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Covariance selection quality through detection
problem and AUC bounds

navid tafaghodi khajavi and anthony kuh

Graphical models are increasingly being used in many complex engineering problems to model the dynamics between states of
the graph. These graphs are often very large and approximation models are needed to reduce the computational complexity.
This paper considers the problem of quantifying the quality of an approximation model for a graphical model (model selection
problem). The model selection often uses a distance measure such as the Kullback–Leibler (KL) divergence between the original
distribution and the model distribution to quantify the quality of the model approximation. We extend and broaden the body
of research by formulating the model approximation as a detection problem between the original distribution and the model
distribution. We focus on Gaussian random vectors and introduce the Correlation Approximation Matrix (CAM) and use the
Area Under the Curve (AUC) for the formulated detection problem. The closeness measures such as the KL divergence, the log-
likelihood ratio, and the AUC are functions of the eigenvalues of the CAM. Easily computable upper and lower bounds are found
for the AUC. The paper concludes by computing these measures for real and synthetic simulation data. Tree approximations
and more complex graphical models are considered for approximation models.
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I . I NTRODUCT ION

Graphical models are useful tools for describing the geo-
metric structure of networks in numerous applications such
as energy, social, sensor, biological, and transportation net-
works [1] that deal with high-dimensional data. Learning
from these high-dimensional data requires large computa-
tion powerwhich is not always available [2, 3]. The hardware
limitation for different applications forces us to compro-
mise between the accuracy of the learning algorithm and
its time complexity by using the best possible approxima-
tion algorithm given the constrained graph. In other words,
the main concern is to compromise between model com-
plexity and its accuracy by choosing a simpler, yet informa-
tive model. To address this concern, many approximation
algorithms are proposed for model selection and impos-
ing structure given data. For the Gaussian distribution, the
covariance selection problem is presented and studied in [4,
5]. This paper goes beyond the seminalwork of [6] onmodel
approximation by formulating the model approximation
problem as a detection problem. The detection problem
allows us to look at the model approximation problem in
a broader and more accurate way, by being able to study
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new measures to assess the approximation quality and to
look at the distribution of the sufficient statistic under each
hypothesis. Here, we introduce the CorrelationApproxima-
tion Matrix (CAM) and use the CAM to assess the quality
of the approximation by relating the CAM to information
divergences (e.g. Kullback–Leibler (KL) divergence) and the
Area Under the Curve (AUC). The CAM, AUC, and reverse
KL divergence give new qualitative insights into the quality
of the model approximation.
The ultimate purpose of the covariance selection prob-

lem is to reduce the computational complexity in various
applications.One of the special approximationmodels is the
tree approximation model. Tree approximation algorithms
are among the algorithms that reduce the number of com-
putations to get quicker approximate solutions to a variety
of problems. If a treemodel is used, then distributed estima-
tion algorithms such as message passing algorithm [7] and
the belief propagation algorithm [8] can easily be applied
and are guaranteed to converge to the maximum likelihood
solution.
The Chow-Liu algorithmdiscussed in [9] gives amethod

for constructing a tree that minimizes the KL divergence
between the model and model tree approximation. The
Chow-Liu Minimum Spanning Tree (MST) algorithm for
Gaussian distributions is to find the optimal tree structure
using a KL divergence cost function [4]. The Chow-Liu
MST algorithm constructs a weighted graph by computing
pairwise mutual information and then utilizes one of the
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MST algorithms such as the Kruskal algorithm [10] or the
Prim algorithm [11].How good is the Chow-Liu solution that
minimizes the KL divergence? Can we formulate other mea-
sures to assess the model approximation? These questions
are becoming more important to answer as we study engi-
neering applications that are modeled by larger and larger
graphical models thus requiring simple model approxima-
tions. Before addressing these questions (which is the topic
of this paper), we discuss other work and an application.
Other research in approximating the correlation matrix

and the inverse correlationmatrix with a more sparse graph
representation while retaining good accuracy include the
first order Markov chain approximation [10], penalized
likelihood methods such as LASSO [5, 12], and graphi-
cal LASSO [13]. The first order Markov chain approxima-
tion method uses a regret cost function to output first-
order Markov chain structured graph [14] by utilizing a
greedy type algorithm. Penalized likelihoodmethods use an
L1-norm penalty term in order to sparsify the graph repre-
sentation and eliminate some edges. Recently, a tree approx-
imation in a linear, underdetermined model is proposed in
[15] where the solution is based on expectation, maximiza-
tion algorithm combined with the Chow Liu algorithm.
Sparse modeling has many applications in distributed

signal processing and machine learning over graphs. One
important application is monitoring the electric power grid
at the distribution level. The smart grid is a promising solu-
tion that delivers reliable energy to consumers through the
power grid when there are uncertainties such as distributed
renewable energy generation sources. Smart grid technolo-
gies such as smart meters and communication links are
added to the distribution grid in order to obtain the high-
dimensional, real-time data and information and overcome
uncertainties and unforeseen faults. The future grid will
incorporate distributed renewable energy generation such
as solar photovoltaics, with these energy sources being
intermittent and highly correlated. Here we canmodel both
energy sources and energy users by nodes on a graph with
edges representing electric feeder lines. The graphs for dis-
tribution networks can be very large with renewable energy
sources adding complexity to the graphs. This necessitates
the need for model selection.
This paper discusses the quality of the model selection,

focusing on the Gaussian case, i.e. covariance selection
problem. We ask the following important question: “given
an approximation model, is the model approximation of the
covariancematrix for the Gaussianmodel a good approxima-
tion?" To answer this question, we need to pick a closeness
criterion which has to be coherent and general enough to
handle a wide variety of problems and also has asymptotic
justification [16]. In many applications, the – KL divergence
has been proposed as a closeness criterion between the orig-
inal distribution and its model approximation distribution
[4, 9]. Besides that, other closeness measures and diver-
gences are used for the model selection. One example is the
use of the reverse KL divergence as the closeness criterion
in variational methods to learn the desired approximation
structure [17].

In this paper, we bring a different perspective to quantify
the quality of the model approximation problem by formu-
lating a general detection problem. This formulation gives
statistical insight on how to quantify a selectedmodel. Also,
the detection problem formulation leads to the calculation
of the log-likelihood ratio test (LLRT) statistic, theKLdiver-
gence and the reverse KL divergence as well as the receiver
operating characteristic (ROC) curve and the area under the
ROC curve (AUC) where the AUC is used as the accuracy
measure for the detection problem. The detection problem
formulation is a different approach which gives us a broader
view by determining whether a particular model is a good
approximation or not. The AUC does not depend on a spe-
cific operating point on the ROC and broadly summarizes
the entire detection framework. It also effectively combines
the detection probability and the false-alarm probability
into one measure. The AUC determines the inherent ability
of the test to distinguish (in conventional detection prob-
lem) or not to distinguish (in model approximation prob-
lem) between two hypotheses/models.More specifically, the
detection formulation and particularly the AUC gives us
additional insight about any approximation since it is a
way to formalize the model approximation problem. This
fact is the contribution of this paper and leads to qualitative
insights by computing AUC and its bounds. For Gaussian
data, the LLRT statistic simplifies to an indefinite quadratic
form. We define a key quantity which is the CAM. The
CAM is the product of the original correlation matrix and
the inverse of the model approximation correlation matrix.
For Gaussian data, this matrix contains all the information
needed to compute the information divergences, the ROC
curve and the area under the ROC curve, i.e. the AUC.
We also show the relationship between the CAM, the AUC
and the Jeffreys divergence [18], the KL divergence and the
reverse KL divergence. We present an analytical expression
to compute the AUC for a given CAM that can be effi-
ciently evaluated numerically. We then show the relation
between the AUC, the KL divergence, the LLRT statistics,
and the ROC curve. We also present analytical upper and
lower bounds for the AUC which only depend on eigen-
values of the CAM. Throughout the discussion section, we
pick the tree approximation model as a well-known subset
of all graphical models. The tree approximation is consid-
ered since they are widely used in literature and it is much
simpler performing inference and estimation on trees rather
than graphs that have cycles or loops. We perform simula-
tions over synthetic and real data for several examples to
explore and discuss our results. Simulation results indicate
that 1−AUC is decreasing exponentially as the number of
nodes in the graph increases which is consistent with the
analytical results obtained from the AUC upper and lower
bounds.
The rest of this paper is organized as follows. In

Section II, we give a general framework for the detection
problem and the corresponding sufficient test statistic, the
log-likelihood ratio test. The LLRT for Gaussian data as well
as its distribution under both hypotheses are also presented
in this section. The ROC curve and the AUC definition, as
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well as an analytical expression for the AUC, are given in
Section III. Section IV provides analytical lower and upper
bounds for the AUC. The lower bound for the AUC uses
the Chernoff bound and is a function of the CAM eigenval-
ues. The upper bound is obtained by finding a parametric
relationship between the AUC and the KL and reverse KL
divergences. Then, Section V presents the tree approxima-
tion model and provides some simulations over synthetic
examples as well as real solar data examples and investigates
the quality of the tree approximation based on the numeri-
cally evaluated AUC and also its analytical upper and lower
bounds. Finally, SectionVI summarizes results of this paper
and discusses future directions for research.

I I . DETECT ION PROBLEM
FRAMEWORK

In this section, we present a framework to quantify the qual-
ity of a model selection. More specifically, we formulate a
detection problem to distinguish between the covariance
matrix of amultivariate normal distribution and an approx-
imation of the aforementioned covariance matrix based on
the given model. A key quantity, the Correlation Approxi-
mation Matrix (CAM) is introduced in this section and for
Gaussian data, we can calculate the KL divergence and log-
likelihood ratios, that all depend on the eigenvalues of the
CAM.

A) Model selection problem
We want to approximate a multivariate distribution by the
product of lower order component distributions [19]. Let
random vector X ∈ R

n, have a distribution with parame-
ter�, i.e. X ∼ fX(x). We want to approximate the random
vector X , with another random vector associated with the
desired model.1 Let the model random vector XM ∈ R

n

have a distribution with parameter�M, associated with the
desired model, i.e. X ∼ fXM(x). Also, let G = (V , EM) be
the graph representation of the model random vector XM
where sets V and EM are the set of all vertices and the
set of all edges of the graph representing of XM, respec-
tively. Moreover, EM ⊆ ψ where ψ is the set of all edges of
a complete graph with vertex set V .
Remark. Covariance selection is presented in [4]. Moreover,
tree model as a special case for themodel selection is discussed
in subsection A.

B) General detection framework
The model selection is extensively studied in the literature
[4]. Minimizing the KL divergence between two distribu-
tions or the maximum likelihood criterion are proposed in
many state of the art works to quantify the quality of the
model approximation. A different way to look at the prob-
lemof quantifying the quality of themodel approximation is

1Examples of possible models: tree structure, sparse structure and
Markov chain.

to formulate a detection problem [20]. Given the set of data,
the goal of the detection problem is to distinguish between
the null hypothesis and the alternative hypothesis. To set up
a detection problem for the model selection, we need to
define these two hypotheses as follows

- The null hypothesis, H0: data are generated using the
known/original distribution,

- The alternative hypothesis, H1: data are generated using
the model/approximated distribution.

Given the set up for the null hypothesis and the alterna-
tive hypothesis, we need to define a test statistic to quan-
tify the detection problem. The likelihood ratio test (the
Neyman–Pearson (NP) Lemma [21]) is the most powerful
test statistic where we first define the LLRT as

l(x) = log fX(x|H1)

fX(x|H0)
= log fXM(x)

fX(x)

where fX(x|H0) is the random vector X distribution under
the null hypothesis while fX(x|H1) is the random vector X
distribution under the alternative hypothesis.
Let l(X) be the LLRT statistic random variable. Then, we

define the false-alarm probability and the detection probabil-
ity by comparing the LLRT statistic under each hypothesis
with a given threshold, τ, and computing the following
probabilities

- The false-alarm probability, P0(τ), under the null hypoth-
esis,H0: P0(τ) = Pr(l(X) ≥ τ|H0),

- The detection probability, P1(τ), under the alternative
hypothesis,H1: P1(τ) = Pr(l(X) ≥ τ|H1).

The NP Lemma [21] is the most powerful test at a given
false-alarm rate (significant level). Themost powerful test is
defined by setting the false-alarm rate P0(τ) = P̄0 and then
computing the threshold value τ = τ0 such that Pr(l(X) ≥
τ0|H0) = P̄0.

Definition 1. The KL divergence between two multivariate
continuous distributions with probability density functions
(PDF) pX(x) and qX(x) is defined as

D(pX(x)||qX(x)) =
∫
X

pX(x) log
pX(x)

qX(x)
dx

where X is the feasible set.

Throughout this paper, we may use other notation such
as the KL divergence between two covariance matrices for
zero-mean Gaussian distribution case or the KL divergence
between two random variables in order to present the KL
divergence between two distributions.

Proposition 1. Expectation of the LLRT statistic under each
hypothesis is

- E
(
l(X)|H0

) = −D( fX(x)|| fXM(x)),
- E

(
l(X)|H1

) = D( fXM(x)|| fX(x)).

Proof : Proof is based on the KL divergence
definition. �
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Remark. The relationship between the NP lemma and the
KL divergence is previously stated in [22] with the similar
straightforward calculation, where the LLRT statistic loses
power when the wrong distribution is used instead of the true
distribution for one of these hypotheses.

In a regular detection problem framework, the NP deci-
sion rule is to accept the hypothesisH1 if the LLRT statistic,
l(x), exceeds a critical value, and reject it otherwise. Fur-
thermore, the critical value is set based on the rejection
probability of the hypothesisH0, i.e. false-alarm probability.
However, we pursue a different goal in the approximation
problem scenario. Our goal is to approximate a model dis-
tributionwith PDF fXM(x), as close as possible to the given
distribution with PDF fX(x). The closeness criterion is
based on themodified detection problem framework where
we compute the LLRT statistic and compare it with a thresh-
old. In an ideal case where there is no approximation error,
the detection probability must be equal to the false-alarm
probability for the optimal detector at all possible thresh-
olds, i.e. the ROC curve [23] that represents best detectors
for all threshold values should be a line of slope 1 passing
through the origin.
In the next subsection, we assume that the randomvector

X has zero-mean Gaussian distribution. Thus, the covari-
ance matrix of the random vector X is the parameter of
interest in the model selection, i.e. covariance selection.

C) Multivariate Gaussian distribution
Let random vector X ∈ R

n, have a zero-mean jointly Gaus-
sian distribution with covariance matrix ΣX , i.e. X ∼
N (0, ΣX) where the covariance matrix ΣX is positive-
definite, ΣX � 0. In this paper, the null hypothesis, H0,
is the hypothesis that the parameter of interest is known
and is equal to ΣX while the alternative hypothesis, H1,
is the hypothesis that the random vector X is replaced by
the model random vector XM. In this scenario, the model
random vector XM has a zero-mean jointly Gaussian
distribution (the model approximation distribution) with
covariance matrix ΣXM i.e. XM ∼ N (0, ΣXM) where the
covariance matrixΣXM is also positive-definite,ΣXM � 0.
Thus, the LLRT statistic for the jointly Gaussian random
vectors (X and XM) is simplified as

l(x) = log N (0, ΣXM)

N (0, ΣX)
= −c + k(x), (1)

where c = −1/2log (|ΣXΣ−1
XM

|) is a constant and k(x) =
xT Kx where K = 1/2(Σ−1

X − Σ−1
XM
) is an indefinite matrix

with both positive and negative eigenvalues.
We define the CAMassociated with the covariance selec-

tion problem and dissimilarity parameters of the CAM as
follows.

Definition 2 (Correlation approximation matrix). The
CAM for the covariance selection problem is defined as Δ �
ΣXΣ−1

XM
where ΣXM is the model covariance matrix.

Definition 3 (Dissimilarity parameters for covariance
selection problem). Let αi � λi + λ−1

i − 2 for i ∈
{1, . . . , n} be dissimilarity parameters of the CAM corre-
spond to the covariance selection problem where λi > 0 for
i ∈ {1, . . . , n} are eigenvalues of the CAM.

Remark. The CAM is a positive definite matrix. Moreover,
eigenvalues of the CAM contains all information necessary to
compute cost functions associated with the model selection.

Theorem 1 (Covariance Selection [4]). Given a multi-
variate Gaussian distribution with covariance matrix ΣX �
0, fX(x), and a model M, there exists a unique approx-
imate multivariate Gaussian distribution with covariance
matrixΣXM � 0, fXM(x), thatminimize the KL divergence,
D( fX(x)|| fXM(x)) and satisfies the covariance selection
rules, i.e. the model covariance matrix satisfies the following
covariance selection rules

- ΣXM(i , i) = ΣX(i , i), ∀ i ∈ V
- ΣXM(i , j) = ΣX(i , j), ∀ (i , j) ∈ EM
- Σ−1

XM
(i , j) = 0, ∀ (i , j) ∈ E c

M

where the set E c
M = ψ − EM represents the complement of

the set EM.

Remark. The CAM is defined as Δ � ΣXΣ−1
XM

. Thus, the
constant c can be written as c = −1/2 log(|Δ|).
Then, for any given covariance matrix and its model

covariancematrix that satisfies conditions in Theorem 1, the
summation of diagonal coefficients of the CAM is equal to
n, i.e. the result in Theorem 1 implies that tr (Δ) = n. Using
this result and the definition of the KL divergence for jointly
Gaussian distributions, we have

D( fX(x)|| fXM(x)) = c + 1

2
tr (Δ)− n

2

which results in c = D( fX(x)|| fXM(x)).

D) Covariance selection example
Here we choose the tree approximation model as an exam-
ple. Figure 1 indicates two graphs: (a) the complete graph
and (b) its tree approximation model where edges in the
graph represent non-zero coefficients in the inverse of the
covariance matrix [4].

(a) (b)

Fig. 1. (a) The complete graph; (b) The tree approximation of the complete
graph.
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The correlation coefficient between each pair of adja-
cent nodes has been written on each edge. The correlation
coefficient between each pair of nonadjacent nodes is the
multiplication of all correlations on the unique path that
connects those nodes. The correlationmatrix for each graph
is

ΣX =

⎡
⎢⎢⎣

1 0.9 0.9 0.6
0.9 1 0.8 0.3
0.9 0.8 1 0.7
0.6 0.3 0.7 1

⎤
⎥⎥⎦

and

ΣXT =

⎡
⎢⎢⎣

1 0.9 0.9 0.63
0.9 1 0.81 0.567
0.9 0.81 1 0.7
0.63 0.567 0.7 1

⎤
⎥⎥⎦ .

The CAM for the above example is

Δ =

⎡
⎢⎢⎣

1 0 0.0412 −0.0588
0.0474 1 0.3042 −0.5098
0.0474 −0.0526 1 0
0.9789 −1.2632 0.1421 1

⎤
⎥⎥⎦ .

The CAM contains all information about the tree approxi-
mation.2 Here we assume cases that Gaussian random vari-
ables have finite, nonzero variances. The value of the KL
divergence for this example is−0.5 log(|Δ|) = 0.6218.

Remark. Without loss of generality, throughout this paper,
we work with normalized correlation matrices, i.e. the diago-
nal elements of the correlation matrices are normalized to be
equal to one.

E) Distribution of the LLRT statistic
The random vector X has Gaussian distribution under
both hypotheses H0 and H1. Thus under both hypotheses,
the real random variable, k(X) = XT KX has a generalized
chi-squared distribution, i.e. the random variable, k(X),
is equal to a weighted sum of chi-squared random vari-
ables with both positive and negative weights under both
hypotheses. Let us defineW = Σ

−1/2
X X underH0 and Z =

Σ
−1/2
XM

X under H1, where Σ
1/2
X and Σ

1/2
XM

are the square
root of covariance matrices ΣX and ΣXM , respectively.
Then the random vectors W ∼ N (0, I) and Z ∼ N (0, I)
are zero-mean Gaussian distributions with the same covari-
ance matrices, I, where I is the identity matrix of dimension
n. Note that, the CAM is a positive definite matrix with
λi > 0 where 1 ≤ i ≤ n. Thus, the random variable k(X),
under both hypothesesH0 andH1 can be written as:

K0 � k(X)|H0 = 1

2

n∑
i=1

(1 − λi )W
2
i

and

K1 � k(X)|H1 = 1

2

n∑
i=1

(λ−1
i − 1)Z2

i

2Dissimilarity parameters αi and eigenvalues of CAM contains all
information about the tree approximation.

respectively, where random variables Wi and Zi , are the
i-th element of random vectors W and Z , respectively.
Moreover, random variables W2

i and Z2
i , follow the first-

order central chi-squared distribution. Note that, similarly
random variable l(X) � −c + k(X) is defined under each
hypothesis as

L 0 � l(X)|H0 = −c + K0

and

L 1 � l(X)|H1 = −c + K1.

Remark. As a simple consequence of the covariance selec-
tion theorem, the summation of weights for the generalized
chi-squared random variable, the expectation of k(X), is zero
under the hypothesis H0, i.e. E(K0) = 1/2

∑n
i=1(1 − λi ) =

0 [4], and this summation is positive under the hypothesisH1,
i.e. E(K1) = 1/2

∑n
i=1(λ

−1
i − 1) ≥ 0.

I I I . THE ROC CURVE AND THE
AUC COMPUTAT ION

In this section, we focus on studying the properties of the
ROC curve and finding an analytical expression for the
AUC which again depends on the eigenvalues of the CAM.

A) The ROC curve
The ROC curve is the parametric curve where the detec-
tion probability is plotted versus the false-alarm probability
for all thresholds, i.e. each point on the ROC curve rep-
resents a pair of (P0(τ), P1(τ)) for a given threshold τ.
Set z = P0(τ) and η = P1(τ), the ROC curve is η = h(z).
If P0(τ) has an inverse function, then the ROC curve is
h(z) = P1(P

−1
0 (z)). In general, the ROC curve, h(z), has

the following properties [23]

- h(z) is concave and increasing,
- h′(z) is positive and decreasing,
-
∫ 1

0 h′(z) dz ≤ 1.

Note that, for the ROC curve, the slope of the tangent line
at a given threshold, h′(z), gives the likelihood ratio for the
value of the test [23].

Remark. For the ROC curve for our Gaussian random vec-
tors, we have h′(z) is positive, continuous and decreasing in
the interval [0, 1]with right continuity at 0 and left continuity
at 1. Moreover, ∫ 1

0
h′(z) dz = 1

since h(0) = 0 and h(1) = 1.

Definition 4. Let fL 0(l) and fL 1(l) be the probability density
function of the random variables L 0 and L 1, respectively.
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Lemma 1. Given the ROC curve, h(z), we can compute
following KL divergences

D( fL 1(l)|| fL 0(l)) = −
∫ 1

0
log(h′(z)) dz.

and

D( fL 0(l)|| fL 1(l)) = −
∫ 1

0
h′(z) log(h′(z)) dz

(∗)= −
∫ 1

0
log

(
d h−1(η)

d η

)
dη

where (*) holds if the ROC curve, η = h(z), has an inverse
function.

Proof : These results are from the Radon–Nikodým
theorem [24]. Simple, alternative calculus-based proofs are
given in Appendix VI. �

B) Area under the curve
As discussed previously, we examine the ROC with a goal
that the model approximation results in the ROC being a
line of slope 1 passing through the origin. This is in contrast
to the conventional detection problem where we want to
distinguish between the two hypotheses and ideally have a
ROC that is a unit step function. AUC is defined as the inte-
gral of the ROC curve (Fig. 2) and is a measure of accuracy
in decision problems.

Definition 5. The area under the ROC curve (AUC) is
defined as

AUC =
∫ 1

0
h(z) d z =

∫ 1

0
P1(τ) d P0(τ), (2)

where τ is the detection problem threshold.

Remark. The AUC is a measure of accuracy for the detection
problem and 1/2 ≤ AUC ≤ 1. Note that, in conventional
decision problems, the AUC is desired to be as close as pos-
sible to 1 while in approximation problem presented here we
want the AUC to be close to 1/2.

Fig. 2. The ROC curve and the area under the ROC curve. Each point on the
ROC curve indicates a detector with given detection and false-alarm probabil-
ities.

Theorem 2 (Statistical property of AUC [25]). The AUC
for the LLRT statistic is

AUC = Pr(L 1 > L 0).

Corollary 1. From Theorem 2, when PDFs for the LLRT
statistic under both hypotheses exist, we can compute theAUC
as

AUC =
∫ ∞

0
( fL 1 � fL 0)(l) dl , (3)

where
(

fL 1 � fL 0

)
(l) �

∫∞
−∞ fL 1(τ) fL 0(l + τ) dl is the cross-

correlation between fL 1(l) and fL 0(l).

Proof : A proof based on the definition of the AUC (2), is
given in [26]. �

Let us define the difference LLRT statistic random vari-
able as L� � L 1 − L 0. Then, we get

AUC = Pr(L� > 0)

= 1 − FL�(0)

where FL�(l) is the cumulative distribution function (CDF)
for random variable L�. Note that we define the difference
LLRT statistic random variable to simplify the notation and
easily show that the AUC only depends on this difference.
The two conditional random variables L 0 and L 1 are

independent.3 Thus, the cross-correlation between the
corresponding two distributions is the distribution of the
difference LLRT statistic, L�. We can write the random
variable L� as

L� = −c + K1 − (−c + K0)

= K1 − K0.

Replacing the definition for K0 and K1, we have

L� = 1

2

n∑
i=1

(λ−1
i − 1)Z2

i − 1

2

n∑
i=1

(1 − λi )W
2
i .

We can rewrite the difference LLRT statistic, L�, in an
indefinite quadratic form as

L� = 1

2
VT (Λ − I)V

where

V =
⎡
⎣W

Z

⎤
⎦

and

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

. . . 0
λn

λ−1
1

0
. . .

λ−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3By the definition of the detection problem.
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C) Analytical expression for AUC
To compute the CDF of random variable L�, we need to
evaluate a multi-dimensional integral of jointly Gaussian
distributions [27] or we need to approximate this CDF [28].
More efficiently, as discussed in [29] for the real-valued case,
the CDF of the random variable L� can be expressed as a
single-dimensional integral of a complex function4 in the
following form

FL�(l) = 1

2π

∫ ∞

−∞

e(l/2)( jω+β)

jω + β

× 1√|I + (1/2)(Λ − I)( jω + β)|dω

where β > 0 is chosen such that matrix I + β/2(Λ − I), is
positive definite and simplifies the evaluation of the multi-
variate Gaussian integral [29].
Special case:When Λ = I, i.e. the given covariance obeys
the model structure, then

AUC = 1 − FL�(0) = 1 − 1

2π

∫ ∞

−∞

1

jω + β
= 1

2

for β > 0 and is also independent of the value of the param-
eter β .
Picking an appropriate value for the parameter β ,5 the

AUC can be numerically computed by evaluating the fol-
lowing one dimension complex integral

AUC = 1 − 1

2π

∫ ∞

−∞

1

jω + β

× 1√|I + 1/2(Λ − I)( jω + β)|dω.

Furthermore, since Λ � 0, choosing β = 2 and changing
variable as ν = ω/2, we have

AUC = 1 − 1

2π

∫ ∞

−∞

1

jν + 1

1√|Λ + jν(Λ − I)| dν.

(4)
Moreover, | Λ + jν(Λ − I) | = ∏p

i=1 (1 + αiν
2 − jαiν).

This equation shows that the AUC only depends on αi .

Remark. Since the AUC integral in (4) cannot be evalu-
ated in closed form, it cannot be used directly in obtaining
model selection algorithms. Numerical evaluation of the AUC
using the one-dimensional complex integral (4) is very effi-
cient and fast compared with the numerical evaluation of a
multi-dimensional integral of jointly Gaussian CDF.

I V . ANALYT ICAL BOUNDS
FOR THE AUC

Section III derived an analytical expression for the AUC
based on zero mean Gaussian distributions. In this section,

4This is the transform to the frequency domain for an arbitrary β .
5The parameter β is picked such that I + β/2(Λ − I) � 0 and β = 2

always satisfies this condition sinceΛ � 0.

we find analytical lower and upper bounds for the AUC.
These bounds will give us insight on the behavior of the
AUC. The lower bound for theAUCdepends directly on the
eigenvalues of the CAM (using Chernoff bounds) whereas
the upper bound depends indirectly on the eigenvalues of
the CAM through theKL and reverse KL divergences (using
properties of the ROC curve).

A) Generalized asymmetric Laplace
distribution
In this subsection, we present the probability density func-
tion and moment generating function for the difference
LLRT statistic random variable, L�. We will use this result
in computing the AUC bound.
The difference LLRT statistic random variable, L�, fol-

lows the generalized asymmetric Laplace (GAL) distribu-
tion6 [30]. For a given i where i ∈ {1, . . . , n}, we define a
random variable L�i as

L�i = λi − 1

2
W2

i − 1 − λ−1
i

2
Z2

i . (5)

Then, difference LLRT statistic random variable, L�, can be
written as

L� =
n∑

i=1

L�i

where L�i are independent and have GAL distributions at
position 0 with mean αi/2 and PDF [30]

fL�i
(l) = el/2

π
√
αi

K0

(√
α−1

i + 1

4
|l |
)

, l = 0, (6)

where K0(−) is the modified Bessel function of second
kind [31]. The moment generating function (MGF) for this
distribution is

ML�i
(t) = 1√

1 − αi t − αi t2

for all t that satisfies 1 − αi t − αi t2 > 0. From (5), the
MGF derivation for the GAL distribution is straightforward
and is the multiplication of two MGFs for the chi-squared
distribution.
The distribution of the difference LLRT statistic random

variable, L�, is

fL�(l) = n∗
i=1

fL�i
(l)

where ∗n
i=1 is the notation we use for the convolution of

n functions together. Note that, although the distribution of
random variables L�i in (6) has a discontinuity at l = 0, the
distribution of random variable L� is continuous if there
are at least two distribution with non-zero parameters, αi ,

6Also known as the variance-gamma distribution or the Bessel func-
tion distribution.
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in the aforementioned convolution. Moreover, the MGF for
fL�(l) can be computed by multiplying MGFs for L�i as

ML�(t) =
n∏

i=1

ML�i
(t) (7)

for all t in the intersection of all domains of ML�i
(t). The

smallest of such intersections is−1 < t < 0.

B) Lower bound for the AUC (Chernoff bound
application)
Given the MGF for the difference LLRT statistic distribu-
tion (7), we can apply the Chernoff bound [32] to find a
lower bound for theAUCor upper bound for theCDFof the
difference LLRT statistic random variable, L�, evaluated at
zero).

Proposition 2. Lower bound for the AUC is

Pr (L� > 0) ≥ max

{
1

2
, 1 − e−(1/2)∑n

i=1 log(1+(αi /4))

}
(8)

Proof : One-half is a trivial lower bound for AUC. To
achieve a non-trivial lower bound, we apply Chernoff
bound [32] as follows

Pr(L� < 0) ≤ inf
t

ML�(t).

To complete the proof we need to solve the right-hand-side
(RHS) optimization problem.
Step 1: First derivatives of ML�(t) is

d

dt
ML�(t) = ML�(t)(

1

2

n∑
i=1

λi − 1

1 − (λi − 1)t
+ λ−1

i − 1

1 − (λ−1
i − 1)t

)

= ML�(t)(1 + 2t)
n∑

i=1

αi

2(1 − αi t − αi t2)
.

Clearly, the first derivative is zero for t = −1/2 which
is in the feasible domain of the MGF for the difference
LLRT statistic. Note that, the smallest feasible domain is
−1 < t < 0.
Step 2: Second derivatives of ML�(t) is

d2

dt2
ML�(t) = ML�(t)

×
(

1

4

n∑
i=1

λi − 1

1 − (λi − 1)t
+ λ−1

i − 1

1 − (λ−1
i − 1)t

)2

+ ML�(t)

(
1

4

n∑
i=1

(λi − 1)2

(1 − (λi − 1)t)2
+ (λ−1

i − 1)2

(1 − (λ−1
i − 1)t)2

)
.

Therefore, we conclude that the second derivative is posi-
tive and thus the optimal solution to the RHS optimization
problem is at t = −1/2. Replacing that in the definition

Fig. 3. Possible feasible region for the AUC and the Kl divergence pair for all
possible detectors or equivalently all possible ROC curves (the KL divergence is
between the LLRT statistics under different hypotheses, i.e. D( fL0 (l)|| fL1 (l))
orD( fL1 (l)|| fL0 (l)).).

of the moment generation function which results in the
following bound

Pr(L� ≤ 0) <
n∏

i=1

2√
4 + αi

which can be written as

Pr(L� > 0) ≥ 1 −
n∏

i=1

2√
4 + αi

which completes the proof. �

C) Upper bound for the AUC
In this section, we present a parametric upper bound for the
AUC, but first, we need to present the following results.

Lemma 2. Data processing inequality of the KL divergence
for the LLRT statistic. We have

D( fL 1(l)|| fL 0(l)) ≤ D( fX(x|H1)|| fX(x|H0))

and

D( fL 0(l)|| fL 1(l)) ≤ D( fX(x|H0)|| fX(x|H1)).

Proof : This lemma is a special case of the data processing
property for the KL divergence [33]. By picking appropriate
measurable mapping, here appropriate quadratic function
for each equation of the above equations, we conclude the
lemma. �

Definition 6 (FeasibleRegion). TheAUCand the KL diver-
gence pair lie in the feasible region (Fig. 3) for all possible
detectors (ROC curves), i.e. no detector with the AUC and the
KL divergence pair lie outside the feasible region.7

7The definition of the feasible region here is inspired by the joint range
of f-divergences [34].
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Theorem 3 (Possible feasible region for the AUC and the
KL divergence). Given the ROC curve, the parametric pos-
sible feasible region as shown in Fig. 3 can be expressed using
the positive parameter a > 0 as

Pr(L� > 0) = 1

1 − e−a
− 1

a

and

D∗
l ≥ log(a)+ a

ea − 1
− 1 − log(1 − e−a)

where

D∗
l = min{D( fL 1(l)|| fL 0(l)), D( fL 0(l)|| fL 1(l))}.

Proof : Proof is given in the Appendix VI. �

Theorem 3 formulates the relationship between the AUC
and the KL divergence. The results of this theorem is gener-
ally true for any LLRT statistic. Theorem 3 states that for any
valid ROC that corresponds to a detection problem, the pair
of AUC and KL divergence must lie in the possible feasible
region (Fig. 3), i.e. outside of this region is infeasible. This
possible feasible region results in the general upper bound
for AUC.
Since computing, the distribution of the LLRT statistics

is not straightforward in most cases, Proposition 3, relaxes
the Theorem 3 by bounding the KL divergence between
the LLRT statistics using the invariance property of KL
divergence for the LLRT statistic (Lemma 2).

Proposition 3. The parametric upper bound for AUC is

Pr(L� > 0) = 1

1 − e−a
− 1

a

and

D∗ ≥ log(a)+ a

ea − 1
− 1 − log(1 − e−a)

where a > 0 is a positive parameter and

D∗ = min{D( fX(x|H1)|| fX(x|H0)), (9)

D( fX(x|H0)|| fX(x|H1))}.

Proof : Proof is based on the Lemma 2 and the possi-
ble feasible region presented in the Theorem 3. From the
Lemma 2, we have

D∗
l ≤ D∗.

Then, using the result in the Theorem 3, we get the para-
metric upper bound. �

D) Asymptotic behavior for AUC bounds
Proposition 4 (Asymptotic behavior of the lower bound).
We have

Pr (L� > 0) ≥ 1 − e−n(1−1/n
∑n

i=1(1+(αi )/(8))−1).

Proof : Applying the inequality

2x

2 + x
< log(1 + x)

for x > 0, we achieve the result. �

Proposition 5 (Asymptotic behavior of the upper bound).
The parametric upper bound for AUC has the following
asymptotic behavior

Pr (L� > 0) ≤ 1 − e−D∗−1

whereD∗ is given in (9).

Proof : Proof is as follows.

− log (1 − Pr (L� > 0)) = − log

(
1

ea − 1
+ 1

a

)

≤ log (a)

≤ D∗ + 1.

Applying the exponential function to both sides of the above
inequality, we get the upper bound. �

Remark. The asymptotic lower bound is a function of the
number of nodes, n and has an exponential decaying behav-
ior. The asymptotic upper bound also has an exponential
decaying behavior with respect to KL divergence.

Figure 4 shows the possible feasible region and the
asymptotic behavior log-scale. As it is shown in this figure,
the parametric upper bound can be approximated with a
straight line especially for large values of the parameter a
(the result in Proposition 5). Also, Fig. 5 shows the possible
feasible region and the asymptotic behavior in regular-scale.

Fig. 4. Log-scale of the possible feasible region and its asymptotic behav-
ior (linear line) for the AUC and the KL divergence pair for all possi-
ble detectors or equivalently all possible ROC curves (the KL divergence is
between the LLRT statistics under different hypotheses, i.e. D( fL1 (l)|| fL0 (l))
or D( fL0 (l)|| fL1 (l)).) Close-up part shows the non-linear behavior of the
possible feasible region around one.
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Fig. 5. The possible feasible region boundaries and its asymptotic behavior for
the AUC and the KL divergence pair for all possible detectors or equivalently all
possible ROC curves (the KL divergence is between the LLRT statistics under
different hypotheses, i.e.D( fL0 (l)|| fL1 (l)) orD( fL1 (l)|| fL0 (l)).).

V . EXAMPLES AND S IMULAT ION
RESULTS

In this section, we consider some examples of covariance
matrices for Gaussian random vector X . We pick the tree
structure as the graphical model corresponds to the covari-
ance selection problem. In our simulations, we compare the
numerically evaluatedAUC and its lower and upper bounds
and discuss their asymptotic behavior as the dimension of
the graphical model, n, increases.

A) Tree approximation model
Themaximum order of the lower order distributions in tree
approximation problem is two, i.e. no more than pairs of
variables. Let XT ∼ N (0, ΣXT ) have the graph represen-
tation GT = (V , ET ) where ET ⊆ ψ is a set of edges that
represents a tree structure. Let Xr ∼ N (0, ΣXr

) have the
graph representation Gr = (V , Er )where Er ⊆ ET is the set
of all edges in the graph of Xr . The joint PDF for elements of
random vector Xr can be represented by joint PDFs of two
variables and marginal PDFs in the following convenient
form

fXr
(xr ) =

∏
(u,v)∈Er

fXu ,Xv (xu, xv)

fXu(xu) fXv (xv)

∏
u∈V

fXu(xu). (10)

Using equation (10), we can then easily construct a tree
using iterative algorithms (such as the Chow-Liu algorithm
[9] combined with the Kruskal [10] algorithm or the Prim
[11] algorithm) by adding edges one at a time [35]. Con-
sider the sequence of random vectors Xr with 0 ≤ r ≤
|ET |, where Xr is recursively generated by augmenting a
new edge, (i , j) ∈ Er , to the graph representation of Xr−1.
For the special case of Gaussian distributions, ΣXr

has the
following recursive formulation [35]

Σ−1
Xr

= Σ−1
Xr−1

+ Σ†
i , j − Σ†

i − Σ†
j , ∀ 0 ≤ r ≤ |ET |

whereΣ†
i , j = [ei e j ]Σ

−1
i , j [ei e j ]

T andΣ†
i = eiΣ

−1
i eT

i where
ei is a unitary vector with 1 at the i-th place and Σi , j

and Σi are the 2-by-2 and 1-by-1 principle sub-matrices
of ΣX , with initial step ΣX0

= diag (ΣX) where diag (ΣX)

represents a diagonal matrix with diagonal elements ofΣX .

Remark. For all 0 ≤ r ≤ |ET |, we have
(i) tr(ΣXr

) = tr(ΣX)

(ii) tr(ΣXΣ−1
Xr
) = n.

(iii) D( fX(x)|| fXr
(x)) = −1/2log(|ΣXΣ−1

Xr
|)

(iv) |ΣX | ≤ . . . ≤ |ΣXr
| ≤ . . . ≤ |ΣX0

| = |diag (ΣX)|
(v) H(X) ≤ . . . ≤ H(Xr ) ≤ . . . ≤ H(X0)

where H(X) is differential entropy.

Tree approximationmodels are interesting to study since
there are algorithms such as Chow-Liu [9] combined by the
Kruskal [10] or the Prim’s [11] that efficiently compute the
model covariancematrix from the graph covariancematrix.

B) Toeplitz example
Here, we assume that the covariance matrix ΣX has a
Toeplitz structure with ones on the diagonal elements
and the correlation coefficient ρ > −(1/(n − 1)) as off-
diagonal elements

ΣX =

⎡
⎢⎢⎢⎢⎣

1 ρ . . . ρ

ρ
. . .

. . .
...

...
. . .

. . . ρ

ρ . . . ρ 1

⎤
⎥⎥⎥⎥⎦ .

For the tree structure model, all possible tree-structured
distributions satisfying (10) have the same KL divergence
to the original graph, i.e.D( fX(x)|| fXT (x)) is constant for
all possible connected tree approximation model for this
example. The reason is that all the weights computed by
the Chow-Liu algorithm to construct the weighted graph
associated with this problem are the same and are equal to
−1/2 log(1 + ρ2), which only depends on the correlation
coefficient ρ. In the sequel, we test our results for two tree
structured networks: a star network and a chain network.8

1) Star approximation
The star covariance matrix is as follows (all the nodes are
connected to the first node)9

Σs tar
XT

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ . . . . . . ρ

ρ
. . . ρ2 . . . ρ2

... ρ2 . . .
. . .

...
...

...
. . .

. . . ρ2

ρ ρ2 . . . ρ2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

8A more comprehensive simulation study of this example is provided
in [36].

9All n possible star networks have the same performance.
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For this example, the KL divergence and the Jeffreys diver-
gence can be computed in closed form as

D(X||Xstar ) = 1

2
(n − 1) log(1 + ρ)

− 1

2
log(1 + (n − 1)ρ)

and

DJ (X , Xstar ) = (n − 1)(n − 2)ρ2

2(1 + (n − 1)ρ)

respectively, where

DJ (X , Xstar ) = D(X||Xstar )+ D(Xstar ||X)

is the Jeffreys divergence [18]. Moreover, for large values of
n, we have that

D(X||Xstar ) ≈ n

2
log(1 + ρ)

and
DJ (X , Xstar ) ≈ n

2
ρ.

Figure 6 plots the 1−AUC versus the dimension of the
graph, n for different correlation coefficients, ρ = 0.1 and
ρ = 0.9. This figure also indicates the upper bound and the
lower bound for the 1−AUC.

2) Chain approximation
The chain covariance matrix is as follows (nodes are con-
nected like a first order Markov chain, 1 to n)

Σchain
XT

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 . . . ρn−1

ρ
. . .

. . .
. . .

...

ρ2 . . .
. . .

. . . ρ2

...
. . .

. . .
. . . ρ

ρn−1 . . . ρ2 ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For this example, the KL divergence and the Jeffreys diver-
gence can be computed in closed form as

D(X||Xchain) = D(X||Xstar )

and

DJ (X , Xchain) = ρ2

(1 + (n − 1)ρ)(1 − ρ)

×
(

n(n − 1)

2
− n(1 − ρn)

1 − ρ
+ 1 − (n + 1)ρn + nρn+1

(1 − ρ)2

)

respectively. Moreover, for large values of n we have the
following approximation

DJ (X , Xchain) ≈ n

2

ρ

1 − ρ
.

Figure 7 plots the 1−AUC versus the dimension of the
graph, n for different correlation coefficients, ρ = 0.1 and
ρ = 0.9 as well as its upper and lower bounds.
In both Figs 6 and 7, (1 − AUC) and its bounds rapidly

go to 0whichmeans that AUCgoes to one aswe increase the
number of nodes, n, in the graph. More precisely, bounds
for 1 − AUC are decaying exponentially as the dimension
of the graph, n, increases which is consistent with the the-
ory obtained for analytical bounds. Furthermore, we can
conclude from these figures that a smaller ρ results in a bet-
ter tree approximation, i.e. covariancematrices with smaller
correlation coefficients are more like tree structure model.
Moreover, comparing the AUC for the star network approx-
imation with the AUC for the chain network approximation
we conclude that the star network is a much better approx-
imation than the chain network even though that both
approximation networks have the same KL divergences.We
can also interpret this fact through the analytical bounds
obtained in this paper. The star network is a better approx-
imation than the chain network since the decay rate of
1 − AUC for the star network is less than its decay rate for
the chain network.

Fig. 6. 1−AUC versus the dimension of the graph, n for Star approximation of the Toeplitz example with ρ = 0.1 (left) and ρ = 0.9 (right). In both figures, the
numerically evaluated AUC is compared with its bounds.
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Fig. 7. 1−AUC versus the dimension of the graph, n for Chain approximation of the Toeplitz example with ρ = 0.1 (left) and ρ = 0.9 (right). In both figures, the
numerically evaluated AUC is compared with its bounds.

Remark. The star approximation in the above example
has lower AUC than the chain approximation. Practically,
it means the correlation between nodes that are not con-
nected in the approximated graphical structure gives a better
approximation in the star network than the chain network.

C) Solar data
In this subsection, we look at real solar data. As discussed in
the introduction, part of our motivation for this research is
based on looking at distributed state estimation for micro-
grids with distributed renewable energy sources. Solar radi-
ation data at these energy sources are highly correlated and
we look to approximate the distribution of this data with
simpler approximations that can be represented by trees.
Here we see that when the number of nodes is moder-
ately large (19) (first example) that tree approximations do
not work well. However, when we have a small number of
sources (6) (second example), then with the proper edge
inclusion tree approximations work well.
In this Example, a covariance matrix is calculated based

on datasets presented in [37]. Two datasets are used from
theNational Renewable Energy Laboratory (NREL) website
[38]. The first data set is the Oahu solar measurement grid
which consists of 19 sensors (17 horizontal sensors and two
tilted sensors) and the second one is the NREL solar data
for 6 sites near Denver, Colorado. These two data sets are
normalized using the standard normalization method and
the zenith angle normalization method [37] and then the
unbiased estimate of the correlation matrix is computed.10

1) The Oahu solar measurement grid dataset
From data obtained from 19 solar sensors at the island of
Oahu, we computed the spatial covariance matrix during
the summer season at 12:00 PM averaged over a window

10See [37] for fields definition and other details about the normalization
methods for the solar irradiation covariance matrix.

of 5min. Then, the AUC and the KL divergence are com-
puted for those tree structures that are generated using
Markov Chain Monte-Carlo (MCMC) method. Figure 8
shows the distribution of those tree structures generated
using MCMC method versus the KL divergence (left) and
versus log10(1 − AUC) (right).11
Looking back at Fig. 4, for the very small value of

1 − AUC the relationship between the KL divergence and
the boundary of the possible feasible region for − log(1 −
AUC) is linear. This means that if the upper bound is tight
then the relationship between the KL divergence and the
− log(1 − AUC) is almost linear. In Fig. 8, the maximum
value of 1−AUC for this model is < 10−3 which justi-
fies why two distributions in Fig. 8 are scaled/mirrored
of each other. Moreover, just by looking at the distribu-
tion of tree models in this example, it is obvious that
most tree models have similar performance. Only a small
portion of the tree models have better performance than
the average tree models, but the difference is not that
significant.

2) The Colorado dataset
From the solar data obtained from 6 sensors near Denver,
Colorado, we computed the spatial covariance matrix dur-
ing the summer season at 12:00 PM averaged over a window
of 5 minutes. Then, the AUC and the KL divergence are
computed for all possible tree structures. Figure 9 shows
the distribution of all possible tree structures versus the KL
divergence (left) and versus the AUC (right).
In the Colorado dataset, there are two sensors that

are very close to each other compared with the distance
between all other pairs of sensors. As a result, if the partic-
ular edge between these two sensors is in the approximated
tree structure we get a smaller AUC and KL divergence
compared with when that particular edge is not in the tree

11In this example, since the AUC for all generated tree structures is
close to one, we plot the distribution of generated trees versus log10(1 −
AUC).
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Fig. 8. Left: distribution of the generated trees (Normalized histogram) using MCMC versus the KL divergence and Right: distribution of the generated trees
(Normalized histogram) using MCMC versus log10(1 − AUC) for the Oahu solar measurement grid dataset in summer season at 12:00 PM.

Fig. 9. Left: distribution of all trees (Normalized histogram) versus the KL divergence and Right: distribution of all trees (Normalized histogram) versus the AUC
for the Colorado dataset in summer season at 12:00 PM.

structure. This explains why the distribution of all trees,
in this case, looks like a mixture of two distributions. This
result also gives us valuable insight on how to answer the
following question, “How to construct informative approx-
imation algorithms for model selection in general.” This is
an example where almost all trees that contain the particu-
lar edge between the two aforementioned sensors are good
approximations while the rest of the tree models’ give poor
performance.

3) Two-dimensional sensor network
In this example, we create a 2D sensor network using a
Gaussian kernel [39] as follows

�X(i , j) =
[
e−(d(i , j)2)/(2σ 2)

]

where d(i , j) is the Euclidean distance between the i-th
sensor and the j -th sensor in the 2D space. All sensors

are located randomly in 2D space.12 We set σ = 1 and
generate a 2D sensor network with 20 sensors. For the 2D
sensor network example, Fig. 10 shows the distribution of
the generated tree structures using MCMC method versus
KL divergence (left) and versus log10(1 − AUC) (right).
Again we see the mirroring effect in Fig. 10 as we have an
almost linear relationship between the KL divergence and
− log(1 − AUC). Note that, the covariance matrix gener-
ated has one dominant eigenvalue in most cases. Further-
more, Fig. 11 plots 1−AUC as well as its analytical upper
bound and lower bound versus the dimension of the graph,
n for σ = 1.3 (left) and σ = 1.8 (right). To generate this
figure, we randomly generated 1000 sensor networks and
then plot the averaged AUC. As we can see in this figure,
the 1−AUC and its bounds decay exponentially which is
consistent with the theoretical results of this paper.

12Sensors location in each dimension are drawn randomly from a
Normal distribution.
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Fig. 10. Left: Distribution of the generated trees (Normalized histogram) using MCMC versus the KL divergence and Right: distribution of the generated trees
(Normalized histogram) using MCMC versus log10(1 − AUC) for the 2D sensor network example with 20 sensors and σ = 1.

Fig. 11. 1−AUC and its bounds versus the dimension of the graph, n for σ = 1.3 (left) and σ = 1.8 (right), averaged over 1000 runs of sensor networks generated
randomly.

V I . CONCLUS ION

In this paper, we formulate a detection problem and inves-
tigate the quality of the model selection. More specifically,
we consider Gaussian distributions and discuss the covari-
ance selection quality of a given model. We present the
CAM and show its relationship with information theory
divergences such as theKL divergence, the reverse KL diver-
gence, and the Jeffreys divergence as well as the ROC curve
and the area under it, i.e. the AUC, as a measure of accu-
racy in the detection problem framework. This paper also
presents an analytical expression for the AUC that can be
efficiently evaluated numerically. AUC analytical lower and
upper bounds are also provided.We show that the AUC and
the lower bound for the AUC depends on the eigenvalues
of the CAM. Upper bounds for the AUC are obtained from
finding a parametric relationship between the AUC and the
KL/reverse KL divergences. We pick the tree structure as an
example of an approximation model and use the Chow-Liu
MST algorithm to compute the maximum likelihood tree

structure approximation. Then, the quality of the Chow-
LiuMST tree algorithm is investigated using the formulated
detection problem. Through some examples, we show that
in general, the tree approximation is not a good model as
the number of nodes in the graphicalmodel increases which
is the case in high-dimensional problems such as model-
ing the electrical distribution grid using smart grid sensor
measurements and distributed renewable energy sources.
The aforementioned result is also consistent with the ana-
lytical results provided in this paper that is 1−AUC decays
exponentially as the dimension of the graph increases.
The detection framework presented in this paper can be

generalized for non-Gaussian models. The AUC analytical
bounds obtained in this paper can also be used in other
applications that are using AUC as a relevant criterion. One
example is inmedicine when the AUC is used for diagnostic
tests between positive instance and negative instance [40]
where instead of changing the coordinateswe can look at the
exponent of theAUCbounds. In ongoingwork, we are look-
ing at more accurate graphical approximations that involve
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non-tree graphs. These approximations use a variation of
the CAM which we call the symmetric CAM and simple
linear transformations.
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APPEND IX

Proof of Lemma 1
The calculus-based proof for the special case of con-
tinuous PDFs is as follow. We can apply the Leib-
niz integral rule [41] and compute the derivative of
CDFs P0(l) and P1(l) as

fL0(l) = −d P0(l)

dl

and

fL1(l) = −d P1(l)

dl
since fL0(l) and fL1(l) are continuous functions.13
We have

D (
fL0(l)|| fL1(l)

) =
∫ +∞

−∞
log

fL0(l)

fL1(l)
fL0(l) dl

(a)= −
∫ 1

0
log

d P1

d P0
d P0

(b)= −
∫ 1

0
log h′(z) dz

where equality (a) is true since we can replace PDfs
fL0(l) and fL1(l) using the derivative of their CDFs.

13Both fL0 (l) and fL1 (l) are PDFs in generalized Chi-squared dis-
tributions class. This means that each of these PDFs are convolution of
weighted Chi-squared distributions. Weighted Chi-squared distribution
is continuous in its domain thus, convolution of these distributions is
continuous in its domain.

Equality (b) is just a change of variable, z = P0(l), in
order to write the integral in terms of the derivative
of the ROC curve. Proof for the second part of this
lemma is similar to the proof of the first part.

Proof of Theorem 3
Looking back at the properties of the ROC curve,
h(z), where z ∈ [0, 1], the ROC curve has to satisfy
the following conditions

• C1:
∫ 1

0 h′(z)dz = 1
• C2: h′(z) ≥ 0
• C3: h′(z) is decreasing

where h′(z) is the derivative of the ROC curve, h(z).
Also for a given ROC curve, h(z), we can compute
the AUC as

Pr (L� > 0) =
∫ 1

0
h(z)dz.

Then, using integration by parts, we can show
that

1 − Pr (L� > 0) =
∫ 1

0
z h′(z)dz.

To compute the possible feasible region stated
in the Theorem 3, we need to optimize both of
following KL divergences, D( fL1(l)|| fL0(l)) and
D( fL0(l)|| fL1(l)), with respect to the derivative of
the ROC curve given a fixed AUC, Pr(L� > 0),
while conditions, C1, C2, and C3 hold. To solve this
optimization, we can use the method of Lagrange
multiplier.
First step: Here we minimize D( fL1(l)|| fL0(l))

with respect to the derivative of the ROC curve
given the constraints. Optimization problem is as
follow

argminh′(z) −
∫ 1

0
log h′(z)dz (A.1)

s. t.
∫ 1

0
z h′(z)dz = 1 − Pr (L� > 0)

C1, C2 & C3.

To solve this optimization problem, we first write
the Lagrangian. We need two coefficients a and b
corresponding to conditions in optimization prob-
lem (A.1). Then, we can write the Lagrange mul-
tiplier as a function of the derivative of the ROC

http://www.nrel.gov/midc/
http://www.nrel.gov/midc/
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curve, z, a and b as follow

L(h′(z), z, a, b)

= −
∫ 1

0
log h′(z)dz

+ a

(∫ 1

0
zh′(z)dz − (1 − Pr (L� > 0))

)

+ b

(∫ 1

0
h′(z)dz − 1

)
.

Note that, the Lagrangian, L(h′(z), z, a, b) is a con-
vex functional [42] of h′(z). Thus, we can compute
its minimum by taking its derivative with respect
to h′(z). Doing so, and applying the Euler-Lagrange
equation [42] we get

δL(h′(z), z, a, b)

δh′(z)
= ∂L

∂h′ − d

dz

∂L

∂h′′

=
∫ 1

0

(
az + b − 1

h′(z)

)
dz.

Set δL(h′(z), z, a, b)
δh′(z) = 0, we get

h′(z) = 1

az + b

for all z ∈ [0, 1]. From C3, since h′(z) is decreasing,
we can conclude that a > 0. Moreover, from C1, at
optimum we have

∫ 1
0 h′(z)dz = 1 and thus, we can

compute one of the coefficients as b = a
ea−1 .

Computing the AUC integral and the KL diver-
gence using the ROC curve, we get the follow-
ing parametric boundary for the possible feasible
region

Pr(L� > 0) = 1

1 − e−a − 1

a
(A.2)

and

D = log(a)+ a

ea − 1
− 1 − log(1 − e−a) (A.3)

whereD = D (
fL1(l)|| fL0(l)

)
.

Second step: Here we minimize D (
fL0(l)||

fL1(l)
)
. The Lagrange multiplier for this step is

similar to the first step but it is more straight-
forward if we define g (η) = h−1(η). Note that
using integration by parts, we can show that

AUC is

Pr(L� > 0) =
∫ 1

0
η g ′(η)dη.

Now, we can write the Lagrangian for the optimiza-
tion problem with respect to g ′(η). The Lagrangian
is convex with respect to g ′(η), thus taking the
derivative and set it equal to zero as follow

δL(g ′(η), η, a, b)

δg ′(η)
= 0

we can compute the parametric boundary for the
possible feasible region. The parametric boundary,
in this case, is the same as a solution in (A.2) and
(A.3) with D = D( fL0(l)|| fL1(l)). Thus, combin-
ing these two steps, for the optimal boundary, we
have

D∗
l = min{D( fL1(l)|| fL0(l)), D( fL0(l)|| fL1(l))}.
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