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A signal adaptive diffusion filter for video
coding: improved parameter selection
jennifer rasch, jonathan pfaff, michael schäfer, anastasia henkel,
heiko schwarz, detlev marpe and thomas wiegand

In this paper we combine video compression and modern image processing methods. We construct novel iterative filter methods
for prediction signals based on Partial Differential Equation (PDE)-based methods. The central idea of the signal adaptive
filters is explained and demonstrated geometrically. The meaning of particular parameters is discussed in detail. Furthermore,
thorough parameter tests are introduced which improve the overall bitrate savings. It is shown that these filters enhance the rate-
distortion performance of the state-of-the-art hybrid video codecs. In particular, based on mathematical denoising techniques,
two types of diffusion filters are constructed: a uniform diffusion filter using a fixed filter mask and a signal adaptive diffusion
filter that incorporates the structures of the underlying prediction signal. The latter has the advantage of not attenuating existing
edges while the uniform filter is less complex. The filters are embedded into a software based on HEVC with additional QTBT
(Quadtree plus Binary Tree) and MTT (Multi-Type-Tree) block structure. Overall, the diffusion filter method achieves average
bitrate savings of 2.27 for Random Access having an average encoder runtime increase of 19 and 17 decoder runtime
increase. For UHD (Ultra High Definition) test sequences, bitrate savings of up to 7.36 for Random Access are accomplished.
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I . I NTRODUCT ION

The increasing demand for high-resolution videos, together
with limited transmission andmemory capacity, is still driv-
ing the research on video compression. As a core tech-
nique in the state-of-the-art video codecs such as High
Efficiency Video Coding (HEVC, [1]) a hybrid approach
with block-based architecture is used. The term “hybrid”
[2] refers to a combination of prediction from previous
decoded frames (inter) or adjacent decoded blocks from
the frame itself (intra prediction) together with transform
coding of the resulting residual. Thus, the quality of the
prediction signal has a large influence on the efficiency
of video codecs. In this paper, a method first introduced
in [3] based on the state-of-the-art mathematical denois-
ing techniques is elaborated in more detail. The central
idea of this method is to construct two types of pre-
diction filters in order to improve prediction signals in
a block-wise manner: a uniform diffusion filter using a
fixed filter mask and a signal adaptive diffusion filter that
incorporates the structures of the underlying prediction
signal.

In particular, the employed techniques here come from
the field of image smoothing for denoising and use Partial
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Differential Equation (PDE)-based methods. In the con-
text of video coding, linear inpainting methods have been
employed to replace intra prediction modes in general [4,5]
or particular ones such as the planar prediction [6,7]. Due to
their diffusion properties, thesemethods have the disadvan-
tage that they cannot prolong edges well and are therefore
not suitable to replace angular predictionmodes. This is the
reason why in this paper instead of replacing the predic-
tion, the prediction provided by the video codec is chosen
as initial condition.

Figure 1 shows a block diagram of a classic hybrid video
encoder with enclosed decoder depicting the newly intro-
duced additional prediction filter step that is applied on
top of the selected prediction signal. So far, little work has
been published on tools increasing the efficiency of the
codec that operate at this particular location. Classically [8],
linear filtering techniques have been applied to the refer-
ence samples before predicting to improve intra prediction.
Furthermore after predicting, modern video codecs employ
linear smoothing techniques for certain intra prediction
modes, which are only applied on the block boundaries
(boundary smoothing, see [8,9]).

In case of inter, most methods to improve prediction
operate directly at the generation of the prediction block
[10]:Weighted prediction approaches that superimpose dif-
ferent reference blocks can be applied to increase the accu-
racy of the current prediction, for example. Another classi-
cal method are the so-called interpolation filters, that use
fixed sets of filter coefficients to interpolate in between
the samples of the reference block(s) to generate fractional
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Fig. 1. Block diagram of a hybrid video encoder with newly introduced prediction filter and enclosed decoder

samples for an accurate inter prediction. In [11], adaptive
interpolation filter coefficients have been proposed which
are fitted and signaled frame by frame.

Well-known post-prediction methods have been sug-
gested for the new video compression standard using affine
linear models to compensate local illumination changes
[12,13]. As themethods established in [3] and used here, this
tool operates on the prediction signal.

The methods used here are signal adaptive in the sense
that they have various configurations which are signaled
block-wise. Thereby, they fit into the framework of classic
video coding tools. Additionally, they are signal adaptive
in the sense that the filter coefficients used depend on the
underlying prediction signal.

The employed mathematical methods originate from
image smoothing using PDE-based methods. One of the
key challenges there is to filter out noise while keeping
edges intact. Perona and Malik [14] suggested a non-linear
diffusion method to avoid the blurring effects of linear
smoothing.

Using a non-linear anisotropic diffusion model,
interesting advances have been made on the topic of PDE-
based image compression [15]. The authors of [15] com-
press images by firstly removing less significant samples
from the image and then writing the remaining ones into
a data stream. Secondly, to decode the picture, a general-
ized anisotropic Perona–Malik model is used to interpolate
between the remaining sparse samples and thereby obtain
a reconstruction of the original picture. Thus, in this case,
the authors of [15] establish a kind of data compression
by having to write less samples. In [16,17], these ideas are
transferred to videos.

In contrast to that, in this paper, the anisotropic diffu-
sion model is built into the framework of a hybrid video
codec: The prediction filters make use of the a priori struc-
tural knowledge contained in the selected prediction signal.

The anisotropic diffusion model is used to develop a highly
signal adaptive prediction filter in order to improve the
embodied prediction and thereby enhancing the coding
efficiency.

This paper is organized as follows. In Section II an
overview of the current state-of-the-art in video coding is
given. In Section III, we will describe the PDE-based fil-
tering approaches in a continuous setting and use them to
construct a uniform and a signal adaptive prediction filter
for video coding. Compared to [18] and [3], more details on
the specific discrete implementation are given and the idea
of the signal adaptive filtering is shown geometrically on a
particular example. In Section IV, the employed experimen-
tal setup is described in detail. In contrast to [3], which was
built into HEVC, here, the filter method is embedded into
a software based on HEVC which uses a QTBT with MTT
block structure (see subsection IV.A for more details). The
impact of the filters is shown exemplarily on an intra predic-
tion block. Additionally when compared to [18] and [3], in
Section V, the meaning of the required parameters for the
filter method is explained and illustrated. Furthermore, cer-
tain parameters are tested thoroughly using encoder-based
tests, where the individual cost improvement is saved and
later used to determine an improved parameter selection
which leads to enhanced bitrate savings.

In this paper, as in [18] and [3], the diffusion filters are
implemented such that they use the reconstructed sam-
ples on the boundary where they are applicable. In contrast
to [18] and [3], here in Section VI, additionally, an alter-
native is shown which avoids accessing the reconstructed
samples in the inter case: A Neumann boundary condi-
tion is implemented and tested empirically. In a discrete
setting, this means that the samples are mirrored across
the boundary. It is shown that the alternative boundary
condition only affects the bitrate savings to a very small
degree.
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Eventually, in Section VII, we show results of up to
1.74 bitrate savings for All Intra at 43 encoding and 19
decoding complexity increase. In case of Random Access,
2.27 bitrate savings are achieved at 19 encoding and
17 decoding complexity increase. For individual UHD
sequences, the method yields up to 7.36 bitrate savings for
Random Access. Note that these results include the com-
plexity reductions like the restriction on certain block sizes
as described in [18].

I I . STATE -OF -THE -ART V IDEO
COD ING

The standardization of video coding technology plays a
major role in the broad adoption and growing popularity of
video technology. Themain purpose of a video coding stan-
dard is to define the interface between encoder and decoder
to ensure interoperability among a wide range of devices.
Video coding standards are designed to provide a maxi-
mal degree of freedom for the manufacturers to adapt the
encoder to specific applications. More details can be found
in [19].

All modern video codecs use the concept of hybrid cod-
ing. The term “hybrid” goes as far back as to the 1980s [2]
and describes a combination of two fundamental concepts
of video coding, predictive coding, and transform coding.
The basic architecture of a hybrid video encoder together
with an enclosed decoder is shown in Fig. 1, additionally
depicting the new prediction filter step proposed here. The
flow of the encoder is depicted using continuous lines.

For the sake of simplicity, here, we will describe the
encoder only. Note that the standard does not imply a spe-
cific encoding approach. The following is to be read as an
example of a particular encoder such as can be found in
[20].

The video signal is divided into pictures and the pic-
tures are split into blocks. Typically, the picture is divided
into macroblocks of a fixed size consisting of a luma and
two corresponding chroma components. In HEVC [1], the
picture is divided into coding tree units (CTUs) of a size
selected using a configuration parameter in the encoder. A
CTU consists of a luma coding tree block (CTB) and two
corresponding chroma CTBs. A CTBmay contain only one
coding unit (CU) or may be split into several CUs using a
quadtree decomposition.

Assuming there are already reconstructed blocks in the
picture storage, a prediction for the current block is formed
using preceding blocks. If those blocks are spatially adja-
cent, the resulting prediction is called intra prediction. If
they are taken from already reconstructed pictures, i.e. are
temporally preceding, one speaks of inter prediction. The
decision if intra or inter prediction is used is taken on CU
level. To optimize the usage of already reconstructed pic-
tures in the inter case, a motion estimation is performed.
The residual between the prediction and the original block
is calculated, transformed, and quantized using a certain
quantization parameter (QP). The resulting coefficients are

fed into the entropy coder. The entropy coder typically
uses either variable-length coding (VLC) (e.g. Huffman
codes [21]) or arithmetic coding (e.g. context-based adap-
tive binary arithmetic coding – CABAC [22]). To obtain
the reconstructed samples, the quantized transform coef-
ficients are rescaled and retransformed. Note that due to
the quantization process, a loss of information takes place.
Therefore, the reconstruction differs from the original. The
reconstructed blocks are loop filtered and stored in the pic-
ture buffer where they are used to predict the following
blocks.

I I I . MATHEMAT ICAL FRAMEWORK
OF THE D IFFUS ION F I LTER

This section is primarily a review chapter and introduces
the mathematical models to be used. Furthermore, it is
described how these models are applied in the setting of
video coding which is the main contribution of this paper.
Here, the different types of uniform and signal adaptive dif-
fusion models are described in a continuous setting. It is
known that in a general, continuous setting, the problems
thatwill be described in subsectionB are not uniquely or not
at all solvable. In a discrete setting, Weickert [23] has shown
that they are uniquely solvable which makes the models
suitable for our application.

A) Uniform diffusion model
In this subsection, a uniform diffusion model is described
which originates from image smoothing. According to [24],
such approaches were first introduced in 1959 in Japan [25].
This approach is a special case of the anisotropic case that
will be presented in the sequel.

In order to use uniform diffusion in the context of video
coding, let f be an image in R

2 consisting of the given pre-
diction block extended using the reconstructed pixels on the
left and upper side. Then, we let the function u : R

2 × R →
R be a solution of

∂

∂t
u(x, t) = div(∇u(x, t)), (1)

with the initial condition

u(x, 0) = f (x) (2)

and boundary conditions

u(x, t) = f (x) ∀x ∈ �1,

∂

∂ν
u(x, t) = 0 ∀x ∈ �2, (3)

for time t ∈ [0,∞), where ν denotes the outer normal
and � = �1 ∪ �2 the boundary of the prediction block.
The upper and left boundary of the prediction block is
denoted by �1 and the lower and right boundary by �2.
Operator div denotes the divergence. The first bound-
ary condition in Eq. (3) is chosen since in the applica-
tion of video coding, the reconstructed samples on the
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upper and left sides are known. Here, the parameter t
represents the duration of the filtering process and deter-
mines the strength of the filter.

The gradient is implemented using finite differences.
Since div(∇u(x, t)) = �u(x, t), Eq. (1) coincides with the
heat equation. Solution u is a filtered version of the initial
prediction f. The prediction in the codec is then replaced
by its filtered descendant u restricted on the area of the
prediction block.

Define the forward/backward differences operators as

D+
x1u(x, t) = u(x + he1, t) − u(x, t)

and

D−
x1u(x, t) = u(x, t) − u(x − he1, t),

for unit vectors ei, i ∈ {1, 2} and step size h>0. OperatorD±
x2

is defined analogously using unit vector e2 = (0, 1)T ∈ R
2.

To discretize the time derivation, define

D+
t u(x, t) :=

1
τ

(u(x, t + τ) − u(x, t)) (4)

for parameter τ > 0. Now, Eq. (1) can be discretized as
follows

D+
t u(x, t) = D−

x1D+
x1u(x, t) + D−

x2D+
x2u(x, t). (5)

For sample x inside the block, Eq. (5) for τ = 0.25 results in

u(x, t + τ) = 1
4
(u(x + he1, t) + u(x − he1, t)

+ u(x + he2, t) + u(x − he2, t)).

In the discrete implementation, it is used that the latter can
also be expressed as t-times correlating the initial prediction
u(x, 0) = f (x) with the symmetric filter mask

h = 1
4

⎛
⎝0 1 0
1 0 1
0 1 0

⎞
⎠ ,

i.e.

u(x, t) = h ∗ · · · ∗ h︸ ︷︷ ︸
t-times

∗ u(x, 0).

Note that since h is a symmetric filter mask, correlation is
equivalent to convolution.

An obvious disadvantage of this uniform smoothing is
the fact that it does not only smooth noise, but also atten-
uates important features in the underlying image such as
edges. This unwanted behavior can be prevented by using
adaptive smoothing methods: Using this idea coming from
image processing, we construct a filter which itself depends
on local properties of the image – in our case the underlying
prediction.

B) Anisotropic diffusion model
In order to identify features such as corners or to measure
the local coherence of edges, the following model does not
only consider the norm of the gradient but also takes its
direction into account: Diffusion along edges should be pre-
ferred over diffusion perpendicular to them. To realize the
combination of these aspects, a diffusion tensor which is
based on the matrix ∇u∇uT can be constructed as sug-
gested by Cottet and Germain [26]. To avoid that noise
contained in the image perturbs the edge selection process,
the idea of Catté et al. [27] in the context of image restora-
tion is transferred to thematrix∇u∇uT : matrix∇u∇uT can
be replaced by the Gaussian smoothed version

Jσ (∇u) := Kσ ∗ (∇u∇uT), σ ≥ 0.

with a Gaussian kernel Kσ and standard deviation σ ≥
0. The correlation ∗ of Kσ with ∇u∇uT is to be under-
stood componentwise. Then, a matrix valued function
q̃(Jσ ) : R

2×2 → R
2×2 can be defined which is referred to

as diffusion tensor. In our application in video coding, the
time update is neglected and ∇u∇uT in the function q̃(Jσ )

is replaced by ∇f∇f T .
Using this, the anisotropic diffusion model reads

∂

∂t
u = div

(
q̃(Jσ )∇u

)
(6)

with initial (2) and boundary conditions (3) as above. The
model described in this subsection leads (under certain
conditions) to a uniquely solvable problem (see [18]). Note
that for t → ∞, Eq. (6) converges to a steady state inde-
pendently of the initial condition which is an inpainting
solution [23]. But for t << ∞, the solution u can be under-
stood as a smoothed version of prediction f. This makes it
feasible for our application in video coding.

Since

Jσ := 1
4

(
g11 g12
g12 g22

)
(7)

is a real symmetricmatrix, it is diagonalizable by orthogonal
matrices S. As shown below, the application of the matrix
valued function q̃ on Jσ is well defined by applying a suitable
function q to its eigenvalues λ1, λ2, i.e.

q̃(Jσ ) := S
(
q(λ1) 0
0 q(λ2)

)
ST . (8)

Two different possibilities are considered here, which have
been empirically tested.

i) A way of choosing q̃ is the following: Since Jσ is diago-
nalizable, the term I + J2σ is invertible and can be repre-
sented by an absolutely convergent power series

(I + J2σ )−1 =
∞∑
k=0

αkJ2kσ ,

with certain coefficients αk. Here, I denotes the identity
matrix. Now, choose function q̃ as

q̃(Jσ ) = (I + J2σ )−1.
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Since Jσ is diagonalizable, there exists an invertible
matrix S such that 
 = S−1Jσ S, where 
 is a diagonal
matrix consisting of the eigenvalues λ1, λ2. It holds that

(I + J2σ )−1 =
∞∑
k=0

αk(S
S−1)2k

= S(I + 
2)−1S−1.

The term (I + 
2)−1 is defined by applying 1/(1+ (·)2)
to the entries of the diagonal matrix
.

ii) As a special case of case (i), function q̃ can be chosen as

q̃(Jσ ) = exp(Jσ ).

By definition, it holds that

exp(Jσ ) =
∞∑
k=0

1
k!
Jkσ .

This series always converges, thus exp(Jσ ) is well
defined. Then, it holds

exp(Jσ ) =
∞∑
k=0

1
k!

(S
S−1)k = S exp(
)S−1,

where S, 
 are defined as above. Thus, the term exp(
)

is well defined as the application of the exponential
function to the entries on the diagonal.

Therefore, the application of q̃ is well defined as the appli-
cation of the following functions q on the eigenvalues of Jσ :
Empirically, it has been decided that it is reasonable in case
of intra to chose q as

q(s) = exp
(−s2

μ

)
, (9)

which corresponds to case (ii) and in case of inter as

q(s) = 1
1+ s2

μ

, (10)

which corresponds to case (i). The two functions q are
tabulated using integer look-up tables.

More details on the choice of parameterμ and the under-
lying empirical tests are given in Section V.

The finite discretization of Eq. (6) can be realized by the
following ordered steps:

1) Calculate discrete samples differences

EW(x) := (D+
x1 + D−

x1 )u(x, t)

and
NS(x) := (D+

x2 + D−
x2)u(x, t)

for every sample x ∈ R
2 and a fixed iteration step t ∈ R.

2) Calculate products (EW · EW)(x), (EW · NS)(x), (NS ·
NS)(x).

3) Filter the three products with filter kernelKσ for obtain-
ing the gradient arrays g11(x), g12(x), and g22(x) defined
in Eq. (7).

4) Determine the eigenvalues λ1(x), λ2(x) using look-up
tables.

5) Apply a function q set as Eqs. (9) or (10) to the eigenval-
ues using pre-defined look-up tables.

6) Calculate S and ST to derive the integer entries of the
diffusion tensor q̃(Jσ ) as in Eq. (8) using look-up tables.

7) Derive the integer weighting arrayswN ,wS,wW ,wE,w01,
w02, w03, and w04 using sample averages and set

u(x, t + τ) = u(x, t) + τ
(
wE

(
u(x + he1, t) − u(x, t)

)
+ wW

(
u(x − he1, t) − u(x, t)

)
+ w01 u(x + he1 + he2, t)

− w02 u(x + he1 − he2, t)

− w03 u(x − he1 + he2, t)

+ w04 u(x − he1 − he2, t)

+ wN
(
u(x + he2, t) − u(x, t)

)
+ wS

(
u(x − he2, t) − u(x, t)

) )
,

for time discretization parameter τ .

C) The geometric meaning of the diffusion
tensor
By definition, applying the linear transform Jσ to its eigen-
vectors evi, a scaling of the eigenvector by the corresponding
eigenvalue occurs, i.e. Jσ evi = λievi for i=1,2. The eigen-
value with the largest absolute value of its corresponding
eigenvalue is called major eigenvector. In Fig. 2, the major
eigenvectors of Jσ scaled by their eigenvalues are depicted
for an example image. As can be seen, the major eigen-
vectors point to the direction perpendicular to the main
edge. Through the scaling with the corresponding eigen-
values, the vectors are larger and become more visible at
the locations where the underlying image has strong edges.
Therefore, by applying the functions q suggested above to
the eigenvalues of Jσ , the diffusion solving Eq. (6) becomes
small at these points.

I V . IMPLEMENTAT ION AND
EXPER IMENTAL SETUP

A) Experimental setup
In this paper, the presented tools are implemented into
a software based on HEVC [28] that includes an addi-
tional QTBT block structure and MTT partitioning: That
means that the quadtree structure of HEVC is replaced by
a Quadtree plus Binary Tree (QTBT, [29]) block structure.
An example for a QTBT partitioning is shown in Fig. 3. The
CTUs are firstly divided in a quadtree manner and then fur-
ther partitioned using a binary tree structure. QTBT allows
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Fig. 2. Left: original image, right: major eigenvectors of Jσ scaled by their
eigenvalues.

more flexibility in the shape of the CU structure which
can be rectangularly shaped now instead of only squared.
In order to better capture objects in the center of blocks,
instead of the binary partitioning the so-called Multi-
Type-Tree (MTT) partitioning [30] is used here. In addition

to quad-tree splitting and binary vertical and horizontal
splitting, MTT introduces horizontal and vertical center-
side triple-tree partitionings as depicted in Fig. 4.

All other non-HEVC tools in [28] are turned off. The
tests are configured using an All Intra (AI) configuration
where only intra pictures are sent and a Random Access
(RA) configuration. The corresponding configuration files
can be found at [32]. To avoid long test runs, for some pre-
liminary results, the number of frames has been limited to
one frame for AI and 17 frames for RA. For the final results
in Section VII however, full sequence runs were shown.

In this paper, the bitrate savings – also referred to as rate-
distortion (RD) gains – are generally measured in terms of
Bjøntegaard delta (BD) bitrate [33]. If not stated otherwise,
per default quantization parameters QP ∈ {22, 27, 32, 37}
are used. Additionally, simulations are run for the QP ∈
{27, 32, 37, 42}, which is a standardmethod [34,35]. The latter
set ofQPvalues represents a better approximation of achiev-
ing the bitrates specified in theCfP (Call for proposals of the
international community for video coding standardization,
[36]). Note that there is a logarithmic relationship between
QP and stepsize, i.e. stepsize = �2
QP/6� for a parameter
� > 0 ([37, p. 214]). Therefore, the adding of QP 42 doubles
the stepsize. Since the rate distortion curve is well defined
for four QPs and QPs much higher than 42 are visually not
acceptable andQPsmuch lower than 22 not distinguishable,
the range of practically feasible bitrates is quite well covered
using the sets QP ∈ {22, 27, 32, 37} and QP ∈ {27, 32, 37, 42}.
Accordingly, throughout the paper we test and report for
the five QP values 22,27,32,37,42.

The results are shown with respect to the luma compo-
nent Y and the chroma components U and V. Even though
the introduced methods are only applied on the luma
signal for complexity reasons, the results for the chroma

Fig. 3. Illustration of a QTBT structure, taken from [31], ©2017 IEEE.

(a) (b) (c) (d) (e)

Fig. 4. Multi-Type-Tree structure, (a) quad-tree partitioning, (b) vertical binary-tree partitioning, (c) horizontal binary-tree partitioning, (d) vertical center-side
triple-tree partitioning, (e) horizontal center-side triple-tree partitioning.



a signal adaptive diffusion filter for video coding 7

Table 1. Overview of diffusion filter types.

Number of iterations

Diffusion filter mode Type Intra Inter

0 No filter − −
1 Uniform 5 5
2 Uniform 15 35
3 Signal adaptive 5 4
4 Signal adaptive 20 8

components are shown as well here. This is not only for
the sake of completeness but also to ensure that there is no
major efficiency loss in the chroma components.

The test sequences for the All Intra (AI) and Ran-
dom Access (RA) configurations are selected in a way
that they represent the impact of the tool well. Therefore,
the sequences for AI and RA differ slightly. To ensure a
certain variety in the employed test set, at least one test
sequence out of each sequence class 4K Panorama, 4KHDR
(High Dynamic Range), 4K UHD (Ultra High Definition),
and HD (High Definition) is included in the depicted test
results.

B) Implementation
The encoder features a uniform version of the filter and
a signal adaptive version as described above. The filters
are applied on the luminance signal. The uniform filters
apply a fixed filter mask (as elaborated in subsection III.A),
while the signal adaptive filters as in subsection III.B use
the underlying prediction signal to control the direction of
the smoothing.While the latter preserves sharp edges in the
prediction signal, the uniform version is less complex.

The flag for enabling the diffusion filter is tested and sent
at CU level. If it is enabled, additionally the type of the dif-
fusion model and the number of iteration steps as shown
in Table 1 are signaled by sending the corresponding index.
Since for each filter two options for its strength are given,
in total, this corresponds to four different filter configura-
tions. This is referred to as “diffusion filter method”. The
particular numbers of iteration stepswere tested empirically
and lead to a good trade-off between complexity and bitrate
savings.

In general, the matrix Jσ (∇u) may be updated in every
iteration step. To simplify the solution method and to make
it complexitywise feasible for the state-of-the-art video cod-
ing, we neglect this update and set Jσ = Jσ (∇f ) constant
for all iterations. Thereby, only the directions implied by
the initial prediction signal f are taken into account when
applying the anisotropic diffusion filter. This reduces the
complexity while maintaining the signal adaptivity – which
is a reasonable choice for its application in video coding
introduced here.

C) Example
Figure 5 demonstrates the impact of diffusion filtering on
an angular intra prediction block. On the left-hand side, the

Fig. 5. Left: original intra prediction. Middle: uniformly filtered prediction as
in subsection III.A. Right: signal adaptive filtered prediction as in subsection
III.B.

original intra prediction is depicted. In the middle, one can
see the result of the uniform diffusion filter. On the right,
the result of applying the signal adaptive diffusion filter is
shown. It can be observed that the latter smooths the area
in the bottom right corner of the prediction block in the
same way as the uniform one. But while the uniform filter
attenuates the edges of the underlying prediction, the signal
adaptive filter preserves them.

V . PARAMETER TESTS

To better understand the meaning of the edge parameter μ,
it is reasonable to look at the one-dimensional case (simi-
larly as has been done in [38]). Then,∇u = ∂/∂xu ∈ R and
Eq. (6) reduces to

∂

∂t
u = �′

(
∂

∂x
u
)
,

where �(s) denotes the so-called flux function and �′

its spatial derivative. The diffusivity functions q chosen as
Eqs. (9) or (10) and its corresponding flux functions are
depicted in Figs 6 and 7. Note that ∇u∇uT translates to
the notation s2 used here. It can be seen that the diffusiv-
ity functions are positive and monotonically decreasing for
∂/∂xu > 0. For ∂/∂xu → ∞ they converge to zero. Thus,
the larger ∂/∂xu, the smaller the diffusion becomes.

In case of q(s) = 1
1+ s2

μ

, function�′(s) > 0 if

−√
μ < �(s) <

√
μ

and �′(s) < 0 otherwise. Therefore, the corresponding
effect of the model at this point is what can be called
“forward diffusion” if

−√
μ < �

(
∂

∂x
u(x̄)

)
<

√
μ

for x̄ ∈ R and “backward diffusion” otherwise. This holds
analogously in case of q(s) = exp((−s2)/μ) for threshold√

μ/2.
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Fig. 6. Top: diffusivity function q(s) = 1
1+ s2

μ

, bottom: its flux function

�(s) = s
1+ s2

μ

.

As there is no straightforward choice for μ, its set-
ting was tested empirically. The parameter test features an
encoder control that includes saving the original (meaning
the cost of the non-filtered best choice) and the correspond-
ing improved costs of the diffusion filter using a certain
parameterμ. The difference of the costs is expressed in per-
centage and referred to as “cost improvement”. Hereby, only
cases were considered where the diffusion filter was cho-
sen, i.e. the RD gain was improved. The tested parameters
were chosen as μ ∈ {64, 100, 112, 151, 227, 310, 419, 550}. This
interval was chosen as a result of several empirical tests.
Choosing μ smaller than 64 or larger than 550 was tested
and did not show any considerable improvements. In the
encoder only test, no additional costs for the parameters
were simulated since for the resulting tool the parameters
will not be signaled but set fixed. The performed tests were
evaluated on a large test set that included the sequences
for which the results are shown in the following. As μ is
only one single parameter, the risk of overfitting can be
neglected here. The All Intra and Random Access config-
urations will be considered separately and it will be distin-
guished between intra and inter blocks. Further, it has been
tested empirically that in case of inter, it makes sense to

Fig. 7. Top: diffusivity function q(s) = exp((−s2)/μ), bottom: its flux function
�(s) = s exp((−s2)/μ).

Table 2. Best μ parameter for intra blocks.

Parameter μ Improvement weight

64 1976682
550 1261871
419 632322

distinguish between different QPs,QP ∈ [0, 51]. This differ-
ence can be explained by the different nature of inter and
intra predictions. For each class of block type, the num-
ber of occurrence of a certain parameter μ was multiplied
by the corresponding percentage in cost improvement. The
resulting number is referred to as “improvement weight” in
the following. The idea is here that the larger the weight,
the larger its presumable improvement impact is on the
test set.

In Table 2, the three parameters with the best (i.e. largest)
improvement weights for intra blocks are depicted. It has
been tested empirically that μ = 550 results in the highest
RD gain, which was highlighted in gray in Table 2.

In Table 3, a comparison of setting μ = 64 (left-hand
side) and μ = 550 (right-hand side) is shown for All Intra
configuration, using QP ∈ {22, 27, 32, 37}, tested with one
frame. It can be seen that the modification of parameter
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Table 3. All Intra comparison of μ = 64 (Y, U, V left-hand side) and μ = 550 (Yimpr , Uimpr , Vimpr right-hand side), 1 frame, QP ∈ {22, 27, 32, 37},
measured in BD rate.

Resolution Sequence name Y U V Yimpr Uimpr Vimpr

4K Panorama ChairliftRide -0.69 −1.96 −3.06 −0.78 −2.14 −3.48
4K HDR PeopleInShoppingCenter −1.17 −1.81 −2.33 −1.18 −2.06 −2.33
4K UHD Nebuta −1.76 −1.20 −1.17 −1.82 −1.37 −1.34

Drums100 −2.13 −2.53 −1.64 −2.22 −2.35 −1.64
Tango −2.48 −2.32 −1.68 −2.42 −3.05 −1.70
Rollercoaster −1.68 −1.58 −1.91 −1.66 −1.59 −2.11
Crosswalk −1.89 −1.48 −2.42 −2.07 −1.18 −3.21
FoodMarket −2.52 −1.65 −1.32 −2.88 −1.25 −0.85

HD Cactus −0.77 −0.50 −1.35 −0.91 −0.30 −0.37
Overall −1.68 −1.67 −1.88 −1.77 −1.70 −1.89

Table 4. Random Access comparison of μ = 64 fixed for intra and inter blocks (Y, U, V left-hand side) and QP-dependent μ for inter blocks as in
Eq. (11) (Yimpr , Uimpr , Vimpr right-hand side), 17 frames, QP ∈ {22, 27, 32, 37}, measured in BD rate.

Resolution Sequence name Y U V Yimpr Uimpr Vimpr

4K Panorama Trolley −0.70 −1.94 −3.40 −0.44 −1.45 −3.56
4K HDR SunsetBeach −1.18 −1.10 −3.89 −1.21 −1.13 −3.42
4K UHD Nebuta −4.83 −3.67 −4.64 −5.91 −4.92 −5.78

Drums100 −2.87 −2.41 −2.36 −2.95 −2.55 −2.22
Tango −2.13 −4.98 −2.83 −2.13 −5.11 −3.42
Rollercoaster −2.25 −1.46 −0.96 −2.33 −1.11 −1.16
Crosswalk −1.67 −2.44 −1.77 −1.18 −1.59 −1.57
FoodMarket −1.24 −0.64 −2.11 −1.31 −0.21 −1.56

HD BQTerrace −1.64 −1.11 −0.80 −1.67 −1.32 −1.16
Overall −2.06 −2.20 −2.53 −2.13 −2.15 −2.65

μ increases the RD gains of most sequences. Overall, the
AI gain is increased from −1.68 to −1.77 for the luma
component.

In Table 6, the parameters μ for the best three improve-
ment weights have been depicted separated by QP intervals
for inter blocks. The best performing parameters (in terms
of final bitrate savings) are highlighted in gray. In Tables 4
and 5, a comparison is shown for selected sequences setting
μ = 64 fixed for inter and intra blocks on the left-hand side
and varying μ by setting

μ =

⎧⎪⎨
⎪⎩
550, for intra prediction
64, for inter prediction and QP < 33
550, for inter prediction and QP ≥ 33

(11)

on the right-hand side. Since inter predictions are naturally
more diverse in terms of structures, it seems reasonable that
they are also more sensitive toward change in quantization
parameters.

In Table 4, the results for QP ∈ {22, 27, 32, 37} are shown,
and in Table 5, the results for QP ∈ {27, 32, 37, 42}. The
depicted results were configured with 17 frames using the
RA configuration. It can be seen that the RD gains are
improved overall, for luma by 0.07 forQP ∈ {22, 27, 32, 37}
and 0.3 for QP ∈ {27, 32, 37, 42}. While the results in
Table 4 remain more or less stable and the average
improvement stems from sequence Nebuta, in Table 5 most
sequences are improved. This can be explained by the
definition ofμ in Eq. (11) where a different parameter is cho-
sen for larger QPs while the initial results use μ = 64 set
fixed.

Table 5. Random Access comparison of μ = 64 fixed for intra and inter blocks (Y, U, V left-hand side) and QP-dependent μ for inter blocks as in
Eq. (11) (Yimpr , Uimpr , Vimpr right-hand side), 17 frames, QP ∈ {27, 32, 37, 42}, measured in BD rate.

Resolution Sequence name Y U V Yimpr Uimpr Vimpr

4K Panorama Trolley −0.83 −3.88 −4.34 −0.58 −2.93 −5.18
4K HDR SunsetBeach −1.24 −1.28 −6.71 −1.25 −1.33 −5.31
4K UHD Nebuta −5.39 −3.45 −4.50 −7.41 −4.44 −5.63

Drums100 −1.67 −1.96 −2.17 −1.77 −1.62 −2.13
Tango −1.40 −2.19 −0.83 −1.47 −2.27 −1.34
Rollercoaster −1.70 −1.54 −0.59 −1.73 −1.42 −1.06
Crosswalk −1.65 −2.75 −1.68 −2.23 −2.67 −1.95
FoodMarket −0.92 0.00 −2.15 −1.13 −0.82 −1.63

HD BQTerrace −0.67 −0.74 0.13 −0.64 −0.39 −0.72
Overall −1.72 −2.06 −2.54 −2.02 −1.99 −2.77
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V I . US ING A NEUMANN
BOUNDARY IN INTER CASE

From a hardware point of view, it can be beneficial to pro-
cess intra and inter blocks in separate, parallel loops. In that
case, the inter loop should not depend on reconstructed
samples resulting from the intra loop. Hence, to avoid using
the reconstructed boundary for the diffusion filter in the
inter case, a Neumann boundary condition is used at the
top and left boundary of the block (instead of fixed samples
at the boundary). In a discrete setting, this means that the
inner points of the prediction are mirrored at the bound-
ary to replace the reconstructed samples. In Tables 7 and 8,
the corresponding results are depicted, for 17 frames and for
QP ∈ {22, 27, 32, 37} and for QP ∈ {27, 32, 37, 42}.

It can be observed that in comparison to the right
(improved) Luma results of Tables 4 and 5, the gains
decrease slightly with the inter Neumann boundary condi-
tion but remain in a similar range. Thus, this version serves
as a suitable alternative in case of hardware restrictions
applying.

Table 6. Best μ Parameter for inter blocks separated by QP intervals.

Quantization interval Parameter μ Improvement weight

QP ∈ [0, 26] 64 2042
550 1570
151 871

QP ∈ [27, 32] 64 264921
550 141244
100 81986

QP ∈ [33, 39] 550 394146
64 292318
419 143234

QP ∈ [40, 45] 550 221962
64 53159
419 51838

QP ∈ [45, 51] 550 43133
419 7149
64 6830

Table 7. Neumann boundary condition for inter blocks, Random
Access, 17 frames, QP ∈ {22, 27, 32, 37}, measured in BD rate.

QP ∈ {22, 27, 32, 37}
Resolution Sequence name Y U V

4K Panorama Trolley −0.58 −1.53 −3.64
4K HDR SunsetBeach −1.02 −0.81 −2.79
4K UHD Nebuta −5.54 −4.35 −4.90

Drums100 −2.63 −2.39 −2.13
Tango −2.13 −3.70 −3.31
Rollercoaster −1.98 −1.04 −0.80
Crosswalk −1.87 −2.06 −2.47
FoodMarket −1.47 −0.17 −1.26

HD BQTerrace −1.34 −1.12 −0.93
Overall −2.06 −1.87  −2.47
Enc Time 122
Dec Time 111

Table 8. Neumann boundary condition for inter blocks, Random
Access, 17 frames, QP ∈ {27, 32, 37, 42}, measured in BD rate.

QP ∈ {27, 32, 37, 42}
Resolution Sequence name Y U V

4K Panorama Trolley −0.73 −3.07 −5.30
4K HDR SunsetBeach −1.22 −1.00 −4.27
4K UHD Nebuta −7.14 −3.94 −4.77

Drums100 −1.80 −1.84 −2.74
Tango −1.66 −1.34 −1.52
Rollercoaster −1.57 −1.14 −1.21
Crosswalk −2.11 −2.66 −2.07
FoodMarket −1.11 −0.32 −1.07

HD BQTerrace −0.51 −0.39 −0.71
Overall −1.98 −1.74  −2.60
Enc Time 121
Dec Time 115

Table 9. All Intra, full sequences, QP ∈ {22, 27, 32, 37}, measured in BD
rate.

QP ∈ {22, 27, 32, 37}
Resolution Sequence name Y U V

4K Panorama ChairliftRide −0.79 −1.92 −2.52
4K HDR People in

Shoppingcenter −1.27 −1.72 −1.88
4K UHD Nebuta −2.00 −1.34 −1.27

Drums100 −2.23 −2.30 −2.02
Tango −2.31 −3.51 −1.84
Rollercoaster −2.05 −1.73 −1.96
Crosswalk −2.38 −1.97 −2.31
FoodMarket −1.74 −1.83 −2.02

HD Cactus −0.84 −0.88 −1.42
Overall −1.74 −1.91  −1.92
Enc Time 143
Dec Time 119

Table 10. All Intra, full sequences, QP ∈ {27, 32, 37, 42}, measured in BD
rate.

QP ∈ {27, 32, 37, 42}
Resolution Sequence name Y U V

4K Panorama ChairliftRide −0.70 −2.01 −2.90
4K HDR People in

Shoppingcenter −1.08 −2.08 −2.30
4K UHD Nebuta −1.95 −1.82 −1.58

Drums100 2.04 −2.52 −2.20
Tango −2.10 −3.32 −1.21
Rollercoaster -1.90 -1.75 -2.41
Crosswalk −2.28 −2.07 −2.42
FoodMarket −1.69 −2.16 −2.49

HD Cactus −0.80 −1.34 −1.63
Overall −1.61 −2.12  −2.13
Enc Time 139
Dec Time 118

V I I . RESULTS

In Tables 9 and 10, results are shown for full sequences for
AI configuration. The corresponding full sequence results
for RA are shown in Table 11 for QP ∈ {22, 27, 32, 37} and in
Table 12 for QP ∈ {27, 32, 37, 42}.
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Table 11. Random Access, full sequences, QP ∈ {22, 27, 32, 37}, measured
in BD rate.

QP ∈ {22, 27, 32, 37}
Resolution Sequence name Y U V

4K Panorama Trolley −0.38 −1.74 −2.72
4K HDR SunsetBeach −1.12 −1.33 −3.30
4K UHD Nebuta −7.36 −7.82 −8.84

Drums100 −2.31 −2.01 −1.87
Tango −1.96 −4.01 −2.33
Rollercoaster −1.72 −1.02 −1.45
Crosswalk −1.47 −1.64 −2.30
FoodMarket −1.22 −1.64 −1.87

HD BQTerrace −2.90 −3.39 −4.09
Overall −2.27 −2.73  −3.20
Enc Time 119
Dec Time 117

Table 12. Random Access, full sequences, QP ∈ {27, 32, 37, 42}, measured
in BD rate.

QP ∈ {27, 32, 37, 42}
Resolution Sequence name Y U V

4K Panorama Trolley −0.55 −2.83 −3.45
4K HDR SunsetBeach −1.25 −1.75 −5.12
4K UHD Nebuta −8.66 −7.08 −7.93

Drums100 −1.21 −1.23 −1.55
Tango −1.11 −2.37 −0.91
Rollercoaster −1.10 −1.03 −1.42
Crosswalk −1.21 −1.67 −1.66
FoodMarket −0.91 −1.75 −1.79

HD BQTerrace −0.75 −1.74 −2.26
Overall −1.86 −2.38  −2.90
Enc Time 119
Dec Time 115

It can be seen in Tables 9, 10, 11, and 12 that the filter
shows considerable rate-distortion gains with a reasonable
complexity trade-off for AI and RA. The higher number of
bitrate savings for RA can be explained by the signal adap-
tive nature of the tool: Since the noise in the predictor is
uncorrelated to the noise of the current block, the filter
is more likely to be applied. Furthermore, the tool is able
to exhaust its full potential in inter predictions where the
image structures are more diverse.

For AI, for test sequence Crosswalk, up to −2.38 RD
gain are achieved. For RA, in test sequence Nebuta, a com-
pression gain of −7.36 can be observed.

This exceptional gain can be explained by taking a look
at a close up of the sequence Nebuta in Fig. 8: It can be seen
that there seems to be a kind of noise in the image and this
might lead to distorted predictions. Knowing that the dif-
fusion filter is based on mathematical denoising methods,
it comes as no surprise that this tool works so well on this
particular sequence.

Overall, the gains for QP ∈ {27, 32, 37, 42} configuration
are slightly less than for QP ∈ {22, 27, 32, 37}. This can be
explained by the nature of the tool. As sequences with high
QPs are coarser, the filter cannot remove as much noise.

Fig. 8. Excerpt taken from sequence Nebuta, QP32.

Fig. 9. RD plot for test sequence Nebuta, RA configuration.

Additionally, since four different settings of the diffusion fil-
ter are tested and signaled, the tool is quite expensive in case
of low bitrates.

In Fig. 9, one can compare the rate-distortion (RD) plots
for test sequence Nebuta for the five QPs 22, 27, 32, 37, and
42. Clearly, one can observe the higher RD gain in the lower
QPs as the distance between the curves is larger. This cor-
responds to the fact that the tool generally works better for
QP ∈ {22, 27, 32, 37} configuration.

V I I I . CONCLUS ION

It has been shown that mathematical methods coming from
the field of image processing can be used to optimize pre-
diction signals in video coding and significantly improve
the rate-distortion performance. More specifically, predic-
tion filters based on a continuous mathematical model have
been developed for video coding. The resulting signal adap-
tive filters have been applied to intra as well as to inter
predictions.

Based on a PDE-based class of diffusion models, two
types of diffusion filters were constructed, one using a
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uniform diffusion with a fixed filter mask and one sig-
nal adaptive diffusion filter that incorporates the structures
of the underlying prediction signal. For both filter types,
two different sets of iteration steps (which corresponds to
the filter strength) were used. The diffusion filter method
introduced here consists of these resulting four filter con-
figurations which are tested and signaled individually.

In case that hardware restrictions require to refrain
in inter case from the usage of the reconstructed block
boundary, an alternative was presented: Instead of using
the reconstructed samples, a Neumann boundary condi-
tion is applied in inter case. Experimental results confirmed
that the RD gains for Random Access (RA) only decrease
slightly.

The filters were embedded into a software based on
HEVC, a state-of-the-art video codec, and selected in a
block-wise manner. Parameter tests incorporating the cost
improvements were performed and it was shown that opti-
mizing the employed parameters improved the RD gains.

Overall, the introduced diffusion filter method achieved
an average bitrate saving of 1.74 for AI with 43 encod-
ing and 19 decoding complexity increase and 2.27 for RA
for 19 encoding and 17 decoding complexity increase.
For individual UHD sequences, it was shown that the appli-
cation of the diffusion filter method yields results of up to
2.38 for AI and 7.36 for Random Access (RA).
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