.

It is important to note that we do not directly compress
the list of vertices V(t) or the list of colors C(t) (or their pre-
diction residuals). Rather, we voxelize themfirstwith respect
to their corresponding vertices in the reference frame, and
then compress them. This ensures that (1) if two or more
vertices or colors fall into the same voxel, they receive the
same representation and hence are encoded only once, and
(2) the colors (on the set of refined vertices) are resampled
uniformly in space regardless of the density, size or shapes
of triangles.

In the next section, we detail the basic elements of the
system: refinement, voxelization, octrees, and transform
coding. Then, in Section V, we detail how these basic ele-
ments are put together to encode and decode a sequence of
triangle clouds.

I V . REF INEMENT , VOXEL IZAT ION ,
OCTREES , AND TRANSFORM
COD ING

In this section, we introduce the most important building
blocks of our compression system. We describe their effi-
cient implementations, with detailed pseudo code that can
be found in the Appendix.

A) Refinement
A refinement refers to a procedure for dividing the trian-
gles in a triangle cloud into smaller (equal sized) triangles.
Given a list of trianglesF, its corresponding list of verticesV,
and upsampling factor U , a list of “refined” vertices Vr can
be produced using Algorithm 5. Step 1 (in Matlab notation)
assembles three equal-length lists of vertices (each as an
N f × 3 matrix), containing the three vertices of every face.
Step 5 appends linear combinations of the faces’ vertices to
a growing list of refined vertices. Note that since the trian-
gles are independent, the refinement can be implemented
in parallel. We assume that the refined vertices in Vr can
be colored, such that the list of colors C is in 1-1 correspon-
dence with the list of refined vertices Vr . An example with

a single triangle is depicted in Fig. 1(b), where the colored
dots correspond to refined vertices.

B) Morton codes and voxelization
A voxel is a volumetric element used to represent the
attributes of an object in 3D over a small region of space.
Analogous to 2D pixels, 3D voxels are defined on a uniform
grid. We assume the geometric data live in the unit cube
[0, 1)3, and we partition the cube uniformly into voxels of
size 2−J × 2−J × 2−J .

Now consider a list of points V = [vi ] and an equal-
length list of attributes A = [ai ], where ai is the real-valued
attribute (or vector of attributes) of vi . (These may be, for
example, the list of refined vertices Vr and their associ-
ated colors Cr = C as discussed above.) In the process of
voxelization, the points are partitioned into voxels, and the
attributes associated with the points in a voxel are averaged.
The points within each voxel are quantized to the voxel cen-
ter. Each occupied voxel is then represented by the voxel
center and the average of the attributes of the points in the
voxel. Moreover, the occupied voxels are put into Z-scan
order, also known as Morton order [45]. The first step in
voxelization is to quantize the vertices and to produce their
Morton codes. The Morton code m for a point (x, y, z)
is obtained simply by interleaving (or “swizzling”) the bits
of x, y, and z, with x being higher order than y, and y
being higher order than z. For example, if x = x4x2x1, y =
y4y2y1, and z = z4z2z1 (written in binary), then the Mor-
ton code for the point would be m = x4y4z4x2y2z2x1y1z1.
The Morton codes are sorted, duplicates are removed, and
all attributes whose vertices have a particular Morton code
are averaged.

Algorithm 1 Voxelization (voxelize)
Input: V, A, J
1: Vint = f loor (V ∗ 2J ) // map coords to {0, . . . , 2J −

1}
2: M = sor t(mor ton(Vint)) // generate list of sorted

morton codes
3: [Mv , I, Iv] = unique(M) // find unique codes
4: Av = [ā j ], where ā j is computed using (1)
5: Vv = (Vint(I, :)+ 0.5) ∗ 2−J // compute voxel centers

Output: Vv (or equivalently Mv), Av , Iv .

The procedure is detailed in Algorithm 1. Vint is the
list of vertices with their coordinates, previously in [0, 1),
now mapped to integers in {0, . . . , 2J − 1}. M is the cor-
responding list of Morton codes. Mv is the list of Morton
codes, sorted with duplicates removed, using the Matlab
function unique. I and Iv are vectors of indices such that
Mv = M(I) and M = Mv(Iv), in Matlab notation. (That is,
the ivth element of Mv is the I(iv)th element of M and the
i th element of M is the Iv(i)th element of Mv .) Av = [ā j ] is
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Fig. 3. Cube subdivision. Blue cubes represent occupied regions of space.

the list of attribute averages

ā j = 1

Nj

∑
i :M(i)=Mv( j)

ai , (1)

where Nj is the number of elements in the sum. Vv is the
list of voxel centers. The complexity of voxelization is dom-
inated by sorting of the Morton codes, thus the algorithm
has complexityO(N log N), where N is the number of input
points.

C) Octree encoding
Any set of voxels in the unit cube, each of size 2−J × 2−J ×
2−J, designated occupied voxels, can be represented with an
octree of depth J [23, 24]. An octree is a recursive subdi-
vision of a cube into smaller cubes, as illustrated in Fig. 3.
Cubes are subdivided only as long as they are occupied
(i.e., contain any occupied voxels). This recursive subdivi-
sion can be represented by an octree with depth J , where
the root corresponds to the unit cube. The leaves of the tree
correspond to the set of occupied voxels.

There is a close connection between octrees andMorton
codes. In fact, the Morton code of a voxel, which has length
3 J bits broken into J binary triples, encodes the path in
the octree from the root to the leaf containing the voxel.
Moreover, the sorted list of Morton codes results from a
depth-first traversal of the tree.

Each internal node of the tree can be represented by one
byte, to indicate which of its eight children are occupied.
If these bytes are serialized in a depth-first traversal of the
tree, the serialization (which has a length in bytes equal
to the number of internal nodes of the tree) can be used
as a description of the octree, from which the octree can
be reconstructed. Hence the description can also be used
to encode the ordered list of Morton codes of the leaves.
This description can be further compressed using a context
adaptive arithmetic encoder. However, for simplicity, in our
experiments, we use gzip instead of an arithmetic encoder.

In this way, we encode any set of occupied voxels in a
canonical (Morton) order.

D) Transform coding
In this section, we describe the RAHT [34] and its efficient
implementation. RAHT is a sequence of orthonormal trans-
forms applied to attribute data living on the leaves of an

Fig. 4. One level of RAHT applied to a cube of eight voxels, three of which are
occupied.

octree. For simplicity, we assume the attributes are scalars.
This transform processes voxelized attributes in a bottom-
up fashion, starting at the leaves of the octree. The inverse
transform reverses this order.

Consider eight adjacent voxels, three of which are occu-
pied, having the same parent in the octree, as shown in
Fig. 4. The colored voxels are occupied (have an attribute)
and the transparent ones are empty. Each occupied voxel is
assigned a unit weight. For the forward transform, trans-
formed attribute values and weights will be propagated up
the tree.

One level of the forward transform proceeds as follows.
Pick a direction (x, y, or z), then check whether there are
two occupied cubes that can be processed along that direc-
tion. In the leftmost part of Fig. 4 there are only three
occupied cubes, red, yellow, and blue, having weights wr ,
wy , and wb , respectively. To process in the direction of the
x-axis, since the blue cube does not have a neighbor along
the horizontal direction, we copy its attribute value ab to the
second stage and keep its weightwb . The attribute values ay

and ar of the yellow and red cubes can be processed together
using the orthonormal transformation[

a0
g

a1
g

]
= 1√

wy + wr

[ √
wy

√
wr

−√wr
√

wy

][
ay

ar

]
, (2)

where the transformed coefficients a0
g and a1

g , respectively,
represent low pass and high pass coefficients appropriately
weighted. Both transform coefficients now represent infor-
mation from a region with weight wg = wy + wr (green
cube). The high pass coefficient is stored for entropy cod-
ing along with its weight, while the low pass coefficient is
further processed and put in the green cube. For process-
ing along the y-axis, the green and blue cubes do not have
neighbors, so their values are copied to the next level. Then
we process in the z direction using the same transformation
in (2) with weights wg and wb .

This process is repeated for each cube of eight subcubes
at each level of the octree. After J levels, there remains one
low pass coefficient that corresponds to the DC component;
the remainder are high pass coefficients. Since after each
processing of a pair of coefficients, the weights are added
and used during the next transformation, the weights can
be interpreted as being inversely proportional to frequency.
The DC coefficient is the one that has the largest weight,
as it is processed more times and represents information
from the entire cube, while the high pass coefficients, which
are produced earlier, have smaller weights because they



8 eduardo pavez, et al.

Fig. 5. Transform coding system for voxelized point clouds.

contain information from a smaller region. The weights
depend only on the octree (not the coefficients themselves),
and thus can provide a frequency ordering for the coeffi-
cients. We sort the transformed coefficients by decreasing
the magnitude of weight.

Finally, the sorted coefficients are quantized using uni-
form scalar quantization, and are entropy coded using adap-
tive Run Length Golomb-Rice coding [44]. The pipeline is
illustrated in Fig. 5.

Note that the RAHT has several properties that make it
suitable for real-time compression. At each step, it applies
several 2× 2 orthonormal transforms to pairs of vox-
els. By using the Morton ordering, the j -th step of the
RAHT can be implemented with worst-case time com-
plexity O(Nvox, j ), where Nvox, j is the number of occupied
voxels of size 2− j × 2− j × 2− j . The overall complexity of
the RAHT is O(J Nvox,J ). This can be further reduced by
processing cubes in parallel. Note that within each GOF,
only two different RAHTs will be applied multiple times.
To encode motion residuals, a RAHT will be implemented
using the voxelization with respect to the vertices of the ref-
erence frame. To encode color of the reference frame and
color residuals of predicted frames, the RAHT is imple-
mented with respect to the voxelization of the refined ver-
tices of the reference frame.

Efficient implementations of RAHT and its inverse are
detailed in Algorithms 3 and 4, respectively. Algorithm 2
is a prologue to each and needs to be run twice per GOF.
For completeness we include in the Appendix our uniform
scalar quantization in Algorithm 7.

Algorithm 2 Prologue to RAHT and its Inverse (IRAHT)
(prologue)
Input: V, J
1: M1 = mor ton(V) // morton codes
2: N = l eng th(M1) // number of points
3: for � = 1 to 3 J do // define (I�, M�, W�, F�), ∀�
4: if � = 1 then // initialize indices of coeffs at layer 1
5: I1 = (1 : N)T // vector of indices from 1 to N
6: else // define indices of coeffs at layer �

7: I� = I�−1(¬[0; F�−1]) // left siblings and
singletons

8: end if
9: M� = M1(I�) // morton codes at layer �

10: W� = [I�(2 : end); N + 1]− I� // weights
11: D = M�(1 : end − 1)⊕M�(2 : end) // path diffs
12: F� = (D ∧ (23J − 2�)) = 0 // left sibling flags
13: end for
Output: {(I�, W�, F�) : � = 1, . . . , 3J }, and N

Algorithm 3 Region Adaptive Hierarchical Transform
Input: V, A, J
1: [{(I�, W�, F�)}, N] = prologue(V, J )

2: TA = A // perform transform in place
3: W = 1 // initialize to N-vector of unit weights
4: for � = 1 to 3J − 1 do
5: i0 = I�([F�; 0] == 1) // left sibling indices
6: i1 = I�([0; F�] == 1) // right sibling indices
7: w0 =W�([F�; 0] == 1) // left sibling weights
8: w1 =W�([0; F�] == 1) // right sibling weights
9: x0 = TA(i0, :) // left sibling coefficients
10: x1 = TA(i1, :) // right sibling coefficients
11: a = r epmat(sqr t(w0./(w0 + w1)), 1, s i ze(TA, 2))
12: b = r epmat(sqr t(w1./(w0 + w1)), 1, s i ze(TA, 2))
13: TA(i0, :) = a . ∗ x0 + b . ∗ x1

14: TA(i1, :) = −b . ∗ x0 + a . ∗ x1

15: W(i0) =W(i0)+W(i1)
16: W(i1) =W(i0)
17: end for
Output: TA, W

Algorithm 4 Inverse Region Adaptive Hierarchical Trans-
form
Input: V, TA, J
1: [{(I�, W�, F�)}, N] = prologue(V, J )

2: A = TA // perform inverse transform in place
3: for � = 3J − 1 down to 1 do
4: i0 = I�([F�; 0] == 1) // left sibling indices
5: i1 = I�([0; F�] == 1) // right sibling indices
6: w0 =W�([F�; 0] == 1) // left sibling weights
7: w1 =W�([0; F�] == 1) // right sibling weights
8: x0 = TA(i0, :) // left sibling coefficients
9: x1 = TA(i1, :) // right sibling coefficients
10: a = r epmat(sqr t(w0./(w0 + w1)),

1, s i ze(TA, 2))
11: b = r epmat(sqr t(w1./(w0 + w1)),

1, s i ze(TA, 2))
12: TA(i0, :) = a . ∗ x0 − b . ∗ x1

13: TA(i1, :) = b . ∗ x0 + a . ∗ x1

14: end for
Output: A

V . ENCOD ING AND DECOD ING

In this section, we describe in detail encoding and decoding
of dynamic triangle clouds. First we describe encoding and
decoding of reference frames. Following that, we describe
encoding and decoding of predicted frames. For both refer-
ence and predicted frames, we describe first how geometry
is encoded and decoded, and then how color is encoded and
decoded. The overall system is shown in Fig. 2.
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A) Encoding and decoding of reference frames
For reference frames, encoding is summarized in
Algorithm 8, while decoding is summarized inAlgorithm 9,
which can be found in the Appendix. For both reference
and predicted frames, the geometry information is encoded
and decoded first, since color processing depends on the
decoded geometry.

1) Geometry encoding and decoding
We assume that the vertices in V(1) are in Morton order.
If not, we put them into Morton order and permute the
indices in F(1) accordingly. The lists V(1) and F(1) are the
geometry-related quantities in the reference frame trans-
mitted from the encoder to the decoder. V(1) will be recon-
structed at the decoder with some loss as V̂(1), and F(1) will
be reconstructed losslessly. We now describe the process.

At the encoder, the vertices in V(1) are first quantized to
the voxel grid, producing a list of quantized vertices V̂(1),
the same length as V(1). There may be duplicates in V̂(1),
because some vertices may have collapsed to the same grid
point. V̂(1) is then voxelized (without attributes), the effect
of which is simply to remove the duplicates, producing a
possibly slightly shorter list V̂(1)

v along with a list of indices
I(1)
v such that (in Matlab notation) V̂(1) = V̂(1)

v (I(1)
v ). Since

V̂(1)
v has no duplicates, it represents a set of voxels. This

set can be described by an octree. The byte sequence rep-
resenting the octree can be compressed with any entropy
encoder; we use gzip. The list of indices I(1)

v , which has the
same length as V̂(1), indicates, essentially, how to restore the
duplicates, which are missing from V̂(1)

v . In fact, the indices
in I(1)

v increase in unit steps for all vertices in V̂(1) except the
duplicates, for which there is no increase. The list of indices
is thus a sequence of runs of unit increases alternating with
runs of zero increases. This binary sequence of increases can
be encoded with any entropy encoder; we use gzip on the
run lengths. Finally, the list of facesF(1) can be encodedwith
any entropy encoder; we again use gzip, though algorithms
such as [5, 6] might also be used.

The decoder entropy decodes V̂(1)
v , I(1)

v , andF(1), and then
recovers V̂(1) = V̂(1)

v (I(1)
v ), which is the quantized version of

V(1), to obtain both V̂(1) and F(1).

2) Color encoding and decoding
The RAHT, required for transform coding of the color sig-
nal, is constructed from an octree, or equivalently from a
voxelized point cloud. We first describe how to construct
such point set from the decoded geometry.

Let V(1)
r = r e f ine(V(1), F(1), U ) be the list of “refined

vertices” obtained by upsampling, by factorU , the faces F(1)

whose vertices are V(1). We assume that the colors in the
list C(1)

r = C(1) correspond to the refined vertices in V(1)
r . In

particular, the lists have the same length. Here, we subscript
the list of colors by an “r ” to indicate that it corresponds to
the list of refined vertices.

When the vertices V(1) are quantized to V̂(1), the refined
vertices change to V̂(1)

r = r e f ine(V̂(1), F(1), U ). The list of
colors C(1)

r can also be considered as indicating the colors

on V̂(1)
r . The list C(1)

r is the color-related quantity in the ref-
erence frame transmitted from the encoder to the decoder.
The decoder will reconstruct C(1)

r with some loss Ĉ(1)
r . We

now describe the process.
At the encoder, the refined vertices V̂(1)

r are obtained as
described above. These vertices and the color information
form a point cloud (V̂(1)

r , C(1)
r ), which will be voxelized and

compressed as follows. The vertices V̂(1)
r and their associ-

ated color attributes C(1)
r are voxelized using (1), to obtain a

list of voxels V̂(1)
rv , the list of voxel colors C(1)

rv , and the list of
indices I(1)

rv such that (in Matlab notation) V̂(1)
r = V̂(1)

rv (I(1)
rv ).

The list of indices I(1)
rv has the same length as V̂(1)

r , and con-
tains for each vertex in V̂(1)

r the index of its corresponding
vertex in V̂(1)

rv . Particularly, if the upsampling factor U is
large, there may be many refined vertices falling into each
voxel. Hence the list V̂(1)

rv may be significantly shorter than
the list V̂(1)

r (and the list I(1)
rv ). However, unlike the geometry

case, in this case, the list I(1)
rv need not be transmitted since

it can be reconstructed from the decoded geometry.
The list of voxel colors Ĉ(1)

rv , each with unit weight (see
Section IVD), is transformed by RAHT to an equal-length
list of transformed colors TC(1)

rv and associated weights
W(1)

rv . The transformed colors are then uniformly quan-
tized with stepsize �color ,intra to obtain T̂C

(1)
rv . The quan-

tized RAHT coefficients are entropy coded as described in
Section IV using the associated weights, and are transmit-
ted. Finally, T̂C

(1)
rv is inverse transformed byRAHT to obtain

Ĉ(1)
rv . These represent the quantized voxel colors, and will be

used as a reference for subsequent predicted frames.
At the decoder, similarly, the refined vertices V̂(1)

r are
recovered from the decoded geometry information. First
upsampling, by factor U , the faces F(1) whose vertices are
V̂(1) (both of which have been decoded already in the geom-
etry step). V̂(1)

r is then voxelized (without attributes) to
produce the list of voxels V̂(1)

rv and list of indices I(1)
rv such

that V̂(1)
r = V̂(1)

rv (I(1)
rv ). The weights W(1)

rv are recovered by
using RAHT to transform a null signal on the vertices V̂(1)

r ,
each with unit weight. Then T̂C

(1)
rv is entropy decoded using

the recovered weights and inverse transformed by RAHT to
obtain the quantized voxel colors Ĉ(1)

rv . Finally, the quantized
refined vertex colors can be obtained as Ĉ(1)

r = Ĉ(1)
rv (I(1)

rv ).

B) Encoding and decoding of predicted
frames
We assume that all N frames in a GOP are aligned. That
is, the lists of faces, F(1), . . . , F(N), are all identical. More-
over, the lists of vertices, V(1), . . . , V(N), all correspond in
the sense that the i th vertex in list V(1) (say, v(1)(i) = v

(1)
i )

corresponds to the i th vertex in list V(t) (say, v(t)(i) = v
(t)
i ),

for all t = 1, . . . , N . (v(1)(i), . . . , v(N)(i)) is the trajectory
of vertex i over the GOF, i = 1, . . . , Np , where Np is the
number of vertices.

Similarly, when the faces are upsampled by factor U to
create new lists of refined vertices, V(1)

r , . . . , V(N)
r — and

their colors, C(1)
r , . . . , C(N)

r — the ir th elements of these
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lists also correspond to each other across the GOF, ir =
1, . . . , Nc , where Nc is the number of refined vertices, or
the number of colors.

The trajectory {(v(1)(i), . . . , v(N)(i)) : i = 1, . . . , Np}
can be considered an attribute of vertex v(1)(i), and likewise
the trajectories {(v(1)

r (ir ), . . . , v(N)
r (ir )) : ir = 1, . . . , Nc}

and {(c (1)
r (ir ), . . . , c (N)

r (ir )) : ir = 1, . . . , Nc} can be con-
sidered attributes of refined vertex v(1)

r (ir ). Thus the trajec-
tories can be partitioned according to how the vertex v(1)(i)
and the refined vertex v(1)

r (ir ) are voxelized. As for any
attribute, the average of the trajectories in each cell of the
partition is used to represent all trajectories in the cell. Our
scheme codes these representative trajectories. This could
be a problem if trajectories diverge from the same, or nearly
the same, point, for example, when clapping hands sepa-
rately. However, this situation is usually avoided by restart-
ing the GOF by inserting a keyframe, or reference frame,
whenever the topology changes, and by using a sufficiently
fine voxel grid.

In this section, we show how to encode and decode the
predicted frames, i.e., frames t = 2, . . . , N , in each GOF.
The frames are processed one at a time, with no look-ahead,
to minimize latency. The pseudo code can be found in the
Appendix, the encoding is detailed in Algorithm 10, while
decoding is detailed in Algorithm 11.

1) Geometry encoding and decoding
At the encoder, for frame t, as for frame 1, the vertices V(1),
or equivalently the vertices V̂(1), are voxelized. However, for
frame t > 1 the voxelization occurs with attributes V(t). In
this sense, the vertices V(t) are projected back to the refer-
ence frame, where they are voxelized like attributes. As for
frame 1, this produces a possibly slightly shorter list V̂(1)

v

along with a list of indices I(1)
v such that V̂(1) = V̂(1)

v (I(1)
v ). In

addition, it produces an equal-length list of representative
attributes, V(t)

v . Such a list is produced every frame. There-
fore, the previous frame can be used as a prediction. The
prediction residual �V(t)

v = V(t)
v − V̂(t−1)

v is transformed,
quantized with stepsize �motion, inverse transformed, and
added to the prediction to obtain the reproduction V̂(t)

v ,
which goes into the frame buffer. The quantized transform
coefficients are entropy coded.We use adaptive RLGR as the
entropy coder. In this process, the prediction residuals cor-
respond to attributes of a point cloud given by the triangle’s
vertices at the reference frame. Note that the RAHT used
to transform the prediction residual�V(t)

v is built using the
voxelized point cloud at the reference frame V̂(1)

v , which is
different than the RAHT used for color coding.

At the decoder, the entropy code for the quantized trans-
form coefficients of the prediction residual is received,
entropy decoded, inverse transformed, inverse quantized,
and added to the prediction to obtain V̂(t)

v , which goes
into the frame buffer. Finally, V̂(t) = V̂(t)

v (I(1)
v ) is sent to the

renderer.

2) Color encoding and decoding
At the encoder, for frame t > 1, as for frame t = 1, the
refined vertices V̂(1)

r , are voxelized with attributes C(t)
r . In

this sense, the colors C(t)
r are projected back to the refer-

ence frame, where they are voxelized. As for frame t = 1,
this produces a significantly shorter list V̂(1)

rv along with
a list of indices I(1)

rv such that V̂(1)
r = V̂(1)

rv (I(1)
rv ). In addi-

tion, it produces a list of representative attributes, C(t)
rv .

Such a list is produced every frame. Therefore the previous
frame can be used as a prediction. The prediction resid-
ual �C(t)

rv = C(t)
rv − Ĉ(t−1)

rv is transformed, quantized with
stepsize �color ,inter , inverse transformed, and added to the
prediction to obtain the reproduction Ĉ(t)

rv , which goes into
the frame buffer. The quantized transform coefficients are
entropy coded.We use adaptive RLGR as the entropy coder.

At the decoder, the entropy code for the quantized trans-
form coefficients of the prediction residual is received,
entropy decoded, inverse transformed, inverse quantized,
and added to the prediction to obtain Ĉ(t)

rv , which goes
into the frame buffer. Finally, Ĉ(t)

r = Ĉ(t)
rv (I(1)

rv ) is sent to the
renderer.

C) Rendering for visualization and distortion
computation
The decompressed dynamic triangle cloud given by
{V̂(t), Ĉ(t)

r , F(t)}Nt=1 may have varying density across trian-
gles resulting in some holes or transparent looking regions,
which are not satisfactory for visualization. We apply the
triangle refinement function on the set of vertices and
faces from Algorithm 5 and produce the redundant repre-
sentation {V̂(t)

r , Ĉ(t)
r , F(t)

r }Nt=1. This sequence consists of a
dynamic point cloud {V̂(t)

r , Ĉ(t)
r }Nt=1, whose colored points

lie in the surfaces of triangles given by {V̂(t)
r , F(t)

r }Nt=1. This
representation is further refined using a similar method
to increase the spatial resolution by adding a linear inter-
polation function for the color attributes as shown in
Algorithm 6. The output is a denser point cloud, denoted
by {V̂(t)

rr , Ĉ(t)
rr }Nt=1. We use this denser point cloud for visu-

alization and distortion computation in the experiments
described in the next section.

V I . EXPER IMENTS

In this section, we evaluate the RD performance of our sys-
tem, for both intra-frame and inter-frame coding, for both
color and geometry, under a variety of different error met-
rics. Our baseline for comparison to previous work is the
intra-frame coding of colored voxels using octree coding for
geometry [24, 29, 31, 46] and RAHT coding for colors [34].

A) Dataset
Weuse triangle cloud sequences derived from theMicrosoft
HoloLens Capture (HCap) mesh sequences Man, Soccer,
and Breakers.1 The initial frame from each sequence is

1Formally known as 2014_04_30_Test_4ms, 2014_11_07_Soc-
cer_Guy_traditional_Take4, and 2014_11_14_Breakers_modern_minis_
Take4, respectively.
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(a) (b) (c)

Fig. 6. Initial frames of datasetsMan, Soccer, and Breakers. (a) Man. (b) Soccer. (c) Breakers.

Table 2. Dataset statistics. Number of frames, number of GOFs
(i.e., number of reference frames), and average number of vertices
and faces per reference frame, in the original HCap datasets, and

average number of occupied voxels per frame after voxelization with
respect to reference frames. All sequences are 30 fps. For

voxelization, all HCap meshes were upsampled by a factor of
U = 10, normalized to a 1× 1× 1 bounding cube, and then

voxelized into voxels of size 2−J × 2−J × 2−J , J = 10

Sequence # frm # GOF |V|/f |F|/f voxels/f

Man 200 7 11027 19978 561198
Soccer 493 159 18187 33349 505803
Breakers 496 156 12702 23178 411162

shown in Figs 6a–c. In the HCap sequences, each frame is
a triangular mesh. The frames are partitioned into GOFs.
Within each GOF, the meshes are consistent, i.e., the con-
nectivity is fixed but the positions of the triangle vertices
evolve in time. We construct a triangle cloud from each
mesh at time t as follows. For the vertex list V(t) and face
list F(t), we use the vertex and face lists directly from the
mesh. For the color listC(t), we upsample each face by factor
U = 10 to create a list of refined vertices, and then sample
themesh’s texturemap at the refined vertices. The geometric
data are scaled to fit in the unit cube [0, 1]3. Our voxel size
is 2−J × 2−J × 2−J , where J = 10 is the maximum depth
of the octree. All sequences are 30 frames per second. The
overall statistics are described in Table 2.

B) Distortion metrics
Comparing algorithms for compressing colored 3D geome-
try poses some challenges because there is no single agreed
uponmetric or distortionmeasure for this type of data. Even
if one attempts to separate the photometric and geometric

aspects of distortion, there is often an interaction between
the two. We consider several metrics for both color and
geometry to evaluate different aspects of our compression
system.

1) Projection distortion
One common approach to evaluating the distortion of com-
pressed colored geometry relative to an original is to render
both the original and compressed versions of the colored
geometry from a particular point of view, and compare the
rendered images using a standard image distortionmeasure
such as peak signal-to-noise ratio (PSNR).

One question that arises with this approach is which
viewpoint, or set of viewpoints, should be used. Another
question is which method of rendering should be used. We
choose to render from six viewpoints, by voxelizing the
colored geometry of the refined and interpolated dynamic
point cloud {V̂(t)

rr , Ĉ(t)
rr }Nt=1 described in Section VC, and

projecting the voxels onto the six faces of the bounding
cube, using orthogonal projection. For a cube of size 2J ×
2J × 2J voxels, the voxelized object is projected onto six
images each of size 2J × 2J pixels. If multiple occupied vox-
els project to the same pixel on a face, then the pixel takes
the color of the occupied voxel closest to the face, i.e., hid-
den voxels are removed. If no occupied voxels project to a
pixel on a face, then the pixel takes a neutral gray color. The
mean squared error over the six faces and over the sequence
is reported as PSNR separately for each color component:
Y, U, and V. We call this the projection distortion. The pro-
jection distortion measures color distortion directly, but it
also measures geometry distortion indirectly. Thus we will
report the projection distortion as a function of the motion
stepsize (�motion) for a fixed color stepsize (�color ), and vice
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versa, to understand the independent effects of geometry
and color compression on this measure of quality.

2) Matching distortion
A matching distortion is a generalization of the Hausdorff
distance commonly used tomeasure the difference between
geometric objects [43]. Let S and T be source and target sets
of points, and let s ∈ S and t ∈ T denote points in the sets,
with color components (here, luminances) Y(s ) and Y(t),
respectively. For each s ∈ S let t(s ) be a point in T matched
(or assigned) to s , and likewise for each t ∈ T let s (t) be a
point in S assigned to t. The functions t(·) and s (·) need
not be invertible. Commonly used functions are the nearest
neighbor assignments

t∗(s ) = arg min
t∈T

d2(s , t) (3)

s ∗(t) = arg min
s∈S

d2(s , t) (4)

where d2(s , t) is a geometric distortionmeasure such as the
squared error d2(s , t) = ||s − t||22. Given matching func-
tions t(·) and s (·), the forward (one-way) mean squared
matching distortion has geometric and color components

d2
G (S → T) = 1

|S|
∑
s∈S

||s − t(s )||22 (5)

d2
Y(S → T) = 1

|S|
∑
s∈S

|Y(s )− Y(t(s ))|22 (6)

while the backward mean squared matching distortion has
geometric and color components

d2
G (S ← T) = 1

|T |
∑
t∈T

||t − s (t)||22 (7)

d2
Y(S ← T) = 1

|T |
∑
t∈T

|Y(t)− Y(s (t))|22 (8)

and the symmetric mean squared matching distortion has
geometric and color components

d2
G (S , T) = max{d2

G (S → T), d2
G (S ← T)} (9)

d2
Y(S , T) = max{d2

Y(S → T), d2
Y(S ← T)}. (10)

In the event that the sets S and T are not finite, the aver-
ages in (5)–(8) can be replaced by integrals, e.g.,

∫
S ||s −

t(s )||22dμ(s ) for an appropriate measure μ on S . The for-
ward, backward, and symmetric Hausdorff matching dis-
tortions are similarly defined, with the averages replaced by
maxima (or integrals replaced by suprema).

Though there can be many variants on these measures,
for example using averages in (9)–(10) instead of maxima,
or using other norms or robust measures in (5)–(8), these
definitions are consistent with those in [43] when t∗(·) and
s ∗(·) are used as the matching functions. Though we do
not use them here, matching functions other than t∗(·)
and s ∗(·), which take color into account and are smoothed,

such as in [41], may yield distortion measures that are bet-
ter correlated with subjective distortion. In this paper, for
consistency with the literature, we use the symmetric mean
squared matching distortion with matching functions t∗(·)
and s ∗(·).

For each frame t, we compute the matching distortion
between sets S(t) and T (t), which are obtained by the sam-
pling the texture map of the original HCap data to obtain
a high-resolution point cloud (V(t)

rr , C(t)
rr ) with J = 10 and

U = 40. We compare its colors and vertices to the decom-
pressed and color interpolated high resolution point cloud
(V̂(t)

rr , Ĉ(t)
rr ) with interpolation factor Uinter p = 4 described

in Section VC.2 We then voxelize both point clouds and
compute the mean squared matching distortion over all
frames as

d̄2
G =

1

N

N∑
t=1

d2
G (S(t), T (t)) (11)

d̄2
Y =

1

N

N∑
t=1

d2
Y(S(t), T (t)) (12)

and we report the geometry and color components of the
matching distortion in dB as

P S N RG = −10 log10

d̄2
G

3W2
(13)

P S N RY = −10 log10

d̄2
Y

2552
(14)

where W = 1 is the width of the bounding cube.
Note that even though the geometry and color com-

ponents of the distortion measure are separate, there is
an interaction: The geometry affects the matching, and
hence affects the color distortion. Thus we will report the
color component of the matching distortion as a function
of the color stepsize (�color ) for a fixed motion stepsize
(�motion), and vice versa, to understand the independent
effects of geometry and color compression on color quality.
We report the geometry component of the matching dis-
tortion as a function only of the motion stepsize (�motion),
since color compression does not affect the geometry under
the assumed matching functions t∗(·) and s ∗(·).
3) Triangle cloud distortion
In our setting, the input and output of our system are the
triangle clouds (V(t), F(t), C(t)) and (V̂(t), F(t), Ĉ(t)). Thus
natural measures of distortion for our system are

P S N RG = −10 log10

(
1

N

N∑
t=1

||V(t)
r − V̂(t)

r ||22
3W2N(t)

r

)
(15)

P S N RY = −10 log10

(
1

N

N∑
t=1

||Y(t)
r − Ŷ(t)

r ||22
2552N(t)

r

)
, (16)

2Note that the original triangle cloud was obtained by sampling the
HCap data with upsampling factor U = 10. Thus by interpolating the
decompressed triangle cloud with Uinter p = 4, the overall number of ver-
tices and triangles is the same as obtained by sampling the original HCap
data with upsampling factor U = 40.



dynamic polygon clouds: representation and compression for vr/ar 13

whereY(t)
r is the first (i.e, luminance) columnof the N(t)

r × 3
matrix of color attributes C(t)

r and W = 1 is the width of
the bounding cube. These represent the average geometric
and luminance distortions across the faces of the triangles.
P S N RU and P S N RV can be similarly defined.

However, for rendering, we use higher resolution ver-
sions of the triangles, in which both the vertices and the col-
ors are interpolated up fromV(t)

r andC(t)
r usingAlgorithm 6

to obtain higher resolution vertices and colors V(t)
rr and

C(t)
rr . We use the following distortion measures as very close

approximations of (15) and (16):

P S N RG = −10 log10

(
1

N

N∑
t=1

||V(t)
rr − V̂(t)

rr ||22
3W2N(t)

rr

)
(17)

P S N RY = −10 log10

(
1

N

N∑
t=1

||Y(t)
rr − Ŷ(t)

rr ||22
2552N(t)

rr

)
, (18)

whereY(t)
rr is the first (i.e, luminance) columnof the N(t)

rr × 3
matrix of color attributes C(t)

rr and W = 1 is the width of
the bounding cube. P S N RU and P S N RV can be similarly
defined.

4) Transform coding distortion
For the purposes of rate-distortion optimization, and other
rapid distortion computations, it is more convenient to use
an internal distortion measure: the distortion between the
input and output of the transform coder. We call this the
transform coding distortion, defined in dB as

P S N RG = −10 log10

(
1

N

N∑
t=1

||V(t)
v − V̂(t)

v ||22
3W2N(t)

v

)
(19)

P S N RY = −10 log10

(
1

N

N∑
t=1

||Y(t)
rv − Ŷ(t)

rv ||22
2552N(t)

rv

)
, (20)

whereY(t)
rv is the first (i.e, luminance) columnof the N(t)

rv × 3
matrixC(t)

rv . P S N RU and P S N RV can be similarly defined.
Unlike (17)–(18), which are based on system inputs and out-
putsV(t), C(t) and V̂(t), Ĉ(t), (19)–(20) are based on the vox-
elized quantities V(t)

v , C(t)
rv and V̂(t)

v , Ĉ(t)
rv , which are defined

for reference frames in Algorithm 8 (Steps 3, 6, and 9) and
for predicted frames in Algorithm 10 (Steps 2, 7, 9, and 14).
The squared errors in the two cases are essentially the same,
but are weighted differently: one by face and one by voxel.

C) Rate metrics
Aswith the distortion, we report bit rates for compression of
a whole sequence, for geometry and color. We compute the
bit rate averaged over a sequence, in megabits per second,
as

RMbps = bits

10242 N
30 [Mbps] (21)

where N is the number of frames in the sequence, and bits
is the total number of bits used to encode the color or geom-
etry information of the sequence. Also, we report the bit rate

in bits per voxel as

Rbpv = bits∑N
t=1 N(t)

rv

[bpv] (22)

where N(t)
rv is the number of occupied voxels in frame t

and again bits is the total number of bits used to encode
color or geometry for the whole sequence. The number of
voxels of a given frame N(t)

rv depends on the voxelization
used. For example in our triangle cloud encoder, within a
GOF all frames have the same number of voxels because the
voxelization of attributes is done with respect to the refer-
ence frame. For our triangle encoder in all intra-mode, each
frame will have a different number of voxels.

D) Intra-frame coding
We first examine the intra-frame coding of triangle clouds,
and compare it to intra-frame coding of voxelized point
clouds. To obtain the voxelized point clouds, we voxelize the
original mesh-based sequences Man, Soccer, and Breakers
by refining each face in the original sequence by upsampling
factor U = 10, and voxelizing to level J = 10. For each
sequence, and each frame t, this produces a list of occupied
voxels V(t)

rv and their colors Crv .

1) Intra-frame coding of geometry
We compare our method for coding geometry in reference
frames with the previous state-of-the-art for coding geome-
try in single frames. The previous state-of-the art for coding
the geometry of voxelized point clouds [24, 29, 31, 46] codes
the set of occupied voxels V(t)

rv by entropy coding the octree
description of the set. In contrast, our method first approx-
imates the set of occupied voxels by a set of triangles, and
then codes the triangles as a triple (V(t)

v , F(t), I(t)
v ). The ver-

tices V(t)
v are coded using octrees plus gzip, the faces F(t) are

coded directly with gzip, and the indices I(t)
v are coded using

run-length encoding plus gzip as described in Section 1.
When the geometry is smooth, relatively few triangles need
to be used to approximate it. In such cases, ourmethod gains
because the list of vertices V(t)

v is much shorter than the
list of occupied voxels V(t)

rv , even though the list of triangle
indices F(t) and the list of repeated indices I(t)

v must also be
coded.

Taking all bits into account, Table 3 shows the bit rates
for both methods in megabits per second (Mbps) and bits
per occupied voxel (bpv) averaged over the sequences. Our
method reduces the bit rate needed for intra-frame coding
of geometry by a factor of 5–10, breaking through the 2.5 bpv
rule-of-thumb for octree coding.

While it is true that approximating the geometry by tri-
angles is generally not lossless, in this case, the process
is lossless because our ground truth datasets are already
described in terms of triangles.

2) Intra-frame coding of color
Our method of coding color in reference frames is identical
with the state-of-the art for coding color in single frames,
using transform coding based on RAHT, described in [34].
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Table 3. Intra-frame coding of the geometry of voxelized
point clouds. “Previous” refers to our implementation of
the octree coding approach described in [24, 29, 31, 46]

Previous Ours

Sequence Mbps bpv Mbps bpv

Man 50.7 3.20 5.24 0.33
Soccer 37.6 2.61 6.39 0.44
Breakers 43.7 3.28 4.88 0.36

Fig. 7. RD curves for temporal geometry compression. Rates include all geom-
etry information.

For reference, the rate-distortion results for color intra-
frame coding are shown in Fig. 12 (where we compare to
color inter-frame coding).

E) Temporal coding: transform coding
distortion-rate curves
Wenext examine temporal coding, bywhichwemean intra-
frame coding of the first frame, and inter-frame coding of
the remaining frames, in each GOF as defined by stretches
of consistent connectivity in the datasets. We compare tem-
poral coding to all-intra coding of triangle clouds using the
transform coding distortion.We show that temporal coding
provides substantial gains for geometry across all sequences,
and significant gains for color on one of the three sequences.

1) Temporal coding of geometry
Figure 7 shows the geometry transform coding distortion
P S N RG (19) as a function of the bit rate needed for geom-
etry information in the temporal coding of the sequences
Man, Soccer, and Breakers. It can be seen that the geome-
try PSNR saturates, at relatively low bit rates, at the highest
fidelity possible for a given voxel size 2−J , which is 71 dB
for J = 10. In Fig. 8, we show on the Breakers sequence
that quality within 0.5 d B of this limit appears to be suf-
ficiently close to that of the original voxelization without
quantization. At this quality, for Man, Soccer, and Breakers
sequences, the encoder in temporal codingmode has geom-
etry bit rates of about 1.2, 2.7, and 2.2Mbps (corresponding
to 0.07, 0.19, 0.17 bpv [47]), respectively. For comparison,
the encoder in all-intra coding mode has geometry bit rates
of 5.24, 6.39, and 4.88Mbps (0.33, 0.44, 0.36 bpv), respec-
tively, as shown in Table 3. Thus temporal coding has a
geometry bit rate savings of a factor of 2–5 over our intra-
frame coding only, and a factor of 13–45 over previous
intra-frame octree coding.

A temporal analysis is provided in Figs 9 and 10. Figure 9
shows the number of kilobits per frame needed to encode
the geometry information for each frame. The number of
bits for the reference frames are dominated by their octree
descriptions, while the number of bits for the predicted
frames depends on the quantization stepsize for motion
residuals, �motion. We observe that a significant bit reduc-
tion can be achieved by lossy coding of residuals. For
�motion = 4, there is more than a 3x reduction in bit rate
for inter-frame coding relative to intra-frame coding.

Figure 10 shows the mean squared quantization error

MS EG = 1

N

N∑
t=1

||V(t)
v − V̂(t)

v ||22
3W2N(t)

v

, (23)

which corresponds to the P S N RG in (19). Note that for ref-
erence frames, themean squared error is well approximated
by

||V(1)
v − V̂(1)

v ||22
3W2N(t)

v

≈ 2−2J

12
�= ε2. (24)

Thus for reference frames, the MS EG falls to ε2, while for
predicted frames, the MS EG rises from ε2 depending on
the motion stepsize �motion.

(a) (b) (c)

Fig. 8. Visual quality of geometry compression. Bit rates correspond to all geometry information. (a) original, (b) 62 dB (1.6 Mbps), (c) 70.5 dB (2.2 Mbps).
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(a) (b) (c)

Fig. 9. Kilobits/frame required to code the geometry information for each frame for different values of the motion residual quantization stepsize
�motion ∈ {1, 2, 4, 8}. Reference frames encode V(1)

v using octree coding plus gzip and encode I(1)v using run-length coding plus gzip. Predicted frames encode
their motion residuals �V(t) using transform coding. (a) Man, (b) Soccer, (c) Breakers.

(a) (b) (c)

Fig. 10. Mean squared quantization error required to code the geometry information for each frame for different values of the motion residual quantization stepsize
�motion ∈ {1, 2, 4, 8}. Reference frames encode V(1)

v using octrees; hence the distortion is due to quantization error is ε2. Predicted frames encode their motion
residuals �V(t) using transform coding. (a) Man, (b) Soccer, (c) Breaker.

2) Temporal coding of color
To evaluate color coding, first, we consider separate
quantization stepsizes for reference and predicted frames
�color ,intra and �color ,inter , respectively. Both take values in
{1, 2, 4, 8, 16, 32, 64}.

Figure 11 shows the color transform coding distortion
P S N RY (20) as a function of the bit rate needed for all
(Y , U , V) color information for temporal coding of the
sequences Man, Soccer, and Breakers, for different combi-
nations of �color ,intra and �color ,inter , where each colored
curve corresponds to a fixed value of �color ,intra . It can be
seen that the optimal RD curve is obtained by choosing
�color ,intra = �color ,inter , as shown in the dashed line.

Next, we consider equal quantization stepsizes for ref-
erence and predicted frames, hereafter designated simply
�color .

Figure 12 shows the color transform coding distortion
P S N RY (20) as a function of the bit rate needed for all
(Y , U , V) color information for temporal coding and all-
intra coding on the sequences Man, Soccer, and Breakers.
We observe that temporal coding outperforms all-intra cod-
ing by 2-3 dB for the Breakers sequence. However, for the
Man and Soccer sequences, their RD performances are sim-
ilar. Further investigation is needed on when and how gains
can be achieved by the predictive coding of color.

A temporal analysis is provided in Figs 13 and 14. In
Fig. 13, we show the bit rates (Kbit) to compress the color

information for the first 100 frames of all sequences. We
observe that, as expected, for smaller values of �color the
bit rates are higher, for all frames. For Man and Soccer
sequences, we observe that the bit rates do not vary much
from reference frames to predicted frames; however, in the
Breakers sequence, it is clear that for all values of �color the
reference frames have much higher bit rates compared to
predicted frames, which confirms the results from Fig. 12,
where temporal coding provides gains with respect to all-
intra coding of triangle clouds for theBreakers sequence, but
not for the Man and Soccer sequences. In Fig. 14, we show
the mean squared error (MSE) of the Y color component
for the first 100 frames of all sequences. For �color ≤ 4 the
error is uniform across all frames and sequences.

3) Comparison of dynamic mesh compression
We now compare our results to the dynamicmesh compres-
sion in [21], which uses a distortion measure similar to the
transform coding distortionmeasure, and reports results on
a version of theMan sequence.

For geometry coding, Fig. 5 in [21] shows that when their
geometry distortion is 70.5 dB, their geometry bit rate is
about 0.45 bpv. As shown in Fig. 7, at the same distortion,
our bit rate is about 1.2Mbps (corresponding to about 0.07
bpv [47]), which is lower than their bit rate by a factor of 6x
or more.
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Fig. 11. Luminance (Y) component rate-distortion performances of (top)Man,
(middle) Soccer and (bottom) Breakers sequences, for different intra-frame
stepsizes �color ,intra . Rate includes all (Y , U , V) color information.

For color coding, Fig. 5 in [21] shows that when their
color distortion is 40 dB, their color bit rate is about 0.8 bpv.
As shown in Fig. 12, at the same distortion, our bit rate is
about 30Mbps (corresponding to about 1.8 bpv [47]).

Overall, their bit rate would be about 0.45+ 0.8 = 1.3
bpv, while our bit rate would be about 0.07+ 1.8 = 1.9 bpv.

Fig. 12. Temporal coding versus all-intra coding. The bit rate contains all (Y ,U ,
V) color information, although the distortion is only the luminance (Y) PSNR.

However, it should be cautioned that the sequence com-
pressed in [21] is not the originalMan sequence used in our
work but rather a smooth mesh fit to a low-resolution vox-
elization (J = 9) of the sequence. Hence it has smoother
color as well as smoother geometry, and should be easier to
code. Nevertheless, it is a point of comparison.

F) Temporal coding: triangle cloud,
projection, and matching distortion-rate
curves
In this section, we show distortion rate curves using the tri-
angle cloud, projection, and matching distortion measures.
All distortions in this section are computed from high-
resolution triangle clouds generated from the originalHCap
data, and from the decompressed triangle clouds. For com-
putational complexity reasons, we show results only for the
Man sequence, and consider only its first four GOFs (120
frames).

1) Geometry coding
First, we analyze the triangle cloud distortion andmatching
distortion of geometry as a function of geometry bit rate.
The RD plots are shown in Fig. 15.We observe that both dis-
tortionmeasures start saturating at the same point as for the
transform coding distortion: around�motion = 4. However,
for these distortion measures, the saturation is not as pro-
nounced. This suggests that these distortion measures are
quite sensitive to small amounts of geometric distortion.

Next, we study the effect of geometry compression on
color quality. In Fig. 16, we show the Y component PSNR
for the projection and matching distortion measures. The
color has been compressed at the highest bit rate considered,
using the same quantization step for intra and inter color
coding, �color = 1. Surprisingly, we observe a significant
influence of the geometry compression on these color dis-
tortion measures, particular for �motion > 4. This indicates
very high sensitivity to geometric distortion of the projec-
tion distortion measure and the color component of the
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(a) (b) (c)

Fig. 13. Kilobits/frame required to code the color information for each frame for different values of the color residual quantization stepsize �color ∈ {1, 2, 4, 8}.
Reference frames encode their colors C(1)

rv and predicted frames encode their color residuals �C(t)
rv using transform coding. (a) Man, (b) Soccer, (c) Breakers.

(a) (b) (c)

Fig. 14. Mean squared quantization error required to code the color information for each frame for different values of the color residual quantization step-
size �color ∈ {1, 2, 4, 8}. Reference frames encode their colors C(1)

rv and predicted frames encode their color residuals �C(t)
rv using transform coding. (a) Man,

(b) Soccer, (c) Breakers.

Fig. 15. RD curves for geometry triangle cloud and matching distortion versus
geometry bit rates (Man sequence).

matching distortion measure. This hyper-sensitivity can be
explained as follows. For the projection distortion measure,
geometric distortion causes local shifts of the image. As is
well known, PSNR, as well as other image distortion mea-
sures including structural similarity index, fall apart upon
image shifts. For the matching metric, since the matching
functions s ∗ and t∗ depend only on geometry, geometric

Fig. 16. RD curves for color triangle cloud and matching distortion versus
geometry bit rates (Man sequence). The color stepsize is set to �color = 1.

distortion causes inappropriate matches, which affect the
color distortion across those matches.

2) Color coding
Finally, we analyze the RD curve for color coding as a func-
tion of color bit rate. We plot Y component PSNR for the
triangle cloud, projection, and matching distortion mea-
sures in Fig. 17. For this experiment, we consider the color
quantization steps equal for intra and inter coded frames.
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Fig. 17. RD curves for color triangle cloud, projection, and matching distortion
versus color bit rates (Man sequence). Themotion stepsize is set to�motion = 1.

The motion step is set to �motion = 1. For all three distor-
tionmeasures, the PSNR saturates very quickly. Apparently,
this is because the geometry quality severely limits the color
quality under any of these three distortion measures, even
when the geometry quality is high (�motion = 1). In par-
ticular, when �motion = 1, for color quantization stepsizes
smaller than �color = 8, color quality does not improve
significantly under these distortion measures, while under
the transform coding distortion measure, the PSNR
continues to improve, as shown in Fig. 11. Whether the
hyper-sensitivity of the color projection and colormatching
distortion measures to geometric distortion are perceptu-
ally justified is questionable, but open to further investiga-
tion.

3) Comparison of dynamic point cloud
compression
Notwithstanding possible issues with the color projection
distortion measure, it provides an opportunity to compare
our results on dynamic triangle cloud compression to the
results on dynamic point cloud compression in [41]. Like
us, [41] reports results on a version of the Man sequence,
using the projection distortion measure.

Figure 17 shows that for triangle cloud compression, the
projection distortion reaches 38.5 dB at around 30Mbps
(corresponding to less than 2 bpv [47]). In comparison,
Fig. 10a in [41] shows that for dynamic point cloud com-
pression, the projection distortion reaches 38.5 dB at around
3 bpv. Hence it seems that our dynamic triangle cloud com-
pression may be more efficient than point cloud compres-
sion under the projection distortion measure. However, it
should be cautioned that the sequence compressed in [41]
is a lower resolution (J = 9) version of the Man sequence
rather than the higher resolution version (J = 10) used in
our work. Moreover, Fig. 17 in our paper reports the distor-
tion between the original signal (with uncoded color and
uncoded geometry) to the coded signal (with coded color
and coded geometry), while Fig. 10a in [41] reports the dis-
tortion between the signal with uncoded color and coded

geometry to the signal with coded color and identically
coded geometry. In the latter case, the saturation of the color
measure due to geometric coding is not apparent.

V I I . CONCLUS ION

When coding for video, the representation of the input to
the encoder and the representation of the output of the
decoder are clear: sequences of rectangular arrays of pixels.
Furthermore, distortion measures between the two repre-
sentations are well accepted in practice.

Two leading candidates for the codec’s representation for
augmented reality to this point have been dynamic meshes
and dynamic point clouds. Each has its advantages and dis-
advantages. Dynamic meshes are more compressible but
less robust to noise and non-surface topologies. Dynamic
point clouds aremore robust, but removing spatio-temporal
redundancies is much more challenging, making them dif-
ficult to compress.

In this paper, we proposed dynamic polygon clouds,
which have the advantages of bothmeshes and point clouds,
without their disadvantages. We provided detailed algo-
rithms on how to compress them, and we used a variety of
distortion measures to evaluate their performance.

For intra-frame coding of geometry, we showed that
compared to the previous state-of-the-art for intra-frame
coding of the geometry of voxelized point clouds, our
method reduces the bit rate by a factor of 5–10 with neg-
ligible (but non-zero) distortion, breaking through the 2.5
bpv rule-of-thumb for lossless coding of geometry in vox-
elized point clouds. Intuitively, these gains are achieved by
reducing the representation from a dense list of points to a
less dense list of vertices and faces.

For inter-frame coding of geometry, we showed that
compared to ourmethod of intra-frame coding of geometry,
we can reduce the bit rate by a factor of 3 or more. For tem-
poral coding, this results in a geometry bit rate savings of a
factor of 2–5 over all-intra coding. Intuitively, these gains
are achieved by coding the motion prediction residuals.
Multiplied by the 5–10 x improvement of our intra-frame
coding compared to previous octree-based intra-frame cod-
ing, we have demonstrated a 13–45 x reduction in bit rate
over previous octree-based intra-frame coding.

For inter-frame coding of color, we showed that com-
pared to our method of intra-frame coding of color (which
is the same as the current state-of-the-art for intra-frame
coding of color [34]), our method reduces the bit rate by
about 30 or alternatively increases the PSNR by about
2 dB (at the relevant level of quality) for one of our three
sequences. For the other two sequences, we found little
improvement in performance relative to the intra-frame
coding of color. This is amatter for further investigation, but
one hypothesis is that the gain is dependent upon the qual-
ity of the motion estimation. Intuitively, gains are achieved
by coding the color prediction residuals, and the color pre-
diction is accurate only if the motion estimation is accurate.
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We compared our results on triangle cloud compres-
sion to recent results in dynamic mesh compression and
dyanamic point cloud compression. The comparisons are
imperfect due to somewhat different datasets and distor-
tionmeasures, which likely favor the earlier work. However,
they indicate that compared to dynamicmesh compression,
our geometry codingmay have a bit rate 6x lower, while our
color coding may have a bit rate 2.25x higher. At the same
time, compared to dynamic point cloud compression, our
overall bit rate may be about 33 lower.

Ourwork also revealed the hyper-sensitivity of distortion
measures such as the color projection and color matching
distortion measures to geometry coding.

Future work includes better transforms and better
entropy coders, RD optimization, better motion compen-
sation, more perceptually relevant distortion measures and
post-processing filtering.
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APPEND IX

Algorithm 5 Refinement (refine)
Input: V, F, U
1: Vi = V(F(:, i), :), i = 1, 2, 3 // i th vertex of all faces
2: Initialize Vr = empty list
3: for i = 0 to U do
4: for j = 0 to U − i do
5: Vr = [Vr ; V1 + (V2 − V1)i/U + (V3 − V1) j/U ]
6: end for
7: end for

Output: Vr

Algorithm 6 Refinement and Color Interpolation
Input: Vr , Cr , Fr , Uinter p

1: Vi = Vr (Fr (:, i), :), i = 1, 2, 3 // i th vertex of all faces
2: Ci = Cr (Fr (:, i), :), i = 1, 2, 3 // color on i-th vertex
3: Initialize Vrr = Crr = empty list
4: for i = 0 to Uinter p do
5: for j = 0 to Uinter p − i do
6: Vrr = [Vrr ; V1 + (V2 − V1)i/Uinter p +

(V3 − V1) j/Uinter p]
7: Crr = [Crr ; C1 + (C2 − C1)i/Uinter p +

(C3 − C1) j/Uinter p]
8: end for
9: end for

Output: Vrr , Crr

Algorithm 7 Uniform scalar quantization (quantize)
Input: A, s tep, midr iseO Rmids tep
1: if midr iseO Rmids tep = mids tep then
2: Â = round(A/s tep) ∗ s tep
3: else // midr iseO Rmids tep = midr ise
4: Â = [round(A/s tep − 0.5)+ 0.5] ∗ s tep
5: end if

Output: Â
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Algorithm 8 Encode reference frame (I-encoder)
Input: J , U , �color ,intra (from system parameters)
Input: V(1), F(1), C(1)

r (from system input)
1: // Geometry
2: V̂(1) = quanti ze(V(1), 2−J , midr ise)
3: [V̂(1)

v , V(1)
v , I(1)

v ] = voxel i ze(V̂(1), V(1), J ) s.t. V̂(1) =
V̂(1)

v (I(1)
v )

4: // Color
5: V̂(1)

r = r e f ine(V̂(1), F(1), U )

6: [V̂(1)
rv , C(1)

rv , I(1)
rv ] = voxel i ze(V̂(1)

r , C(1)
r , J ) s.t. V̂(1)

r =
V̂(1)

rv (I(1)
rv )

7: [TC(1)
rv , W(1)

rv ] = R AHT(V̂(1)
rv , C(1)

rv , J )

8: T̂C
(1)
rv = quanti ze(TC(1)

rv , �color ,intra , mids tep)

9: Ĉ(1)
rv = I R AHT(V̂(1)

rv , T̂C
(1)
rv , J )

Output: code(V̂(1)
v ), code(I(1)

v ), code(F(1)), code(T̂C
(1)
rv )

(to reference frame decoder)
Output: V̂(1), V̂(1)

r (to predicted frame encoder)
Output: V̂(1)

v , Ĉ(1)
rv (to reference frame buffer)

Algorithm 9 Decode reference frame (I-decoder)
Input: J , U , �color ,intra (from system parameters)
Input: code(V̂(1)

v ), code(I(1)
v ), code(F(1)), code(T̂C

(1)
rv )

(from reference frame encoder)
1: // Geometry
2: V̂(1) = V̂(1)

v (I(1)
v )

3: // Color
4: V̂(1)

r = r e f ine(V̂(1), F(1), U )

5: [V̂(1)
rv , I(1)

rv ] = voxel i ze(V̂(1)
r , J ) s.t. V̂(1)

r = V̂(1)
rv (I(1)

rv )

6: W(1)
rv = R AHT(V̂(1)

rv , J )

7: Ĉ(1)
rv = I R AHT(V̂(1)

rv , T̂C
(1)
rv , J )

8: Ĉ(1)
r = Ĉ(1)

rv (I(1)
rv )

Output: V̂(1), F(1), Ĉ(1)
r (to renderer)

Output: V̂(1)
v , I(1)

v , V̂(1)
rv , I(1)

rv (to predicted frame decoder)
Output: V̂(1)

v , Ĉ(1)
rv (to reference frame buffer)

Algorithm 10 Encode predicted frame (P-encoder)
Input: J , �motion, �color ,inter (from system parameters)
Input: V(t), C(t)

r (from system input)
Input: V̂(1), V̂(1)

r (from reference frame encoder)
Input: V̂(t−1)

v , Ĉ(t−1)
rv (from previous frame buffer)

1: // Geometry
2: [V̂(1)

v , V(t)
v , I(1)

v ] = voxel i ze(V̂(1), V(t), J ) s.t. V̂(1) =
V̂(1)

v (I(1)
v )

3: �V(t)
v = V(t)

v − V̂(t−1)
v

4: [T�V(t)
v , W(1)

v ] = R AHT(V̂(1)
v , �V(t)

v , J )

5: T̂�V
(t)

v = quanti ze(T�V(t)
v , �motion, mids tep)

6: �̂V
(t)
v = I R AHT(V̂(1)

v , T̂�V
(t)

v , J )

7: V̂(t)
v = V̂(t−1)

v + �̂V
(t)
v

8: // Color
9: [V̂(1)

rv , C(t)
rv , I(1)

rv ] = voxel i ze(V̂(1)
r , C(t)

r , J ) s.t. V̂(1)
r =

V̂(1)
rv (I(1)

rv )

10: �C(t)
rv = C(t)

rv − Ĉ(t−1)
rv

11: [T�C(t)
rv , W(1)

rv ] = R AHT(V̂(1)
rv , �C(t)

rv , J )

12: T̂�C
(t)

rv = quanti ze(T�C(t)
rv , �color ,inter , mids tep)

13: �̂C
(t)
rv = I R AHT(V̂(1)

rv , T̂�C
(t)

rv , J )

14: Ĉ(t)
rv = Ĉ(t−1)

rv + �̂C
(t)
rv

Output: code(T̂�V
(t)

v ), code(T̂�C
(t)

rv ) (to predicted frame
decoder)

Output: V̂(t)
v , Ĉ(t)

rv (to previous frame buffer)

Algorithm 11 Decode predicted frame (P-decoder)
Input: J ,U ,�motion,�color ,inter (from system parameters)

Input: code(T̂�V
(t)

v ), code(T̂�C
(t)

rv ) (from predicted
frame encoder)

Input: V̂(1)
v , I(1)

v , V̂(1)
rv , I(1)

rv (from reference frame decoder)
Input: V̂(t−1)

v , Ĉ(t−1)
rv (from previous frame buffer)

1: // Geometry
2: W(1)

v = R AHT(V̂(1)
v , J )

3: �̂V
(t)
v = I R AHT(V̂(1)

v , T̂�V
(t)

v , J )

4: V̂(t)
v = V̂(t−1)

v + �̂V
(t)
v

5: V̂(t) = V̂(t)
v (I(1)

v )

6: // Color
7: W(1)

rv = R AHT(V̂(1)
rv , J )

8: �̂C
(t)
rv = I R AHT(V̂(1)

rv , T̂�C
(t)

rv , J )

9: Ĉ(t)
rv = Ĉ(t−1)

rv + �̂C
(t)
rv

10: Ĉ(t)
r = Ĉ(t)

rv (I(1)
rv )

Output: V̂(t), F(1), Ĉ(t)
r (to renderer)

Output: V̂(t)
v , Ĉ(t)

rv (to previous frame buffer)
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