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Robust adaptive beamforming with enhancing
the interference suppression capability

linxian liu1 and yang li2

The steering vector mismatch causes signal self-nulling for adaptive beamforming when the training data contain the desired
signal component. To prevent signal self-nulling, many beamformers use robust technology, which is usually equivalent to the
diagonal loading approach. Unfortunately, the diagonal loading approach achieves better signal enhancement at the cost of
losing its interference suppression capability, especially at high input signal-to-noise ratio. In this paper, a novel robust adaptive
beamforming method is developed to improve the interference suppression capability. The proposed beamformer is based on
the worst-case performance optimization technology with a new estimated steering vector and a special set parameter. Firstly,
a subspace which is orthogonal to the interference’s steering vector is obtained by using the interference-plus-noise covariance
matrix; then a new steering vector which is orthogonal to each interference’s steering vector is estimated; finally, the beamformer’s
weight is solvedwith theworst-case performance optimization technologywith a special set parameter. Theoretical analysis of the
interference suppression principle is analyzed in detail, and some simulation results are presented to evaluate the performance
of the proposed beamformer.
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I . I NTRODUCT ION

The minimum variance distortionless response (MVDR)
beamformer is known to maximize the output signal-to-
interference-plus-noise ratio (SINR) by minimizing the
total beamformer output power subject to a distortionless
constraint for the signal. If the training data contain the
signal component, theMVDR beamformer becomes amin-
imum power distortionless response (MPDR) beamformer,
so even a small mismatch in the signal’ steering vector
(SSV) and/or array covariance matrix can lead to a severe
degradation of the performance [1]. In practice, such a mis-
match can be caused by the pointing error [2], calibration
errors [3]), unknown wavefront distortions [4], local scat-
tering [5], moving target [6], etc. Finite sampling sequence
[7] also leads to inaccurate covariance matrix. Therefore,
the robustness technology [8] is required to overcome these
problems. We refer to the beamformer that attempts to pre-
serve good performance in the presence of mismatch as
robust adaptive beamformer (RAB). A minimal goal for
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RAB is that its performance should never degrade below the
performance of a conventional beamformer.

In past two decades, many technologies have been devel-
oped to improve the robustness of the MPDR beamformer
against the SSVmismatch. They aremainly divided into two
types. The first type technology imposes additional con-
straints on the beamformer to prevent or decrease the signal
self-nulling, and they can be divided into two categories:
(1) The SSV updating approach updates the SSV estimated
from prior parameters to make it get closer to actual SSV.
Many algorithms are effective, such as the eigenspace pro-
jection approach [9], the Bayesian approach [10], and the
Taylor series approximation approach [11]. However, actual
SSV cannot be obtained, because the parameters that the
algorithm uses are not accurate. (2) The robust constrained
approach does not require actual SSV. It generally uses the
SSV error norm constraint or beampattern constraint, such
as the worst-case performance optimization-based beam-
former (WCB) [12], the covariance fitting (CF)-based beam-
former [13], and the multiple uncertainty sets constraint
beamformer [14]. The constrained beamformers generally
have two problems: firstly, actual SSV error is difficult to
obtain in practice [15]; secondly, the constraint is usually
a second-order cone program problem, therefore it does
not have closed-form solution [16]. Actually, most of the
constrained robust adaptive beamformers turn out to be
equivalent and belong to the extended class of diagonal
loading (DL) approach [13]. When a RAB equivalents to
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the DL approach, another problem comes: the DL level is
hard to choose in practice, and the RAB achieves better
signal enhancement at the cost of losing its interference
suppression capability, especially when the signal-to-noise
ratio (SNR) is high. (2) The second type of robust tech-
nology is to eliminate or reduce the desired signal compo-
nent before estimating the covariance matrix [17, 18]. Once
the desired signal component is completely eliminated,
the MPDR beamformer becomes an MVDR beamformer.
Recently, some RABs based on the interference-plus-noise
covariance matrix (INCM) reconstruction technology are
proposed [2, 17, 19–21]. The performance of the INCM-
basedRAB is almost always close to the optimal value across
a wide range of SNR and signal-to-interference ratio (SIR).
Unfortunately, the performance is severely degraded when
array perturbations exist.

Most of the past studies used the SINR as the measure
of system performance. However, SINR is not always the
best measure performance, in some applications, SIR per-
formance ismore important [22]. In this paper, we develop a
novel beamformerwith enhancing the interference suppres-
sion capability at high input SNR.We call the proposedRAB
as interference suppression robust adaptive beamformer
(ISRAB). The main idea of ISRAB is that the suppression
on the interference is enhanced as the input SNR gets larger.
Three technologies, INCM reconstruction, covariance fit-
ting, and worst-case performance optimization are used in
ISRAB to guarantee enhancing the interference suppression
capability.

Themain contributions of this paper are listed as follows:
(1) A RAB with enhancing the interference suppression
capability is developed; (2) The working principle of the
proposed ISRAB is analyzed, the feature of the ISRAB varies
adaptively with the vary of input SNR; (3) A new steering
vector which is close to actual SSV as well as orthogonal to
the interference is estimated, perhaps it has potential uses
for other applications.

The paper is organized as follows. The signal model
and background on adaptive beamforming are presented in
Section II. The theatrical analysis of the proposed ISRAB
and its implementation is developed in Section III. Some
simulation examples are shown in Section IV. Finally, a
brief conclusion is given in Section V. In the following,
E[�], (�)T , (�)H , (�)−1, ‖�‖, and ⊥ denote the expectation,
transpose, Hermitian transpose, inverse, the two-norm, and
orthogonal respectively, superscript ·̂ denotes the estimated
value.

I I . PROBLEM FORMULAT ION

Considering one signal and P uncorrelated, narrowband
interference impinge on a uniform linear array (ULA) with
M omni-directional sensors located at x-axis in Cartesian
coordinate system, P + 1 < M. The received data at k-th
snapshot can be expressed as

x(k) = a0s0(k) +
∑P

i=1
aisi(k) + n(k), (1)

where a0 and ai = exp{j(2π/λ)PTAi(θ)}, i = 1, . . . , P, are
the steering vectors of the desired signal and i-th interfer-
ence respectively; λ is the wavelength; P = [P1, P2, . . .PM],
Pm = [pxm, pym, pzm]T , m = 1, 2, . . . , M, is each sensor’s
axis location; Ai(θ) = [cos(θi), sin(θi), 0]T , θi is the angle
between the direction-of-arrival (DOA) of i-th signal or
interference and the axis of the ULA. s0(k) and si(k) are
zero-mean stationary, n(k) denotes the noise.

The covariance matrix of the array output is given by

R = E[x(k)xH(k)]

= σ 2
0a0a

H
0 +

∑P

i=1
σ 2
i aia

H
i + σ 2

n IM ,
(2)

where σ 2
0 , σ 2

i , and σ 2
n denote the power of signal, i-th

interference, and noise, respectively.
The problem of maximizing the output SINR is mathe-

matically equivalent to the problem

min
w

wHRINw s.t. wHa0 = 1, (3)

where w = [w1, . . . , wM]T is the beamformer’s weight vec-
tor, RIN = ∑P

i=1 σ
2
i aia

H
i + σ 2

n IM is the actual INCM. The
solution of (3) is the MVDR beamformer

wopt = αR−1
INa0, (4)

where α = (aH0 R
−1
INa0)

−1 is a normalization constant which
does not affect the output SINR.

When the receiving snapshots include the desired sig-
nal component, RIN in (4) is replaced by R, then the
MVDR becomes the MPDR: wMPDR = αR−1a0, where α =
(aH0 R−1a0)

−1. Although the MPDR has the same SINR per-
formance with the MVDR, however, we cannot obtain two
accurate parameters in practice. On one hand, since R is
unknown in practice, it is replaced by K-snapshots sam-
ple covariance matrix R̂ = (1/K)

∑K
k=1 x(k)x

H(k). On the
other hand, many factors can lead to the steering vector
mismatch, such as the pointing error and the array pertur-
bations (the perturbations often include the array element
position error, calibration magnitude error, and calibration
phase error), they can be modeled as [23]

ai(θ) =(1 + �g)ej�φej(2π/λ)(P+�P)TAi(θ+�θ)

�P =[�P1,�P2, . . . �PM]

�Pm =[�xm,�ym,�zm]T ,m = 1, 2, . . . ,M

, (5)

where�θ ,�g ,�φ , and�P denote the pointing error, cal-
ibration magnitude error, calibration phase error, and array
element position error, respectively. In this paper, we focus
on the steering vector error, so the influence of covariance
matrix is omitted, thus we do not distinguishR and R̂ in the
following.

The inaccurate of covariance matrix of steering vector
can lead to the output SINR significant decrease which is
called self-nulling, especially when the input SNR is high.
Many robust technologies have been developed to deal with
this problem, one of the most popular method is called DL.
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The DL technique augments the diagonal of the covariance
with a constant level

wDL = (RIN + βI)−1a0, (6)

where β is the DL level.
TheDL technology hasmany useful effects, such asmak-

ing the covariance matrix invertible, constraining the white
noise gain [24], robust against the steering vector error and
the covariance matrix error [25], etc. However, the DL tech-
nology has some problems such as the DL level is hard to
be chosen [24] and the interference suppression capability
is reduced [22]. Some robust adaptive beamformers, such as
the famousWCB and CFRCB have been proved and belong
to the class of DL technology [12, 13], therefore they have the
same problems.

Most of the past studies used the SINR as the measure of
system performance. However, SINR is not always the best
measure performance, in some applications, SIR perfor-
mance is more important [22]. In the following, we develop
a novel beamformer ISRABwith enhancing the interference
suppression capability.

I I I . THE PROPOSED BEAMFORMER

The ISRAB is developed with three steps: the INCM recon-
struction technology is used to construct a subspace which
is orthogonal to the interference; the CF technology is used
to estimate an SV which is close to the desired signal’s SV
as well as orthogonal to the interference; the WCB technol-
ogy is used to solve theweight vector to prevent self-nulling.
Although three exist technologies are used, the form or
usage in ISRAB is difference from their original complete
solution.

A) Interference orthogonal subspace
construction
Firstly, the INCM RIN is reconstructed with R through [17]

RIN = 1
N

N∑
i=1

â(θi)âH(θi)

âH(θi)R̂−1â(θi)
, θi ∈ 
̄, (7)

where â(θi) is the presumed steering vector correspond-
ing to direction θi, 
̄ denotes the complement of signal
uncertainty region 
.

Taking the eigen-decomposition of RIN

RIN = EI�IEH
I +EN�NEH

N

=
P∑
i=1

γieieHi + γn

M∑
i=P+1

eieHi
, (8)

where γi and ei are the eigenvalues and corresponding
eigenvectors of RIN , the eigenvalues are sorted in descend-
ing order γ1 ≥ . . . ≥ γP � γP+1 = . . . = γM = σ 2

n , EI =
[e1, . . . , eP] spans the interference subspace,

EN = [eP+1, . . . , eM] spans the noise subspace. The follow-
ing formulas hold

span{ai} = span{ei}, i = 1, . . . ,P, (9)

EI⊥EN ,EIEH
I +ENEH

N=I. (10)

Therefore, the subspace EN = [eP+1, . . . , eM] is orthog-
onal to each ISV.

B) Steering vector estimation
When the angular separation between signal and inter-
ference is larger than a beam width,

∣∣aH0 ai/M∣∣2 � 1, i =
1, . . . , P [26]. Assuming this condition always holds, we
can make the approximation

∣∣aH0 ei∣∣2 � M, i = 1, . . . , P,
and aH0 EIEH

I a0 � M, which can be further extended
to aH0 ENEH

Na0 = aH0 (I − EIEH
I )a0 = M − aH0 EIEH

I a0 ≈ M.
Therefore, we canmake

∥∥EH
Na0

∥∥2 ≈ M. Because ‖a0‖2 = M
, a0 approximately belongs to the subspace span{ei}, i =
P + 1, . . . , M. Hence, we can express the new SSV with the
linear combination of ei, i = P + 1, . . . , M

â0 ≈ ENb, (11)

where b is an (M − P) × 1 dimensional rotating vector.
The CF technology [13] can be used to solve b

min
â0

âH0 R
−1â0 s.t.

∥∥â0∥∥2=M. (12)

Using (11) and EH
NEN = IM−P, equation (12) becomes

min
b

bHREb s.t. bHb = M, (13)

where RE = EH
NR

−1EN . The vector b can be solved by the
Lagrange multiplier method

f (b, η) = bHREb + η(bHb − M), (14)

where η is the Lagrange multiplier. Differentiating of (14)
with respect to b and equating the result to zero, the solu-
tion to (13) is given by the following generalized eigenvalue
problem

REb = ηb. (15)

The solution to (15) is

b = M{RE}, (16)

whereM{�} is the operator that yields the eigenvector cor-
responding to the minimal eigenvalue.

Notice that the vector should be scaled to guarantee∥∥â0∥∥ = √
M. Therefore, the estimated new SSV is given by

â0 =
√
MENb/‖ENb‖ . (17)

Obviously, â0 is close to actual SSV as well as orthogonal
to each ISV.

We make the following two remarks:

Remark 1. Estimating an accurate noise subspace in (8) is
not necessary. We can choose the eigenvectors corresponding
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to PEN(PEN ≤ M − P) small eigenvalues as the columns of
EN. The weak interference component corresponding to the
eigenvalues between PEN and M − P can be suppressed. An
easy way to estimate PEN is to choose a maximal value of
PEN which satisfies that the value of

∑M−PEN
i=1 γi divided by∑M

i=1 γi is larger than a fixed value, such as 0.9.

Remark 2. The CF approach in [13] subjects to the con-
straint

∥∥∥aCF − â(θ̂0)
∥∥∥2

≤ ε to search the maximal spatial

power in SSV uncertainty region, where θ̂0 is the presumed
DOA of signal. The objective function of (12) searches the
max spatial power through all the directions. Since ENb is
orthogonal to the ISV, â0 will not converge to any ISV. If
SNR is high, â0 will converge to the SSV. If SNR is very low,
the signal power is submerged by the noise power in spa-
tial spectrum, â0 may converge to a noise power peak. The
following stopping criterion is used to avoid that â0 con-
verges to the noise peak which is far from actual signal DOA:
if

∣∣∣âH0 â(θ̂0)∣∣∣ < min{
∣∣∣âH0 â(θ̂0 + θW/2)

∣∣∣ , ∣∣∣âH0 â(θ̂0 − θW/2)
∣∣∣},

setting â0 = â(θ̂0), where θW is the signal’s DOA uncertainty
range [27] . The criterion means that if the corresponding
angle of â0 is beyond the signal DOA uncertainty range, using
initial value â(θ̂0) as â0.

C) Solving the weight
The worst-case performance optimization-based beam-
former can be formulated as [12]{

min
w

wHRw

s.t.
∣∣wH(â0 + δ)

∣∣ ≥ 1,∀ ‖δ‖ ≤ ε
, (18)

where δ is the vector of the unknownmismatch between the
actual SSV and its presumed value â0 with a prior known
norm bound ε. The solutions to (18) belongs to the DL
approach [28]

w = (R + ε/τ IM)−1â0, (19)

where τ is the root to

M−1∑
i=0

∣∣qHi â0∣∣2
(ε + τλi)

2 = 1, (20)

where R = ∑M−1
i=0 λiqiqHi , λi and qi are the eigenvalues and

corresponding eigenvectors of R, λi are sorted in descend-
ing order λ0 ≥ λ1 ≥ . . . ≥ λP+1 = . . . = λM−1 = λn. The
binary search technique [28] can be used to solve (20).

D) Working principle
Eigenvectors in noise subspace are approximately orthogo-
nal to â0

qHi â0 ≈ 0, i = P + 1, . . . ,M − 1. (21)

In the following, we assume that the interference’s num-
ber is equal to one so as to obtain a theoretical result.

Simulation example 1 will show that when the interference
number is larger than one, the theoretical result also estab-
lishes. The Rwith only one interference can be expressed in
eigen-decomposition form

R = λ0q0qH0 + λ1q1qH1 +
M−1∑
i=2

λnqiqHi

= (λ0 − λn)q0qH0 + (λ1 − λn)q1qH1 + λnIM .

(22)

Meanwhile, R can be expressed in array signal form

R ≈ σ 2
0 â0â

H
0 + σ 2

1 a1a
H
1 + σ 2

n IM . (23)

By combining (22) and (23), λ0 and λ1 can be solved [26]

λ0 = σ 2
n + M

2
[
σ 2
0 + σ 2

1

+
√

(σ 2
0 + σ 2

1 )
2 − 4σ 2

0σ
2
1 (1 − |v|2)

]
, (24)

λ1 = σ 2
n + M

2
[
σ 2
0 + σ 2

1

−
√

(σ 2
0 + σ 2

1 )
2 − 4σ 2

0σ
2
1 (1 − |v|2)

]
, (25)

∣∣qHi â0∣∣2 = M(−1)i+1−λi + Mσ 2
1 (1 − |v|2)

λ0 − λ1
, i = 0, 1, (26)

where λ0 > λ1, |v|2 = ∣∣âH0 ai/M∣∣2 � 1, which is similar with
the condition presented in Section III.B.

Case 1: Very high SNR
If σ 2

0 � σ 2
1 , we can make∣∣qH0 â0∣∣2 ≈ M,

∣∣qH1 â0∣∣2 ≈ 0. (27)

If ε approaches
√
M (we set ε = 0.99

√
M in the following),

the denominators of (20) can satisfy

(ε + τλi)
2 > M, i = 0, 1, . . . ,P. (28)

From (20), (21), (27), and (28) we have

1 =
M−1∑
i=0

∣∣qHi â0∣∣2
(ε + τλi)

2 ≈
∣∣qH0 â0∣∣2

(ε + τλ0)
2 ≈ M

(ε + τλ0)
2 . (29)

Equation (29) further reveals that
ε

τλ0
≈ ε√

M − ε
= 99, for ε = 0.99

√
M. (30)

Equation (30) indicates that the equivalent DL level in (19)
ε/τ = 99λ0 is much greater than the largest eigenvalue λ0.
Hence the effect of the weight vector (19) on the ISV is

wHa1 = âH0
M−1∑
i=0

(
λi + ε

τ

)−1
qiqHi a1

≈ âH0
τ

ε

M−1∑
i=0

qiqHi a1 = 1
99λ0

âH0 a1.

(31)

In case of the SNR is very large, the attenuation by
1/(99λ0) and the orthogonality between â0 and a1 dou-
bly make the value of

∣∣wHa1
∣∣ very small, which means the

interference can be significantly suppressed.
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Case 2: Very low SNR
If σ 2

0 � σ 2
1 , we can make

∣∣qH0 â0∣∣2 ≈ 0,
∣∣qH1 â0∣∣2 ≈ M,

and then ε/τ = 99λ1, through the same way with (22) to
(30). In very lowSNRcase,λ1 ≈ σ 2

n , therefore theDL level in
(19) is about ε/τ = 99σ 2

n . Therefore, the ISRAB equivalents
to the DL beamformer with level 99σ 2

n .
It can be concluded that, the feature of the ISRAB varies

adaptively with the vary of input SNR.

E) Implementation
The implementation of ISRAB is summarized as follows

Step 1: Reconstructing the INCM RIN by (7).
Step 2: Taking the eigen-decomposition of RIN by (12) to

obtain the subspace EN .
Step 3: Calculating â0 by (8): â0 = ENM{EH

NR
−1EN},

â0=
√
Mâ0/

∥∥â0∥∥.
Step 4: Calculating w = (R + ε/τ IM)−1â0, where τ is the

root to (20).

The implementation mainly includes the reconstructing of
the INCM, the eigen-decomposition, and the matrix inver-
sion, their computational time complexity are O(NM2),
O(M3) , and O(M3), respectively.

I V . S IMULAT ION EXAMPLES

The array is a ULA with half-wavelength spacing d and
M=16 elements. There are two interference with directions
and interference-to-noise ratios (INRs) of [40◦, 20 dB] and
[110◦, 30 dB], respectively. The signal and interference are
assumed as point sources except for Example 3. The additive
noise is a spatially white Gaussian process. The desired sig-
nal’s actual DOA is 80◦, whereas its estimated value θ̂0 is 82◦.
The signalDOAuncertainty range is θW = 8◦, whichmeans
the signal uncertainty region 
 is [78◦, 86◦]. The degree
step is set to 1◦ in INCM reconstruction, which indicates
N = 180 for implementation Step 1. Assuming�g,�φ, and
�xm, �ym, �zm,m = 1, 2, . . . , M, are statistically indepen-
dent, zero-mean, Gaussian random variables. �g, �φ/π ,
and �xm/d, �ym/d, �zm/d have the same standard devi-
ation σ�. We set σ� = 0 for perfectly calibrated array in
Section IV.A, and set σ� = 0.02 for array perturbation in
Section IV.B. The number of snapshots is 100 except for
Example 7. 100 independent runs are performed except for
Example 5 and Example 10.

The performance of the ISRAB is compared with the
following classic beamformers:

(1) OPT: the MVDR beamformer of (4) with actual covari-
ance matrix and actual SSV.

(2) ISRAB: the proposed beamformer with ε = 0.99
√
M.

(3) FDL: the DL beamformer wDL = (R + βI)−1â(θ̂0), with
a fixed DL level β = 99σ 2

n .
(4) VDL: the beamformer of [29].
(5) WCB: the beamformer of [12] with ε = 0.5

√
M.

(6) IWCB: the beamformer of [16] with ε = 0.2.

Fig. 1. The DL level divided by maximal eigenvalue versus SIR.

(7) RIN: the beamformer of [17], wRIN = R−1
INa0, where RIN

is calculated by (7), and we use actual SSV directly
instead of estimating it with the CVX tool.

(8) CFRIN: the beamformer of [19] with ε = 0.2.

The main computational time complexity of implemen-
tation is O(NM2) for ISRAB, RIN, CFRIN, and is O(M3)

for others. GenerallyM � N. The dominant computational
complexity of the ISRAB isO(NM2)which is determined by
the INCM reconstruction step, it can be reduced to O(M3)

if the INCM reconstruction method in [21] is used.

A) Perfect calibrated array
Example 1. DL level. In Section III.C, we assume that the
interference number is equal to one so as to obtain a the-
ory result. Figure 1 displays the DL level divided by maximal
eigenvalue versus SIRwhen the interference number is greater
than one. Results shows that when the input SNR is greater
than the INR, theDL level ε/τ corresponding to ε ≥ 0.99

√
M

is much greater than the maximal eigenvalue λ0 of R.

Example 2. Noise subspace. Figure 2 displays the error
between the estimated SSV â0 and actual SSV a0 versus SNR
and dimension ofEN. As discussed in Remark 2, â0 is set equal
to â(θ̂0) at very low SNR, hence the error is reduced to about
min

ϕ

∥∥∥â(θ̂0)ejϕ − a0
∥∥∥ = 1.95 at very low SNR.When the SNR

is>–12 dB, which approximately equals to the noise power, â0
is closer to a0 than â(θ̂0). The actual dimension of noise sub-
space EN is 14, when estimated dimension PEN is between 9
and 14, â0 is stable, which verifies the Remark 1 is reasonable.

Example 3. SINR versus SNR. Figure 3 displays the output
SINR versus SNR with 2◦ pointing error. Results show that:
(1) The output SINR of VDL degrades quickly when SNR is
>0 dB while the SINR of FDL degrades when SNR is >10 dB,
hence, the DL level with 99σ 2

n is better than variable DL level
in this case; (2) The SINR of WCB and IWCB bias from OPT
when SNR is large, it is because the suppress capability of
interference is decrease as the SNR gets larger. (3) The SINRs
of RIN and CFRIN are close to OPT value, but a litter lower



6 linxian liu and yang li

Fig. 2. The error of estimated SSV versus SNR.

Fig. 3. Output SINR versus SNR.

than the proposed ISRAB, the reason is analyzed in our pre-
vious work [30]: the main peak of RIN and CFRIN cannot
point to actual signal’s direction even if the steering vector is
accurate (also see Example 5).

Example 4. SIR versus SNR. Figure 4 displays the output
SIR versus SNR with 2◦ pointing error. Results show that: (1)
The suppress capability of interference is decrease for the FDL,
VDL,WCB, and IWCBwhen SNR is larger than 0 dB. (2) The
SIR of RIN is stable through all the SNR, but a little lower than
ISRAB and CFRIN especially when the SNR is very low and
very high. (3) The SIR of ISRAB is higher than others expect
a slight lower than the CFRCB when SNR is high.

Example 5. Array pattern. Figure 5 shows the array pat-
tern of four beamformers at SNR=25 dB. Results show that:
(1) Both the ISRAB and RIN form deeper nulls at interfer-
ence directions thanWCB. (2) The ISRAB can point the main
beam peak to actual signal direction, while both the RIN
and WCB deviate to the actual signal direction, even if the
RIN uses actual SSV. (3) There exists self-nulling for FDL.
The defect of RIN is explained as follows [30]: the RIN in (7)
contains no signal or noise component in 
, hence the opti-
mization condition minwHRINw in (3) has no effect in 
.
The constraint wHa(θ) = 1 guarantees that the beampattern
gain is equal to one at direction θ , but the gain at other discrete

Fig. 4. Output SIR versus SNR.

Fig. 5. Array pattern.

directions in 
 may exceed one without enlarging wHRINw.
Then themain lobe peak of beampatternmay point to another
direction, thus the SINR of RIN degrades slightly. The ISRAB
does not have the optimization condition minwHRINw, its
weight vector equivalents to â0 which is very close to actual
SSV (as shown in Fig. 2), so the main beam of ISRAB can
point (very close) to actual signal’s directions. Because the
solution of WCB is equivalent to the DL, the peak of the main
beam is moved with the DL level when there exists a pointing
error [31].

Example 6. Pointing error. Figure 6 displays the output
SINR versus pointing error, SNR=25 dB. Results show that: (1)
Whether FDL or VFL is not suitable in this scenario. (2) We
set ε = 2 for WCB, which corresponds to about 2◦ pointing
error. the SINR of WCB performs stable when pointing error
is less than 2◦, but degrades greatly when the pointing error is
larger than 2◦. (3) When the pointing error is < θW/2 = 4◦,
ISRAB performs stably, and its SINR is the closest to OPT.
(4) It is because the stopping criterion in Remark 2 causes the
SINR of ISRABdecreasewhen the pointing error is larger than
4◦, the CFRIN has the same stopping criterion while the RIN
does not have.

Example 7. Snapshots. Figure 7 displays the output SINR
versus snapshots at SNR = 25 dB. Results shows that the per-
formance of ISRAB tends to be stable when the number of
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Fig. 6. Output SINR versus pointing error.

Fig. 7. Output SINR versus snapshots.

snapshots is larger than 20. The SINR performance is not good
with small snapshots is a drawback of the ISRAB, as well as
the CFRIN.

B) Array perturbations
In the following examples, the SV mismatch is caused
by both 2◦ pointing error, and array perturbations with
σ� = 0.02.

Example 8. SINR versus SNR. Figure 8 shows the output
SINR versus SNR. Compared with Fig. 3, the SINR of RIN
degrades with a fixed value through all the SNRs in Fig. 8.
The SINR of ISRAB is very close to OPT at low SNR, although
it degrades at high SNR, it is always better than other beam-
formers.

Example 9. SIR versus SNR. Figure 9 displays the output
SIR versus SNR with pointing error and array perturba-
tions. Compared with Fig. 4, the SIRs of RIN and CFRIN
are decreased at low SNR case, the SIR of ISRAB almost
outperforms others through all the SNRs.

Example 10. Array pattern. Figure 10 displays the array
pattern at SNR = 25 dB. The ISRAB can point the main
lobe peak closest to actual signal direction than RIN and
WCB. Although the nulling depths at interference directions

Fig. 8. Output SINR versus SNR.

Fig. 9. Output SIR versus SNR.

Fig. 10. Array pattern.

of ISRAB are lower than that of Fig. 3, they are much deeper
than WCB in this scenario.

Finally, the main advantages of the proposed ISRAB are
summarized as follows: (1) The nulling at interference is
much deeper; (2) The main peak can point to signal’s actual
directions; (3) All the parameters are fixed in any situations.

V . CONCLUS ION

Anovel robust adaptive beamformer ISRABhas been devel-
oped. Three steps processing are performed to guarantee
that the beamformer’s weight is orthogonal to each ISV and
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does not suppress the desired signal as an interference. The-
oretical analysis of the interference suppression principle
is analyzed in detail. Some special set of parameters are
also analyzed. Simulation results show that, compared with
several classical beamformers, the proposed ISRAB has the
advantages in many cases, such as the pointing error and
array perturbations.
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