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OVERVIEW PAPER

Advances in anti-spoofing: from the perspective

of ASVspoof challenges

MADHU R. KAMBLE,!

HARDIK B. SAILOR,2 HEMANT A. PATIL' AND HAIZHOU LI3

In recent years, automatic speaker verification (ASV) is used extensively for voice biometrics. This leads to an increased interest
to secure these voice biometric systems for real-world applications. The ASV systems are vulnerable to various kinds of spoofing
attacks, namely, synthetic speech (SS), voice conversion (VC), replay, twins, and impersonation. This paper provides the literature
review of ASV spoof detection, novel acoustic feature representations, deep learning, end-to-end systems, etc. Furthermore, the
paper also summaries previous studies of spoofing attacks with emphasis on SS, VC, and replay along with recent efforts to
develop countermeasures for spoof speech detection (SSD) task. The limitations and challenges of SSD task are also presented.
While several countermeasures were reported in the literature, they are mostly validated on a particular database, furthermore,
their performance is far from perfect. The security of voice biometrics systems against spoofing attacks remains a challenging
topic. This paper is based on a tutorial presented at APSIPA Annual Summit and Conference 2017 to serve as a quick start for

those interested in the topic.
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. INTRODUCTION

A biometric system aims to verify the identity of an indi-
vidual from their behavioral and/or biological characteris-
tics [1,2]. The body traits that can be used for biometric
recognition are classified into anatomical and behavioral
characteristics [3]. Anatomical traits include face [4], fin-
gerprint (5], iris [6], palmprint [7], hand geometry [8], and
ear shape [9]; while gait [10], signature [11], and keystroke
[12] dynamics are some of the behavioral characteristics [13].
Voice biometrics can be considered either as an anatomical
or as a behavioral characteristics [3]. Robustness and secu-
rity are two important factors as far as system deployment
is concerned.

Speaker recognition usually refers to both speaker iden-
tification and speaker verification. A speaker identification
system identifies who the speaker is, while an automatic
speaker verification (ASV) system decides if an identity
claim is true or false. The former is a multi-class classifica-
tion problem, while the latter is a hypothesis test. A general
ASV system is robust to zero-effort impostors, they are
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vulnerable to more sophisticated attacks. Such vulnerability
represents one of the security concerns of ASV systems.

Spoofing involves an adversary (attacker) who
masquerades as the target speaker to gain the access to a
system [14-16]. The spoofing attacks against an ASV sys-
tem or biometric system in general are considered as a part
of presentation attacks as per International Organization for
Standardization (ISO) and International Electro-technical
Commission (IEC) [17]. As biometric information of a per-
son can be easily obtained, spoofing attacks are inevitable
[18]. Such spoofing attacks can happen to various biomet-
ric traits, such as fingerprints, iris, face, and voice patterns.
Figure 1 shows some examples how the original biometric
patterns can be spoofed with different techniques. In this
paper, we are focusing only on the voice-based spoofing and
anti-spoofing techniques for ASV system.

The spoofed speech samples can be obtained through
speech synthesis, voice conversion, or replay of recorded
speech. Depending upon how the spoof samples are pre-
sented to ASV system the attacks are broadly classified
into two categories, namely, direct attacks and indirect
attacks. In direct attacks (also called as Physical Access (PA)
attacks), the samples are applied as input to the ASV system
through the sensor, i.e. at the microphone and transmission-
level. In indirect attacks (also called as Logical Access (LA)
attacks), the samples are involved by passing the sensor, i.e.
ASV system software process, access during feature extrac-
tion, interfering with the models, and at the decision or
score computation as shown in Fig. 2 [21].
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Fig. 1. Biometric identification along with spoofing techniques for fingerprint, iris, face, and voice. (Images are adapted from [19].)
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Fig. 2. Brief illustration of an Automatic Speaker Verification (ASV) system.
After [20].

To objectively report the research progress, there is a
need to provide a common dataset along with perfor-
mance metric to evaluate the spoofing countermeasures.
This was also discussed in the special session on spoof-
ing and countermeasures for ASV held during INTER-
SPEECH 2013 [15]. This special session motivated the
researchers to organize the first ASVspoof 2015 Challenge
held in INTERSPEECH 2015 [22]. The database released
in this challenge contains two types of spoofing attacks,
namely, synthetic speech (SS) and voice conversion (VC).
As a follow-up, the second and third challenges were orga-
nized during INTERSPEECH 2017 and INTERSPEECH
2019, respectively [24,23]. The historical developments and
key milestones of the ASVspoof initiative are illustrated
in Fig. 3.

We have seen a surge of research papers on spoofing
detection in scientific conferences, such as APSIPA Annual
Summit and Conference [24], ICASSP, INTERSPEECH,
and special issues in scientific journals, such as IEEE
Transactions of Information Forensics special issues on Bio-
metrics Spoofing and Countermeasures [25], IEEE Signal

Processing Magazine special issue on Biometric Security
and Privacy Protection [26], IEEE Journal on Selected Top-
ics in Signal Processing special issue on Spoofing and Coun-
termeasures for Automatic Speaker Verification [27], Spe-
cial issue on Speaker and language characterization and
recognition: voice modeling, conversion, synthesis, and eth-
ical aspects [28], and Special issue on Advances in Auto-
matic Speaker Verification Anti-spoofing [29]. This article
provides an overview of the recent advances, and discusses
the challenges.

A general discussion on biometrics and spoofing attacks
was presented in [2]. The first survey paper on the
ASVspoof challenge [20] discusses the past work and iden-
tifies priority research directions for the future [30] and
presents the details of the dataset, protocols, and metrics
of the ASVspoof 2015 challenge. It also provides a detailed
analysis of the participating systems in the challenge.

A recent survey paper [31] compares different coun-
termeasures for both SS and replay detection. In partic-
ular, it discusses various classical representation learning
approaches for SS and replay detection. This overview is an
extension to [31] that provides both historical and techno-
logical perspectives about the recent progress.

The organization of rest of the paper is as follows:
The discussion of various spoofing attacks is presented
in Section II. The discussion of different spoofing chal-
lenges and performance evaluation metrics are discussed
in Section III. Furthermore, in Section IV and Section V,
we discussed different countermeasures approaches for
synthetic and replay spoof speech detection (SSD) task.
In this section, we represented the countermeasures in
both classical and representation learning approaches for
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Fig. 3. The selected chronological progress in ASVspoof for voice biometrics. In INTERSPEECH 2013, a special session was organized and Spoofing and Anti-Spoof-
ing (SAS) corpus of speech synthesis and voice conversion spoofing data was created. The first ASVspoof challenge was held in INTERSPEECH 2015. In 2016, the
OCTAVE project started which focused on only replay spoofing data resulting in the second edition of ASVspoof challenge in INTERSPEECH 2017. The follow-up
third ASVspoof 2019 challenge was on physical and LA attacks going to be held during INTERSPEECH 2019 [23]. IS indicates INTERSPEECH.



spoofing detection. The Section VI describes the limitation,
technological challenges along with future research direc-
tions in spoofing research, and finally, we summarize the
paper in Section VII.

II. ASV SYSTEM: SPOOFING
ATTACKS

In the literature, the spoofing attacks are broadly classified
into four types, namely, impersonation, SS, VC, and replay.
Few of the spoofing algorithms used for spoofing attacks are
shown in Fig. 4. The detailed description of each spoofing
attack is discussed next.

A) Impersonation

Impersonation is defined as the process of producing the
similar voice pattern and speech behavior of the target
speaker’s voice [33-35]. This can be done either by profes-
sional mimics/impersonator (by utilizing behavioral char-
acteristics) or by twins (by utilizing physiological charac-
teristics) [36]. The impersonators do not require any tech-
nical background or machines to imitate the target speaker.
The study in [37] found that if the impostor is aware of
the claimed speaker’s voice and also carries similar voice
pattern could crack the biometric system. For better imi-
tation, the professional imitator tries to mimic the prosodic
features of a target speaker [38]. Professional voice imita-
tor intend to mimic the claimed speaker’s prosody, accent,
pronunciation, lexicon, and other high-level speaker traits.
Such imitation may mislead human perception, however,
it is less effective in attacking speaker verification systems
because most speaker verification systems are based on
spectral features to make decisions. Just like twins attacks,
in impersonation attacks, the system is presented with nat-
ural human speech. A system to detect unnatural speech
does not help. As it takes special training to impersonate
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someone’s voice, impersonation attack is not considered as
a common threat to speaker verification systems.

In speaker recognition, we aim to extract the unique
speaker features from speech data. However, the speaker
features become less unique between the twins [39]. Gener-
ally, spectrographic analysis is used to identify the speaker’s
voice. In the case of identical twins, the same technique
fails to perform [40]. The study reported in [41] states that
the pattern of speech signals, pitch (F,) contours, formant
contours, and spectrograms for identical twin speakers are
very similar, if not identical. Due to lack of uniqueness, the
FAR increases for identical twins verification. Recently, the
Voice ID service was launched by HSBC’s phone banking
business [42,43]. It failed to recognize true speaker [44].
Similar twins fraud was studied in other biometrics liter-
ature as well [39]. The identical twins do have a similar
spectrographic pattern, however, the speaker verification
technology has seen a significant reduction in fraud, and has
proven to be more secure than PINS, passwords, and mem-
orable phrases. In twins attacks, the system is presented with
natural human speech, a SS detection mechanism will not
enhance the security of the system. To distinguish between
the twins, further study on discriminative speaker features
is required or more study in this direction is required as
observed four decades earlier in [36].

B) Synthetic speech

SSis also known as Text-To-Speech (TTS), which takes text
as input and generate speech as output. It emulates a human
vocal production system and represents a genuine threat.
SS is now able to generate high-quality voice due to recent
advances in unit selection [45], statistical parametric [46],
hybrid [47], and DNN-based TTS methods. Recently, deep
learning-based techniques, such as Generative Adversarial
Network (GAN) [48], Tacotron [49], Wavenet [50], etc., are
able to produce very natural sounding speech both in timbre
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Fig. 4.

Different spoofing attacks on voice biometrics along with their availability and risk factor. IS: INTERSPEECH. Adapted from [32].
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Fig. 5. Spectral energy densities of natural (Panel I), synthetic speech (Panel II), and voice converted speech (Panel III). (a) Time-domain speech signal, and

(b) corresponding spectral energy density.

and prosody. SS uses properties of a claimed speaker’s voice
characteristics and spectral cues of the natural speech. The
spectral energy density of natural (Panel I) and synthetic
(Panel II) speech signal are shown in Fig. 5. It is clearly
observed that the distributions of spectral energies are very
different between the natural speech and SS. The research
on SS detection has been focused on how to detect the arti-
facts that exist in the SS samples. More technical description
of algorithms are reported in [51,52].

C) Voice conversion

VCis the process of converting the source speaker’s voice to
a sound similar to the target speaker’s voice [34,53,54]. VC
deals with the information that relates to the segmental and
suprasegmental features and keep the language content sim-
ilar [55]. Earlier studies include statistical techniques, such
as Gaussian Mixture Model (GMM) [56], Hidden Markov
Model (HMM) [57], unit selection [58], principal compo-
nent analysis (PCA) [59], and Non-negative matrix fac-
torization (NMF) [60] for VC task. Recently, DNN [61],
Wavenet [50], and GAN [48] represent a technology leap.

Studies also reported in the area of signal processing
techniques, such as vector quantization [62] and frequency
warping [63]. The research on VC detection has also been
focused on how to detect the artifacts arising from the
VC process. One example of the converted speech is illus-
trated in Panel III of Fig. 5. More technical description of
converted voices are reported in [51,55].

D) Replay

One of the most accessible spoofing is replay attack.
The attacker replays a pre-recorded voice from the target
speaker to the system to gain access [64-66]. Such attack

is meaningful only for text-dependent speaker verification
systems. With high-quality record-replay audio device, the
replayed speech is highly similar to the original speech,
spectral content will change slightly due to device impulse
response. Hence, replay is a serious adversary to text-
dependent speaker verification system.

The genuine speech signal s[n] can be modeled as a
convolution of glottal airflow, p[n] and vocal tract impulse
response, h(n] [67], i.e.

@)

s[n] = pln] * h(n].

On the other hand, the replay speech signal, r[n] can be
modeled as the convolution of the genuine speech signal
s[n], and the impulse response, n[n] of the intermediate
devices (playback and recording device) along with prop-
agating environment and additive noise, N[n] of [68] and is
given by:

(2)

where the 7[n] is the extra convolved components which
is a combination of impulse responses of recording device
hyic[n], recording environment a[#n], playback device (mul-
timedia speaker) hyy[n], and playback environment b[#]
(68].

r[n] = s[n] * n[n] + N[n],

(3)

In replayed speech detection, we hope todetect the pres-
ence of the channel and noise distortion to the original
speech signal [69]. The speech signal recorded with the
playback device contains the convolutional and additive dis-
tortions from the intermediate device and background [68].
An important part in the detection of replay attack is the
process of feature representation. To obtain the discrim-
inative information between natural and replayed speech

nln] = huic[n] * a[n] * hop[n] * bln].
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Fig. 6. Spectral energy densities of natural (Panel I) and replay speech
(Panel II). (a) Time-domain speech signal, and (b) spectral energy density.

signal, one should focus on the spectral characteristics that
represent the information of the intermediate devices [70].
Figure 6 shows the spectrographic analysis of natural speech
and replay speech signal taken from the ASVspoof 2017
Challenge database [24]. The Panel I of Fig. 6 shows the nat-
ural speech signal with the corresponding spectrogram of
the natural speech signal for the utterance, “Actions speak
louder than words”, and similarly Panel I is for the replayed
speech signal. It can be observed from Fig. 6 that there is
a difference in temporal as well as in spectral representa-
tion between Panel I (natural) and Panel II (replay) speech
signal due to the channel and noise distortion as shown in
equation (2).

. DATABASES AND
PERFORMANCE EVALUATION
METRICS

The early studies of spoofing attacks used different speech
and speaker recognition databases, such as YOHO, NIST,
and WSJ. The databases used for anti-spoofing studies are
reported in Table 1. Since 2015, the research community
has released multiple evaluation databases, that include
SAS, ASVspoof 2015, ASVspoof 2017, ASVspoof 2019 chal-
lenge, AVspoof, RedDots Replayed databases. The AVspoof
database introduces replay spoofing attacks along with SS
and VC spoofing attacks. It was designed to simulate the
attacks via LA and PA. This database was used in the BTAS
2016 Challenge [14,76]. RedDots [77] database is devel-
oped originally for text-dependent ASV research that was
re-developed from replay attacks. This database is derived
from the original RedDots database under various record-
ing and playback conditions. However, standard imper-
sonation database is not yet available publicly, the study
reported in [79] used the YOHO database that was designed
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Table 1. Various corpus on spoofing attacks to ASV system.

Spoofing attacks Corpus used
Impersonation [34] YOHO

Voice Mimicry [35] NIST

SS [71] WSJ

SS [52] WSJ

VC [53] NIST SRE 2006
VC [54] NIST SRE 2006
VC [72] NIST SRE 2006
VC, SS and Artificial Spoof [73] NIST SRE 2006
SS and VC [51] SAS

Replay [74] RSR2015

VC and Replay [75] RSR2015

SS and VC [20] ASV Spoof 2015
SS, VC and Replay [76] AV Spoof
Replay [77] RedDots
Replay [24] ASVspoof 2017
SS, VC and Replay [78] ASVspoof 2019

Table 2. A summary of ASVspoof 2015 Challenge database [22].

# Speakers # Utterances
Subset Male Female Genuine Spoof
Training 10 15 3750 12625
Development 15 20 3497 49875
Evaluation 20 26 9404 193404

for ASV system. In this paper, we focus on the description
of ASVspoof challenge datasets. Next, we will discuss about
challenge databases in details.

A) ASVspoof 2015 challenge

The ASVspoof 2015 Challenge database was the first major
release for spoofing and countermeasures research [20].
The database consists of natural and spoofed speech, which
is generated via speech synthesis and VC, for LA attacks.
There are no remarkable channel or background noise
effects. The database is divided into three subsets, namely,
training, development, and evaluation. The evaluation sub-
set consists of known and unknown attacks. They include
the same five algorithms used to generate the development
dataset and hence, called as known (S1-Ss) attacks. In addi-
tion, other spoofing algorithms are included in unknown
(§6-S10), attacks which were used directly in the test data.
The number of speakers in the database is reported in
Table 2. The detailed description of the database can be
found in [22,51,20]

B) AVspoof database

AVspoof database introduces replay spoofing attacks along
with synthetic speech and VC spoofing attacks. It was
designed to simulate the attacks via LA and PA. This
database was used in the BTAS 2016 Challenge [14,76]. The
statistics of the database are summarized in Table 3. This
database reports a comprehensive variety of presentation
attacks including attacks when a genuine data is played
back to an ASV system using laptop speakers, high-quality
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Table 3. A summary of AVspoof Database [14]. Table 5. The summary of ASVspoof 2019 Challenge database [82].
# Utterances # Speakers # Utterances
Subset Genuine PA attacks LA attacks Logical access Physical access
Training 4973 38580 17890 Subset Male Female Natural Spoof Natural Spoof
Devel
E\f:lisggient 4992 3 8532 21(7)?6(:) Training 8 12 2580 22800 5400 48600
557 433 Development 8 12 2548 22296 5400 24,300
Evaluation - - 71747 137457

PA, Physical Access; LA, Logical Access

Table 4. A summary of ASVspoof 2017 Challenge version 2.0 [24,81].

# Utterances

Subset # Speakers Genuine Spoofed
Training 10 1507 1507
Development 8 760 950
Evaluation 24 1298 12008

speakers, and two mobile phones. SS attacks, such as speech
synthesis and VC replayed with laptop speakers, are also
included [76]. The “unknown” attacks were introduced in
the test set to make the competition more challenging [76].
The organizers of the challenge provided a baseline system
which is based on the open source Bob toolbox [76]. The
baseline system consists of simple spectrogram-based ratio
as features and logistic regression as a pattern classifier [76].

C) ASVspoof 2017 challenge

The ASVspoof 2017 Challenge database was built on the
RedDots corpus [80], and its replayed speech [77], which
is therefore a replay database, and the speech is text-
dependent. The number of speakers in training, develop-
ment, and evaluation subset with corresponding number of
genuine and spoofed utterances are summarized in Table 4.
The detailed description of the database can be found in
[24,81].

There were some anomalies in the original ASVspoof
2017 database. The problem was fixed in the ASVspoof 2017
Version 2.0 release [81]. Along with the corrected data, more
detailed description of recording and playback devices as
well as acoustic environments was also reported.

D) ASVspoof 2019 challenge

The ASVspoof 2019 challenge is an extension of the previ-
ously held two challenges which focuses on countermea-
sures for all the three major attack types, namely, SS, VC,
and replay. In this particular challenge database, there are
two sub-challenges, namely, LA and PA. The statistics of
the database are summarized in Table 5 [82]. The training
dataset includes genuine and spoofed speech from 20 speak-
ers (eight male and 12 female). The spoof speech signals are
generated using one of the two VC and four speech synthesis
algorithms. The data conditions for earlier ASVspoof 2017
challenge were created in an uncontrolled setup, and hence,
this condition made the results challenging to analyze the
signal due to varying additive and convolutive noise. This

Table 6. Data volume of the ReMASC corpus (*indicates incomplete
data due to recording device crashes).

Environment Subjects Genuine Replayed
Outdoor 12 960 6900
Indoor 1 23 2760* 23104
Indoor 2 10 1600 7824
Vehicle 10 3920 7644
Total 55 9240 45472

uncontrolled condition was taken care in the present chal-
lenge by creating a simulated and controlled acoustic envi-
ronment conditions. Unlike previous challenge editions,
ASVspoof 2019 adopts a recently-proposed Tandem Detec-
tion Cost Function (t-DCF) as the primary performance
metric along with % EER [83].

E) ReMASC

The ReMASC (Realistic Replay Attack Microphone Array
Speech Corpus) is the first publicly available database that is
designed specifically for the protection of voice-controlled
systems (VCSs) against various replay attacks in various
conditions and environments [84]. The ASVspoof 2019
challenge consists of simulated data for clear theoretical
analysis of audio spoofing attacks in physical environ-
ments, however, it brings a simulation-to-reality gap. Recent
increase for the VCSs depends on voice input as the primary
user-machine interaction modality such as, intelligent per-
sonal assistants (e.g. Amazon Echo, Samsung Bixby, and
Google Home) allow users to control their smart home
appliances and complete many other tasks with ease. The
VCSs also began to be used in vehicles to allow drivers
to control their cars’ navigation systems and other vehi-
cle services. The number of speakers and the environment
conditions are summarized in Table 6.

F) Performance evaluation metrics

For effective comparison between algorithms, we need both
the standard databases and common evaluation metrics.
Given a test speech sample, four possible decisions can be
made in SSD, which are summarized in Table 7, where a
False Acceptance Rate (FAR) and a False Rejection Rate
(FRR) represent two types of classification errors. FAR
and FRR are also called as false alarm and miss detec-
tion, respectively [85]. A system’s performance can also be
described by an Equal Error Rate (EER) at which the FAR
(false alarm) and FRR (miss detect) equals [85,15].



Table 7. Decision of four possible outcomes in the ASV system [20].

Decision
Acceptance Rejection
Genuine Correct acceptance False rejection/ (miss
detection)
Impostor False acceptance/ Correct rejection

(false alarm)

For a particular ASV system, the detection scores are
computed with a false alarm and miss rate, denoted respec-
tively, as P, (0) and Ppy;s(0) at decision threshold 6, and are
given as follows:

#{spoof trials with score > 6}

Pa 6 == >
w(® #{total spoof trials} (4)

#{genuine trials with score < 6}

Priss(0) = (5)

#{total genuine trials}

where Pg,(0) and Pp(f) are monotonically decreasing
and increasing functions of 6. The EER corresponds to
the threshold Oggr at which the two detection error rates
coincide, i.e.

Pt (Oppr) = Priss (Oper)- (6)

Impostor trials corresponding to a score higher than the
threshold will be misclassified as genuine trials, whereas
genuine trials with a score lower than the threshold will
be misclassified as impostor trials. Since the two errors are
inversely related, it is often desirable to illustrate the perfor-
mance as a function of the threshold 6. One such measure
is the Half Total Error Rate (HTER) [76]:

HTER(G) = ?7)

Pfa(e) + Pmiss(e)

. .
Performance can also be illustrated graphically with
Detection-Error Trade-off (DET) curve [86]. The DET
curve illustrates the behavior of a system for different deci-
sion threshold, 6, that also allows us to observe a trade-off
between the FAR and the FRR.

The Detection Cost Function (DCF) is defined in terms
of the cost of miss and false alarms along with the prior
probability for the target speaker hypothesis. The standard
DCEF is designed for the assessment of a single ASV sys-
tem whereas t-DCF metric combines the assessment of ASV
system and the spoofing countermeasures [83]. One of the
initial attempts in this direction was reported for the spoof
detection task for professional mimics [87]. The t-DCF
metric was used in ASVspoof 2019 evaluation [83].

V. COUNTERMEASURES FOR
SYNTHETIC SPOOFING ATTACKS

We now give an overview of system construction for anti-
spoofing against SS that includes synthesized and converted
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voices. The ASVspoof 2015 Challenge provided a com-
mon platform to study the effectiveness of countermeasures.
Similar to other pattern classification system, a traditional
spoof detection system consists of two parts, namely, fea-
ture extraction and pattern classifier as shown in Fig. 7. We
will discuss the traditional approach and the end-to-end
approach in more detail in this section.

1) TRADITIONAL APPROACHES

There have been several early studies on finding features
that reflect the artifacts in the SS. For example, one study
considers that the pitch (F,) pattern of SS is more rigid
than that of natural speech in [88], temporal structure of
SS is different from that of natural speech [89], and SS con-
tains phase distortions [9o]. However, these features were
observed on ad hoc databases, and moreover, they were not
evaluated using a common performance evaluation met-
ric. Hence, there was a need to develop a shared task for
SS detection, that motivated the ASVspoof 2015 Challenge
[20,22].

In ASVspoof 2015 Challenge, it was observed that the
efforts on better features were more effective than the com-
plex classifiers [91]. Furthermore, long-term features are
more effective than short-term features that are derived
from short-term windows. The Constant-Q Cepstral Coef-
ficients (CQCC) [92], and Cochlear Filter Cepstral Coeffi-
cients Instantaneous Frequency (CFCCIF) [93] offer state-
of-the-art performance on ASVspoof 2015 database. The
CFCCIF feature extraction, which is described by Speech
Research Lab DA-IICT in Fig. 8, represents the best perfor-
mance in ASVspoof 2015.

The CQCC features are extracted with the constant-
Q transform (CQT), a perceptually-inspired alternative to
Fourier-based approaches for time-frequency analysis. The
CQCC features found to be generalized across three differ-
ent databases (i.e. ASVspoof 2015 Challenge, AVspoof, and
RedDots replayed database) and it delivered the state-of-
the-art performance in each case [94].
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Fig. 9. Demonstration of eight different types of features is shown for a natural utterance D15_1000931 from the development set of ASVspoof 2015 challenge dataset.
For each feature type, only the low half of the FFT frequency bins are shown. Adapted from [95].
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Fig. 10. Block diagram of two-level scattering decomposition. Adapted from [98].

Other effective features include high-dimensional
magnitude-based features, and phase-based features as
reported in a comparative study [95]. The magnitude-based
features include Log Magnitude Spectrum, and Resid-
ual Log Magnitude Spectrum; the phase-based features
include Group Delay Function, Modified Group Delay

Function, Baseband Phase Difference, Pitch Synchronous
Phase, Instantaneous Frequency Derivative in Fig. 9.

The features extracted using subband processing were
also explored, such as Linear Frequency Cepstral Coeffi-
cients (LFCC) [96], Energy Separation Algorithm-
Instantaneous Frequency Cepstral Coefficients (ESA-IFCC)



[91], and Constant-Q Statistics-plus-Principal Information
Coeflicient (CQSPIC) [97]. The basic motivation behind
subband processing is that artifacts of SS manifest dif-
ferently in different subbands. Temporal features, such
as instantaneous frequency and envelop, are sensitive to
those artifacts. Another technique for subband processing
is to perform a two-level scattering decomposition through
a wavelet filterbank to derive a scalogram as shown in
Fig. 10 [98].

2) REPRESENTATION LEARNING APPROACHES

The representation learning approaches work either in the
form of feature learning or as a pattern classifier. With fea-
ture learning, it was observed that the use of DNN for
representation learning followed by GMM or SVM classifier
was more successful than using DNN as a classifier. The hid-
den layer representation obtained from DNN was used as
features (called as spoofing vectors or s-vectors), and Maha-
lanobis distance for classification [99]. The CNN and RNN
classifiers were explored along with three features, namely,
Teager Energy Operator (TEO) Critical Band Autocorrela-
tion Envelope (TEO-CB-Auto-Env), Perceptual Minimum
Variance Distortionless Response (PMVDR), and raw spec-
trograms [100].

In [101], feature learning is followed by LDA and GMM
classifiers. The frame-level and sequence-level features were
extracted using DNN and RNN, respectively, resulted in
0% EER for all the attack types from S1 to S9, and 1.1%
EER on all the averaged conditions [101]. Bottleneck fea-
tures extracted from the DNN hidden layers were also
used with GMM classifier in [102]. In [103], the Convolu-
tional Restricted Boltzmann Machine (ConvRBM) is used
for auditory filterbank learning that performed better than
traditionally handcrafted filterbanks. The study [103] shows
that ConvRBM learns better low-frequency subband fil-
ters on ASVspoof 2015 dataset than on TIMIT. Supervised
auditory filterbank learning using DNN was also studied
in [104]. The first- and second-order Long-Term Spectral
Statistics (LTSS) were used for synthetic SSD task along with
various classifiers with DNN outperforming others. [105].

Recently, end-to-end DNN approaches have emerged
for various speech and audio processing applications [106],
[107]. The goal of the end-to-end DNN is to learn acous-
tic representation from the raw speech and audio signals
as well as perform classification task in a DNN network
[108], [109]. For synthetic SSD task, Convolutional Neu-
ral Network (CNN) was used for feature learning from raw
speech signals and binary classification task [110]. Along
with CNN layers, Long-Short Term Memory (LSTM) lay-
ers were used in an architecture called Convolutional LSTM
DNN (CLDNN) trained directly on raw speech signals
[111,112].While CLDNN achieves 0% EER, it has not worked
well for S10 set. The end-to-end DNN approach represents
a new direction of anti-spoofing study.

In ASVspoof 2015 Challenge, the systems in [95,113] use
DNN as the classifiers. In [114], a DNN classifier with
novel human log-likelihoods (HLL) scoring method was
proposed that performed significantly better and achieved
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Table 8. Comparison of results (in % EER) on ASVspoof 2015 Challenge

Database.

Feature Set Classifier Dev Eval
CQCC [94] GMM 0.00 0.26
CFCCIF [93] GMM 2.29 1.21
LFCC [96] GMM 0.66 0.89
RFCC [96] GMM 075 1.02
MFCC [96] GMM 1.09 3.0

SCEC [96] GMM 0.25 4.45
SCMC [96] GMM 0.95 0.94
LPCC [96] GMM 0.68 1.21
IMFCC [96] GMM 0.48 1.00
RPS [96] GMM 0.37 5.30
SCC [98] GMM - 0.18
DMCC-BNF [102] GMM - 2.15
ESA-IFCC [91] GMM 1.89 6.79
ConvRBM-CC [103] GMM 2.53 4.47
DNN-IGFCC [104] GMM 0.12 0.56
LF RPS [113] SVM 1.34 6.11
DNN, RNN features [101] LDA, GMM - 1.1

LF Spectrum [113] DNN 0.03 4.38
TEO [100] DNN 2.31 -

PMVDR [100] DNN 1.44 -

LTSS [105] DNN - 0.25
E2E CNN [110] DNN - 2.89
LTSS and E2E CNN [110] DNN 0.157
E2E CLDNN [112] DNN - 4.56
CQCC [114] DNN-HLL - 0.04
Spectrogram [100] CNN 0.36 3.07
Spectrogram [100] RNN 1.04 2.46
Spectrogram [100] CNN+RNN 0.42 1.86

an average EER of all the attack types to 0.04%. It was
shown in [114] that HLL scoring method is more suitable
for the SSD task than the classical LLR scoring method,
especially when the spoofed speech is very similar to the
human speech [114]. The output softmax layer consists of
neurons representing spoofing and human (natural) speech
labels. According to the literature, the system performances
on ASVspoof 2015 Challenge database are summarized in
Table 8, with the system of CQCC feature set, and DNN-
HLL classifier representing the best performance.

V. COUNTERMEASURES FOR
REPLAY SPOOFING ATTACKS

We now give an overview of system construction for anti-
spoofing against replay attacks.

1) ACOUSTIC FEATURES
Theuse of high-fidelity recording devices represents a seri-
ous threat, therefore countermeasures were proposed to
guard against such attack. The spectral peak mapping
method was proposed as a countermeasure to detect the
replay attack on a remote telephone interaction [115]. Replay
attacks with far-field recordings were addressed in [66].
The ASVspoof 2017 Challenge paid a special attention to
replay speech detection. The baseline system with CQCC
features and GMM classifier were provided by the orga-
nizers as it performs well in the earlier evaluation [24].
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Fig. 11. Schematic block diagram of short-time instantaneous amplitude and
frequency modulation (AM-FM) feature set. After [122].

The acoustic features, such as Rectangular Filter Cepstral
Coefficients (RFCC), Subband Spectral Centroid Magni-
tude Coefhicients (SCMC), Subband Spectral Centroid Fre-
quency Coeflicients (SCFC), Subband Spectral Flux Coefhi-
cients (SSFC) studied. It is found that the SCMC followed
by feature normalization method outperforms other acous-
tic features [116]. With the analysis on Inverse Mel Fre-
quency Cepstral Coeflicients (IMFCC), Linear Prediction
Cepstral Coefficients (LPCC), and LP residual features, it
is found that high-frequency regions have more discrimi-
native information than the other frequency regions [117].
The effect of mean and variance normalization of CQCC
feature set with Support Vector Machines (SVM) classifier
was studied in [81,118]. One of the approaches used Sin-
gle Frequency Filtering (SFF) and found the importance of
high-resolution temporal features [119].

The short-time AM-FM features set obtained using
Energy Separation Algorithm (ESA) were studied in
[120,121] as shown in Fig. 11. The features were also devel-
oped with subband filter analysis using CFCCIF [120], IFCC
[123], Empirical Mode Decomposition Cepstral Coefficients
(EMDCC) [124], transmission line cochlear model [125],
auditory inspired spatial differentiation filterbank [126], and
ESA-IF-based feature estimation using Cochlear filter in
[127]. Excitation source-based features were studied in [128],
wavelet-based features in [129], and phase-based features in
[130]. The concept of feature switching at the decision-level,
along with information from the non-voiced segments were
studied in [131].

The study in [132] shows that some phonemes carry more
replay artifacts than others, therefore consequently judi-
cious use of phoneme-specific models can improve replay
detection. The analysis of full-frequency bands with F-ratio

Amplitude

My

Time

A0 ERRE
1198110

and multi-channel feature extraction using attention-based
adaptive-filters (AAF) is studied in [133]. The analysis of
replay speech signal using reverberation concept and Teager
energy profile is studied in [134].

2) REPRESENTATION OF LEARNING APPROACHES

The three key observations from ASVspoof 2017 Chal-
lenge are the use of spectral information in the higher fre-
quency regions, feature normalization, and representation
learning approach. It was shown that many representation
learning-based approaches did well in the ASVspoof 2017
Challenge.

First, we describe the representation learning approaches
used in ASVspoof 2017 Challenge. End-to-end replay spoof-
ing detection was proposed using deep residual network
(ResNet) and raw spectrograms of speech signals [135].
It was also shown that data augmentation in DNN sig-
nificantly improves the performance [135]. In one of the
approaches, DNN was trained to discriminate between the
various channel conditions available in the ASVSpoof 2017
Challenge database, namely, recording, playback, and ses-
sion conditions [136]. In [136], the DNN features were
learned from CQCC and HFCC features followed by an
SVM classifier. The model fusion strategies using ResNet,
GMM, and DNN were also explored and found to perform
better compared to individual systems [137]. In particular,
the ASVspoof 2017 Challenge winner system used CNN and
RNN for representation learning from STFT spectrograms
followed by a GMM classifier [138].

The use of ConvRBM to learn auditory filterbank fol-
lowed by the AM-FM demodulation using ESA for the
replay SSD task was studied in [139]. The ConvRBM learns
subband filters that represent high-frequency information
in a much better way when used with pre-emphasized
speech signals as shown in Fig. 12. Combining represen-
tation learning and signal processing techniques there is
significant improvement of 0.82 and 8.89% EER on the
development and evaluation set. A novel algorithm called
NeuroEvolution of Augmenting Topologies (NEAT) was
used in an end-to-end anti-spoofing network [140]. The
NEAT framework also introduces a new fitness function for
DNN that results in better generalization than the baseline
system and improves the relative performance by 22% on
the ASVspoof 2017 database [140].

<
THetelese,

ANV
Al
el
- -
e e i
Ap— o —
40— &
B
——
R

AL ALEE

—_—

b)

Fig. 12. The ConvRBM subband filters in temporal-domain (a) without, and (b) with pre-emphasis, respectively. After [139].



Table 9. Comparison of results (in % EER) on ASVspoof 2017 Challenge

Database.

Feature Set Classifier Dev Eval
CQCC (BL) [24] GMM 10.35 28.48
ESA-IFCC [122] GMM 4.12 12.79
VESA-TACC [121] GMM 6.12 11.94
AWFCC [143] GMM 6.37 11.72
LFCC [116] GMM 10.31 16.54
SCEC [116] GMM 24.51 24.83
SSFC [116] GMM 12.81 22.38
SCMC [116] GMM 9.32 11.49
RFCC [116] GMM 6.91 11.90
VESA-IFCC [120] GMM 4.61 14.06
CFCCIF [120] GMM 6.80 34.49
CQCC (6-8 kHz) [117] GMM 5.13 17.31
HFCC [136] GMM 5.9 23.90
SFCC [119] GMM 2.35 20.20
SCC [129] GMM 3.16 19.79
qDFTspec [144] GMM - 11.43
qPspec [144] GMM - 11.85
EOC,, [140] - - 18.2
ConvRBM-CC [139] GMM 0.82 8.89
LFMGDCC [130] GMM 20.70 20.84
EMDCC [124] GMM 28.48 28.06
LFRCC [128] GMM 8.38 22.28
DLFS [131] GMM 6.68 19.16
PNCC [145] GMM 20.78 23.74
PSRMS [146] GMM 33.38 28.16
CF [126] GMM - 10.84
CM [126] GMM - 10.93
TLC_AM [125] GMM - 8.68
TLC_FM [125] GMM - 11.30
TECC [134] GMM 9.55 1173
PPWS [132] GMM - 10.70
PPRFWS_LR [132] GMM - 9.28
ESA-IFCC [147] GMM+CNN 1.90 10.42
LPCC [138] SVM i-vector 9.80 12.54
CQCC [137] DNN 5.18 19.41
CQCC [137] ResNet 5.05 18.79
MECC [137] ResNet 10.95 16.26
GD Spectrum [141] ResNet 0.0 0.0
CQCC [135] ResNet 6.32 23.14
AF-DRN [142] ResNet 6.55 8.99
SFCC [119] BLSTM 3.66 22.40
FFT features [138] LCNN 4.53 7.37
CQT features [138] LCNN 4.80 16.54
AFCC [133] - 4.01 27.80
ARP [133] - 9.11 12.65

BL, baseline

A novel visual attention mechanism is employed in deep
ResNet architecture using the group delay features (GD
spectrum) that resulted in EER of 0% on both the devel-
opment and evaluation sets, respectively [141]. In [142]
attention-based filtering is used that enhances the feature
representation in both time and frequency-domains and
used ResNet-based classifier. Class activation maps (CAM)
using global average pooling (GAP) utilizes the implicit
attention mechanism present in CNN. Hence, representa-
tion learning approaches are very promising directions for
the replay SSD compared to the synthetic SSD task. Accord-
ing to the literature, the system performances on ASVspoof
2017 Challenge dataset are summarized in Table 9.

VI.

SPOOFING AND ANTI-SPOOFING

LIMITATIONS AND

TECHNOLOGICAL CHALLENGES

In this section, we hope to discuss some topics that are
worthy of further inquiry and possible future direction.

@

(ii)

(iii)

(iv)

v)

Logical and Physical Access: The PA is the actual
spoofing where the speech is played back through
a microphone into the ASV system. However, the
ASVspoof database gave special attention to LA
attacks. For such attacks, it is assumed that the
spoofed samples are directly injected into the sys-
tem through a software-based process [21]. Hence,
PA attacks are more realistic than the logical access
attacks, where the attacker plays back a recorded
utterance to the system. This utterance can be either
obtained from the real speaker or can be forged using
VC or synthetic speech (SS) algorithms. This moti-
vates the study on PA attacks and evaluation database
development.

Diversity of Spoofing Attacks: The ASVspoof 2015
Challenge database consists of only VC and synthetic
speech spoofing algorithms. This database consists of
variation of seven VC spoofing techniques and only
three synthetic speech techniques. It is noted that
ASVspoof 2017 Challenge database focuses only on
replay spoof. While ASVspoof 2015 and 2017 database
includes SS, VC, and replay spoofing techniques, the
spoofing voice database is not developed using the
latest neural voice generation techniques.
Performance of Joint Protocol with ASV Systems:
The current studies of countermeasures and ASV sys-
tems are carried out separately. What user would like
to have is a secure and accurate ASV system. How-
ever, a more robust ASV system to noise and channel
variations may become less secure against spoofing
attacks. As there is no guarantee of having a better
performing countermeasure that provides lower EER
and also reliable for the ASV system performance.
Hence, with the progress made in the research of
spoofing detection, evaluation metrics must evolve to
reflect the joint protocol system performance.
Liveness Detection: The use of high-quality record-
ingloudspeaker or playback device to record/playback
the speech signal, in this process the quality of signal
captured becomes indistinguishable from live human
voice. This high-quality device makes the speech sig-
nal impossible to detect that depends on the acous-
tic cues. This gives rise to investigate further on the
liveness detection of human voice.

Signal Degradation Conditions: Current publicly
available spoofing databases are developed in clean
conditions. However, the recent replay database was
recorded under various acoustic environmental con-
ditions. For ASVspoof 2015 Challenge database, the
noisy database was developed by adding various
noises at different Signal-to-Noise Ratio (SNR) lev-
els. Further investigations are required as to how

11
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(vi)

(vii)

(viii)

the diversity of different noise types affects the SSD
performance. In addition, the study is required to
observe the effect on SSD when the additive noise is
added manually, and when the noise is added nat-
urally via the acoustic environment. For example, a
study was done for a replay database under differ-
ent background, microphone, etc. [81]. Hence, the
countermeasures must be developed that it should be
robust to signal degradation conditions as well.
Robustness in ASV implies Vulnerability: In prac-
tice, we would like ASV system to be robust against
variations, such as microphone and transmission
channel, intersession, acoustic noise, speaker aging,
etc. A robust ASV system may become vulnerable
to various spoofing attacks as it tries to nullify these
effects and normalize the spoofing speech toward the
natural speech. Thus, robustness and anti-spoofing
security should be addressed separately. It is worth
to study how features, classifiers, and systems are
designed to be both robust and secure.

Lack of Exploiting Excitation Source Informa-
tion: Less amount of work is done in using exci-
tation source assuming that the Glottal Closure
Instants (GCI) are having sharp impulse-like nature
for voiced speech. The spectrum of the glottal
source (Glottal Flow Waveform (GFW)) for voiced
speech is expected to have harmonic structure in
the frequency-domain. Thus, any deviation from the
degradation in the harmonic structure could cap-
ture the signature of spoof speech [128]. To the best
of authors’ knowledge, there is no study reported
in analyzing this particular aspect. We believe sev-
eral source information, such as Linear Prediction
(LP) residual, Teager Energy Operator (TEO) profile
and its Variable length (VTEO) profile, etc., could be
explored in the framework of recent study reported
in [128].

Exploring Phase-based Features: It is important to
note that phase-based features (either time-domain
analytic or frequency-domain) could capture a differ-
ent kind of information in spoofed speech depending
upon the type of spoof. For example, in USS system,
when the speech sound units are picked up by opti-
mizing the target cost, in the synthesized voice, it will
have linear phase mismatches (since these units are
recorded in different sessions) [148]. On the other
hand, for replay speech, the impulse response of the
acoustic environment (say room) gets convolved with
the natural speech. The impulse response of an acous-
tic system (in this case room) is infinite in duration,
i.e. Infinite Impulse Response (IIR) in nature (due
to infinite transmissions and reflections). Thus, the
non-linear phase in frequency-domain of this acous-
tic system is added to the phase of natural speech.
In addition, corresponding effects of this non-linear
phase could be observed in temporal-domain, such
as non-integer delay in frequency components. There
have been many studies in phase features in SS

detection. Phase study remains a research topic that
is worth more investigations.

(ix) Comparison of Human versus Machine-learning: It
is of great interest to know whether human percep-
tion is important in identifying spoofing, and hence,
humans can achieve better performance than auto-
matic approaches in detecting spoofing attacks. There
was a benchmark study comparing automatic systems
against human performance on a speaker verification
and SS spoofing detection tasks (SS and voice con-
version spoofs) [149]. It was observed that human
listeners detect spoofing less well than most of the
automatic approaches except USS speech [149]. In
a similar study, it was found that both the humans
and machines have difficulties in spoofing detection
when narrowband speech signals were used (8 kHz
sampling frequency) [150]. Hence, for telephone line
speech signals, it is more challenging to do SSD due
to the lower available bandwidth up to 4 kHz. It may
be of great interest to study human performance for
replay SSD task.

(x) Robustness to High-Quality Speech Synthesizers:
Recently, many representation learning-based high-
quality speech synthesis techniques were proposed
that achieved significantly better naturalness. The
Wavenet [50], GAN [48], and other end-to-end
speech synthesis architectures [151] produce high-
quality synthesized speech. It is also shown that low-
quality publicly available database can be used to
produce high-quality spoof data using GAN-based
speech enhancement [152]. Such high-quality SS and
VC techniques may further increase the difficulties
in synthetic SSD. This technique could be used to
generate spoof speech database in the next edition of
ASVspoof challenge [23].

VIil. SUMMARY AND
CONCLUSIONS

This article provided an overview of the SSD task.
We reviewed different countermeasure approaches for
synthetic and replay detection, in particular, classical
and representation learning approaches. The study also
reported various technological challenges involved dur-
ing spoofing detection and also discussed various spoof-
ing databases with their limitations. The article also
discusses the recent advances in the spoofing area for
ASV task.

A significant amount of research has been carried out to
assess the vulnerability of ASV systems to different spoofing
attacks. It is especially challenging to recreate real attack-
ing conditions during the development of various spoofing
database. Under particular controlled conditions, different
spoofing attacks are developed, as they are unfeasible to
collect a database with all different possibilities that are
available in the market. The performance metric is usually
distributed into train, development, and test set, where these



individual sets have almost similar examples of spoofs in all
the sets. However, real-world scenario for ASV represents
an open set evaluation without having any constraints on
the spoofs used to attack given ASV system.

In the current spoofing context described in this arti-
cle and lessons learned in more than 10 years of spoof-
ing research, there are still few open questions that need
to be answered. They are: What are the future challenges
that arise further in voice biometric spoofing? What are
the issues which are yet to be looked into and need to be
explored further? Where do we go from here?

Presently, one of the most urgent needs is to define
a clear methodology to assess the spoofing attacks. This
is not a straightforward issue, as many new variables are
involved during the development of spoofing algorithms.
Another observation is that there does not exist superior
anti-spoofing technique that performs uniformly along all
the spoofs. Approaching only with one countermeasure will
depend on the nature of the attack scenario and data acqui-
sition conditions. Hence, there should be another comple-
mentary countermeasure followed by fusion approaches to
develop high-performance countermeasure over different
spoofing data. In addition, practical considerations should
not be left out. As technology progresses, new techniques
continue to emerge in the form of hardware devices and
signal processing methods. Hence, it is important to keep
a track of such technological progress, since this advance-
ment could be the key to develop a novel and efficient
countermeasure.

Finally, though a significant amount of work is now
being reported in the field of spoofing detection, different
methodologies and attacks have also evolved that became
more and more sophisticated. As a consequence, yet there
are many big challenges that are to be faced to protect
against spoofing attacks, hopefully, that will be lead in the
upcoming years with a new generation of more secure voice
biometric systems.

ACKNOWLEDGMENTS

Authors would like to thank the authorities of DA-IICT
Gandhinagar, India and NUS Singapore for their support
to carry out this research work. First author would like
to thank the University Grants Commission (UGC), New
Delhi, India for providing Rajiv Gandhi National Fellow-
ship (RGNF) for her doctoral studies.

REFERENCES

1 Jain A.K.; Nandakumar K.; Ross A.: 50 years of biometric research:
accomplishments, challenges, and opportunities. Pattern. Recognit.
Lett., 79 (2016), 80-105.

2 Hadid A,; Evans N.; Marcel S.; Fierrez J.: Biometrics systems under
spoofing attack: an evaluation methodology and lessons learned.
IEEE Signal. Process. Mag., 32 (5) (2015), 20-30.

3 Jain A.K; Ross A.; Pankanti S.: Biometrics: a tool for information
security. IEEE Trans. Inf. Foren. Secur., 1 (2) (2006), 125-143.

w

[=)}

~N

foe]

o

10

1

=

13

14

15

16

18

19

20

2

-

22

23

24

SPOOFING AND ANTI-SPOOFING

Jain A.K; Li S.Z.: Handbook of Face Recognition, Springer, 2011.

Maltoni D.; Maio D.; Jain A.K.; Prabhakar S.: Handbook of Finger-
print Recognition, Springer Science & Business Media, 2009.

Daugman J.: The importance of being random: statistical principles
of iris recognition. Pattern. Recognit., 36 (2) (2003), 279-291.

Connie T; Teoh A.; Goh M.; Ngo D.: Palmhashing: a novel approach
for cancelable biometrics. Inf. Process. Lett., 93 (1) (2005), 1-5.

Sanchez-Reillo R; Sanchez-Avila C.; Gonzalez-Marcos A.: Bio-
metric identification through hand geometry measurements. IEEE
Trans. Pattern Anal. Mach. Intell., 10 (2000), 1168-1171.

Yan P; Bowyer K.W.: Biometric recognition using 3D ear shape.
IEEE Trans. Pattern Anal. Mach. Intell., 29 (8) (2007), 1297-
1308.

Yazdanpanah A.P; Faez K.; Amirfattahi R.: Multimodal biometric
system using face, ear and gait biometrics, in IEEE Int. Conf. on Infor-
mation Sciences Signal Processing and their Applications (ISSPA),
Kuala Lumpur, Malaysia, 2010, 251-254.

Nalwa V.S.: Automatic on-line signature verification. Proc. IEEE, 85
(2) (1997), 215-239.

Monrose F; Rubin A.: Authentication via keystroke dynamics, in
ACM Conf. on Computer and Communications Security, Zurich,
Switzerland, 1997, 48-56.

Jain A.K.; Nandakumar K.; Nagar A.: Biometric template security.
EURASIP J. Adv. Signal. Process., (2008), 113.

Ergiinay S.K.; Khoury E.; Lazaridis A.; Marcel S.: On the vulner-
ability of speaker verification to realistic voice spoofing, in IEEE
Int. Conf. on Biometrics Theory, Applications and Systems (BTAS),
Virginia, USA, 2015, 1-6.

Evans N.W,; Kinnunen T.; Yamagishi J.: Spoofing and countermea-
sures for automatic speaker verification, in INTERSPEECH, Lyon,
France, 2013, 925-929.

Evans N.: Handbook of Biometric Anti-spoofing: Presentation
Attack Detection, Springer, 2019.

Koppell J.: International organization for standardization. Handb.
Transnatl. Gov. Inst. Innov., 41 (2011), 289.

Galbally J.; Marcel S.; Fierrez J.: Biometric antispoofing methods: a
survey in face recognition. IEEE Access, 2 (2014), 1530-1552.

Biometric and spoofing identification, https://www.google.com/
search?q=SPOOFING+BIOMETRIC+IDENTIFICATION&source
=Inms&tbm=isch&sa, last accessed: 2018-10-15.

Wu Z.; Evans N.; Kinnunen T.; Yamagishi J.; Alegre F; Li H.: Spoof-
ing and countermeasures for speaker verification: a survey. Speech
Commun., 66 (2015), 130-153.

Muckenhirn H.; Magimai-Doss M.; Marcel S.: Presentation attack
detection using long-term spectral statistics for trustworthy speaker
verification, in IEEE Int. Confe. of the Biometrics Special Interest
Group (BIOSIG), Darmstadt, Germany, 2016, 1-6.

Wu Z; Kinnunen T; Evans N.W.D.; Yamagishi J.; Hanil¢i C,;
Sahidullah M.; Sizov A.: ASVspoof 2015: the first automatic speaker
verification spoofing and countermeasures challenge, in INTER-
SPEECH, Dresden, Germany, 2015, 2037-2041.

Kinnunen T; Evans N.; Yamagishi J; Lee K.A,; Sahidullah M,;
Todisco M.; Delgado H.: ASVspoof 2019: automatic speaker veri-
fication spoofing and countermeasures challenge, Last accessed =
15 Oct 2018. [Online]. Available: http://www.asvspoof.org/.

Kinnunen T,; Sahidullah M.; Delgado H.; Todisco M.; Evans N.;
Yamagishi J.; Lee K.A.: The ASVspoof 2017 challenge: assessing
the limits of replay spoofing attack detection, in INTERSPEECH,
Stockholm, Sweden, 2017, 1-6.

13


https://www.google.com/search?q=SPOOFING+BIOMETRIC+IDENTIFICATION{\&}source=lnms{\&}tbm=isch{\&}sa
https://www.google.com/search?q=SPOOFING+BIOMETRIC+IDENTIFICATION{\&}source=lnms{\&}tbm=isch{\&}sa
https://www.google.com/search?q=SPOOFING+BIOMETRIC+IDENTIFICATION{\&}source=lnms{\&}tbm=isch{\&}sa
http://www.asvspoof.org/

14

MADHU R. KAMBLE et al.

25

26

27

28

29

30

-

3

32

33

34

35

36

37

38

39

40

[

4

42

Evans N.; Li S.Z.; Marcel S.; Ross A.: Guest editorial: special issue
on biometric spoofing and countermeasures. IEEE Trans. Inf. Foren.
Secur., 10 (4) (2015), 699-702.

Evans N.; Marcel S.; Ross A.; Teoh A.B.J.: Biometrics security and
privacy protection [from the guest editors]. IEEE Signal Process.
Mag., 32 (5) (2015), 17-18.

JSTSP Special Issue on Spoofing and Countermeasures for Auto-
matic Speaker Verification, https://signalprocessingsociety.org/blog/
jstsp-special-issue-spoofing-and-countermeasures, last accessed:
2019-07-27.

Special Issue on Speaker and Language Characterization and
Recognition: Voice modeling, Conversion, Synthesis and Ethical
Aspects, https://www.journals.elsevier.com/computer-speech-and-
language/call-for-papers/special-issue-on-speaker-and-language-
characterization, last accessed: 2019-07-27.

Special Issue on Advances in Automatic Speaker Verification Anti-
spoofing, https://www.journals.elsevier.com/computer-speech-and-
//language/call-for-papers/advances-in-automatic-speaker, last
accessed: 2019-07-27.

Wu Z.; Yamagishi ].; Kinnunen T.; Hanilgi C.; Sahidullah M.; Sizov
A.; Evans N.; Todisco M.: ASVspoof: the automatic speaker veri-
fication spoofing and countermeasures challenge. IEEE J. Sel. Top.
Signal. Process., 11 (4) (2017), 588-604.

Patil H.A.; Kamble M.R.: A survey on replay attack detection for
automatic speaker verification (ASV) system, to appear in Asia-
Pacific Signal and Information Processing Association, Annual Sum-
mit and Conf. (APSIPA-ASC), Hawaii, USA, 2018

Li H; Patil H.A;; Kamble M.R.: Tutorial on spoofing attack of
speaker recognition, in Asia-Pacific Signal and Information Process-
ing Association, Annual Summit and Conf. (APSIPA-ASC), Kuala
Lumpur, Malaysia, 2017.

Markham D.: Phonetic imitation, accent, and the learner, Linguistics
and Phonetics, vol. 33, 1997.

Lau Y.W,; Wagner M.; Tran D.: Vulnerability of speaker verification
to voice mimicking, in IEEE Int. Symp. on Intelligent Multimedia,
Video and Speech Processing, Hong Kong, 2004, 145-148.

Hautaméki R.G.; Kinnunen T.; Hautamaki V,; Leino T.; Laukkanen
A.-M.: I-vectors meet imitators: on vulnerability of speaker veri-
fication systems against voice mimicry, in INTERSPEECH, Lyon,
France, 2013, 930-934.

Rosenberg A.E.: Automatic speaker verification: a review. Proc.
IEEE, 64 (4) (1976), 475-487.

Lau Y.W.,; Tran D.; Wagner M.: Testing voice mimicry with the
YOHO speaker verification corpus, in Int. Conf. on Knowledge-
Based and Intelligent Information and Engineering Systems, Springer,
Melbourne, VIC, Australia, 2005, 15-21.

Farrus M.; Wagner M.; Anguita J.; Hernando J.: How vulnerable are
prosodic features to professional imitators?, in Odyssey The Speaker
and Language Recognition Workshop, Stellenbosch, South Africa,
2008, 1-4.

Jain A.K,; Prabhakar S.; Pankanti S.: On the similarity of iden-
tical twin fingerprints. Pattern Recognit., 35 (11) (2002), 2653
2663.

Kersta L.; Colangelo J.: Spectrographic speech patterns of identical
twins. J. Acoust. Soc. Am., 47 (1A) (1970), 58-59.

Patil H.A; Parhi K.K.: Variable length Teager energy based mel cep-
stral features for identification of twins, in Int. Conf. on Pattern
Recognition and Machine Intelligence, Springer, Berlin, Heidelberg,
Germany, 2009, 525-530.

HSBC reports high trust levels in biometric tech as twins spoof
its voice ID system, Biometric Technology Today, vol. 2017, no. 6,

43

44

4

V)

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

p. 12, 2017 [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0969476517301194.

BBC fools HSBC voice recognition security system, https://www.
bbc.com/news/technology-39965545, last accessed: 2018-10-15.

Twins fool HSBC voice biometrics - BBC, https://www.finextra.
com/newsarticle/30594/twins-fool-hsbc-voice-biometrics--bbc,
last accessed: 2018-10-15.

Hunt A.J; Black A.W.: Unit selection in a concatenative speech syn-
thesis system using a large speech database, in IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), Atlanta, Georgia,
USA, 1996, 373-376.

Zen H.,; Tokuda K,; Black A.W.: Statistical parametric speech syn-
thesis. Speech Commun., 51 (11) (2009), 1039-1064.

Qian Y; Soong EK.; Yan Z.-].: A unified trajectory tiling approach
to high quality speech rendering. IEEE Trans. Audio. Speech Lang.
Process., 21 (2) (2013), 280-290.

Saito Y,; Takamichi S.; Saruwatari H.: Statistical parametric
speech synthesis incorporating generative adversarial networks.
IEEE/ACM Trans. Audio Speech Lang. Process., 26 (1) (2018), 84-96.

Wang Y. et al.: Tacotron: towards end-to-end speech synthesis, arXiv
preprint arXiv:1703.10135, last accessed: 2018-10-17, 2017. [Online].
Available: https://arxiv.org/abs/1703.10135.

van den Oord A. et al.: Wavenet: a generative model for raw audio, in
ISCA Speech Synthesis Workshop (SSW), Sunnyvale, California, USA,
2016, 1-15.

Wu Z. et al.: SAS: a speaker verification spoofing database contain-
ing diverse attacks, in IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), South Brisbane, Queensland, Australia, 2015,
4440-4444.

De Leon PL.; Pucher M ; Yamagishi J.; Hernaez I.; Saratxaga I.: Eval-
uation of speaker verification security and detection of HMM-based
synthetic speech. IEEE Trans. Audio Speech Lang. Process., 20 (8)
(2012), 2280-2290.

Bonastre J.E; Matrouf D.; Fredouille C.: Artificial impostor voice
transformation effects on false acceptance rates, in INTERSPEECH,
Antwerp, Belgium, 2007, 2053-2056.

Kinnunen T; Wu Z.Z,; Lee K.A,; Sedlak E; Chng E.S.; Li H.: Vul-
nerability of speaker verification systems against voice conversion
spoofing attacks: The case of telephone speech, in IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012,
4401-4404.

Wu Z; Li H.: Voice conversion versus speaker verification: An
overview. APSIPA Trans. Signal Inf. Process., 3 (2014).

Stylianou Y.; Cappé O.; Moulines E.: Continuous probabilistic trans-
form for voice conversion. IEEE Trans. Speech Audio Process., 6 (2)
(1998), 131-142.

Kim E.-K; Lee S.; Oh Y.-H.: Hidden Markov model based voice con-
version using dynamic characteristics of speaker, in European Conf.
on Speech Communication and Technology, Rhodes, Greece, 1997,
1-4.

Sundermann D.; Hoge H. Bonafonte A.; Ney H.; Black A,
Narayanan S.: Text-independent voice conversion based on unit
selection, in IEEE Int. Conf. on Acoustics, Speech and Signal Process-
ing (ICASSP), Toulouse, France, 2006, I-81-1-84.

Wilde M.M.; Martinez A.B.: Probabilistic principal component
analysis applied to voice conversion, in IEEE Asilomar Conf. on
Signals, Systems and Computers, vol. 2, Pacific Grove, California,
2004, 2255-2259.

Zhang S.; Huang D.; Xie L; Chng E.S; Li H; Dong M.: Non-
negative matrix factorization using stable alternating direction


https://signalprocessingsociety.org/blog/jstsp-special-issue-spoofing-and-countermeasures
https://signalprocessingsociety.org/blog/jstsp-special-issue-spoofing-and-countermeasures
https://www.journals.elsevier.com/computer-speech-and-language/call-for-papers/special-issue-on-speaker-and-language-characterization
https://www.journals.elsevier.com/computer-speech-and-language/call-for-papers/special-issue-on-speaker-and-language-characterization
https://www.journals.elsevier.com/computer-speech-and-language/call-for-papers/special-issue-on-speaker-and-language-characterization
https://www.journals.elsevier.com/computer-speech-and-//language/call-for-papers/advances-in-automatic-speaker
https://www.journals.elsevier.com/computer-speech-and-//language/call-for-papers/advances-in-automatic-speaker
http://www.sciencedirect.com/science/article/pii/S0969476517301194
http://www.sciencedirect.com/science/article/pii/S0969476517301194
https://www.bbc.com/news/technology-39965545
https://www.bbc.com/news/technology-39965545
https://www.finextra.com/newsarticle/30594/twins-fool-hsbc-voice-biometrics--bbc
https://www.finextra.com/newsarticle/30594/twins-fool-hsbc-voice-biometrics--bbc
https://arxiv.org/abs/1703.10135

6

=

62

63

64

65

66

67

68

69

70

-

7

73

74

75

76

77

method of multipliers for source separation, in IEEE Asia-Pacific
Signal and Information Processing Association Annual Summit and
Conf. (APSIPA), 2015, 222-228.

Desai S.; Raghavendra E.V; Yegnanarayana B.; Black A.W.; Prahal-
lad K.: Voice conversion using artificial neural networks, in IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), Taipei,
Taiwan, 2009, 3893-3896.

Abe M.; Nakamura S.; Shikano K.; Kuwabara H.: Voice conversion
through vector quantization. J. Acoust. Soc. Jpn., 11 (2) (1990), 71-76.

Erro D.; Moreno A.: Weighted frequency warping for voice conver-
sion, in INTERSPEECH, Antwerp, Belgium, 2007, 1965-1968.

Lindberg J.; Blomberg M.: Vulnerability in speaker verification-a
study of technical impostor techniques, in EUROSPEECH, vol. 99,
Budapest, Hungary, 1999, 1211-1214.

Villalba J.; Lleida E.: Speaker verification performance degradation
against spoofing and tampering attacks, in FALA Workshop, Vigo,
Spain, 2010, 131-134.

Villalba J.; Lleida E.: Detecting replay attacks from far-field record-
ings on speaker verification systems, in European Workshop on
Biometrics and Identity Management, Roskilde, Denmark, 2011,
274-285.

Quatieri T.E: Discrete-Time Speech Signal Processing: Principles
and Practice, 1st ed., Pearson Education India, 2006.

Alegre F; Janicki A.; Evans N.: Re-assessing the threat of replay
spoofing attacks against automatic speaker verification, in IEEE Int.
Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt,
Germany, 2014, 1-6.

Janicki A.; Alegre E; Evans N.: An assessment of automatic speaker
verification vulnerabilities to replay spoofing attacks. Secur Com-
mun Netw, 9 (15) (2016), 3030-3044.

Rafi B.S.M.; Murty K.S.R;; Nayak S.: A new approach for robust
replay spoof detection in ASV systems, in IEEE Global Conf. on Sig-
nal and Information Processing (GlobalSIP), Montreal, Canada, 2017,
51-55.

De Leon PL.; Pucher M.; Yamagishi J.: Evaluation of the vulner-
ability of speaker verification to synthetic speech, in Odyssey The
Speaker and Language Recognition Workshop, Brno, Czech Republic,
2010.

Wu Z,; Kinnunen T; Chng E.S; Li H.; Ambikairajah E.: A study
on spoofing attack in state-of-the-art speaker verification: the
telephone speech case, in IEEE Asia-Pacific Signal & Information
Processing Association Annual Summit and Conf. (APSIPA ASC),
Hollywood, California, 2012, 1-5.

Alegre F; Amehraye A; Evans N. A one-class classification
approach to generalised speaker verification spoofing countermea-
sures using local binary patterns, in IEEE Int. Conf. on Biometrics:
Theory, Applications and Systems (BTAS), Washington DC, USA,
2013, 1-8.

Wu Z; Gao S.; Cling E.S;; Li H.: A study on replay attack and
anti-spoofing for text-dependent speaker verification, in IEEE Asia-
Pacific Signal and Information Processing Association, Annual Sum-
mit and Conf. (APSIPA), Chiang Mai, Thailand, 2014, 1-5.

Larcher A.; Lee K.A; Ma B.; Li H.: Text-dependent speaker verifica-
tion: classifiers, databases and RSR2015. Speech Commun., 60 (2014),
56-77.

Korshunov P. et al.: Overview of BTAS 2016 speaker anti-spoofing
competition, Idiap, Tech. Rep., 2016.

Kinnunen T. et al.: Reddots replayed: a new replay spoofing attack
corpus for text-dependent speaker verification research, in IEEE
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), New
Orleans, Louisiana, USA, 2017, 5395-5399.

78

79

80

8

[y

82

83

84

85

86

87

88

89

90

=

9

92

93

94

95

SPOOFING AND ANTI-SPOOFING

Todisco M. et al.: Asvspoof 2019: future horizons in spoofed and fake
audio detection, arXiv preprint arXiv:1904.05441, 2019.

Campbell J.P: Speaker recognition: a tutorial. Proc. IEEE, 85 (9)
(1997), 1437-1462.

Lee K.A. et al.: The RedDots data collection for speaker recognition,
in INTERSPEECH, Dresden, Germany, 2015, 2996-3000.

Delgado H. et al: ASVspoof 2017 version 2.0: meta-data analy-
sis and baseline enhancements, in Odyssey The Speaker and Lan-
guage Recognition Workshop, Les Sables d’Olonne, France, 2018,
296-303.

ASVspoof 2019: automatic speaker verification spoofing and coun-
termeasures challenge evaluation plan, 2019.

Kinnunen T. et al.: t-DCF: a detection cost function for the tandem
assessment of spoofing countermeasures and automatic speaker ver-
ification, in Odyssey The Speaker and Language Recognition Work-
shop, Les Sables d’Olonne, France, 2018, 312-319.

Gong Y,; Yang J.; Huber J.; MacKnight M.; Poellabauer C.: ReMASC:
realistic replay attack corpus for voice controlled systems, arXiv
preprint arXiv:1904.03365, 2019.

Bimbot E et al.: A tutorial on text-independent speaker verification.
EURASIP J. Adv. Signal Process., 2004 (4) (2004), 101962.

Martin A. et al.: The DET curve in assessment of decision task
performance, in European Conf. on Speech Communication and
Technology (EUROSPEECH), Rhodes, Greece, 1997, 1895-1898.

Patil H.A; Dutta P; Basu T.: Effectiveness of LP based features for
identification of professional mimics in Indian languages, in Int.
Workshop on Multimodal User Authentication, MMUA06, Toulouse,
France, 2006, 11-18.

Leon PL.D,; Stewart B.; Yamagishi J.: Synthetic speech discrimina-
tion using pitch pattern statistics derived from image analysis, in
INTERSPEECH, Portland, Oregon, 2012.

Wu Z; Xiao X; Chng E.S;; Li H.: Synthetic speech detection
using temporal modulation feature, in IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing (ICASSP), Vancouver, BC, Canada,
2013, 7234-7238.

De Leon PL.; Hernaez I; Saratxaga I; Pucher M.; Yamagishi J.:
Detection of synthetic speech for the problem of imposture, in
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
Prague, Czech Republic, 2011, 4844-4847.

Kamble M.R.; Patil H.A.: Novel energy separation based instanta-
neous frequency features for spoof speech detection, in IEEE Euro-
pean Signal Processing Conf. (EUSIPCO), Kos Island, Greece, 2017,
106-110.

Todisco M.; Delgado H.; Evans N.: A new feature for automatic
speaker verification anti-spoofing: constant Q cepstral coefficients,
in Speaker Odyssey Workshop, Bilbao, Spain, vol. 25, 2016, 249-252.

Patel T.B.; Patil H.A.: Combining evidences from mel cepstral,
cochlear filter cepstral and instantaneous frequency features for
detection of natural vs. spoofed speech, in INTERSPEECH, Dresden,
Germany, 2015, 2062—-2066.

Todisco M.; Delgado H.; Evans N.: Constant Q cepstral coefficients:
a spoofing countermeasure for automatic speaker verification. Com-
put. Speech Lang., 45 (2017), 516-535.

Xiao X.; Tian X.; Du S;; Xu H.; Chng E.S.; Li H.: Spoofing speech
detection using high dimensional magnitude and phase features:

the NTU approach for ASVspoof 2015 challenge, in INTERSPEECH,
Dresden, Germany, 2015, 2052-2056.

Sahidullah M.; Kinnunen T.; Hanilgi C.: A comparison of features
for synthetic speech detection, in INTERSPEECH, Dresden, Ger-
many, 2015, 2087-2091.

15



16

MADHU R. KAMBLE et al.

97

98

99

100

101

102

103

104

105

106

107

108

109

110

11

=

112

113

114

Yang].; You C.; He Q.: Feature with complementarity of statistics and
principal information for spoofing detection, in INTERSPEECH,
Hyderabad, India, 2018, 651-655.

Sriskandaraja K.; Sethu V.; Ambikairajah E.; Li H.: Front-end for
antispoofing countermeasures in speaker verification: scattering
spectral decomposition. IEEE J. Sel. Top. Signal Process., 11 (4) (2017),
632-643.

Chen N.; Qian Y.; Dinkel H.; Chen B.; Yu K.: Robust deep feature for
spoofing detection — the SJTU system for ASVspoof 2015 challenge,
in INTERSPEECH, Dresden, Germany, 2015, 2052-2056.

Zhang C.; Yu C; Hansen J.H.: An investigation of deep-learning
frameworks for speaker verification antispoofing. IEEE J. Sel. Top.
Signal Process., 11 (4) (2017), 684-694.

Qian Y; Chen N; Yu K.: Deep features for automatic spoofing
detection. Speech Commun. Elsevier, 85 (2016), 43-52.

Alam M.J; Kenny P; Gupta V; Stafylakis T.: Spoofing detection
on the ASVspoof2015 challenge corpus employing deep neural net-
works, in Odyssey 2016, Bilbao, Spain, 2016, 270-276.

Sailor H.B.; Kamble M.R.; Patil H.A.: Unsupervised representa-
tion learning using convolutional restricted Boltzmann machine
for spoof speech detection, in INTERSPEECH, Stockholm, Sweden,
2017, 2601-2605.

Yu H.; Tan Z.-H.; Zhang Y.; Ma Z.; Guo J.: DNN filter bank cepstral
coeflicients for spoofing detection. IEEE Access, 5 (2017), 4779-4787.

Muckenhirn H.; Korshunov P; Magimai-Doss M.; Marcel S.: Long-
term spectral statistics for voice presentation attack detection.
IEEE/ACM Trans. Audio Speech Lang. Process., 25 (11) (2017),
2098-2111.

Zhang Z.; Cummins N.; Schuller B.: Advanced data exploitation
in speech analysis: an overview. IEEE Signal Process. Mag., 34 (4)
(2017), 107-129.

Heittola T;; gakuir E.; Virtanen T.: The machine learning approach
for analysis of sound scenes and events, in Computational Analysis
of Sound Scenes and Events, Springer, 2018, 13-40.

Tokozume Y.; Harada T.: Learning environmental sounds with end-
to-end convolutional neural network, in IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA,
2017, 2721-2725.

Chiu C.-C. et al.: State-of-the-art speech recognition with sequence-
to-sequence models, in IEEE Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, Alberta, Canada, 2018, 1-5.

Muckenhirn H.; Magimai-Doss M.; Marcel S.: End-to-end convolu-
tional neural network-based voice presentation attack detection, in
IEEE Int. Joint Conf. on Biometrics (IJCB), Denver, Colorado, USA,
2017, 335-341.

Dinkel H.; Chen N; Qian Y; Yu K.: End-to-end spoofing detec-
tion with raw waveform CLDNNS, in IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017,
4860-4864.

Dinkel H.; Qian Y; Yu K.: Investigating raw wave deep neural net-
works for end-to-end speaker spoofing detection. IEEE/ACM Trans.
Audio Speech Lang. Process., 26 (11) (2018), 1-13.

Villalba J.; Miguel A.; Ortega A.; Lleida E.: Spoofing detection
with DNN and one-class SVM for the ASVspoof 2015 challenge, in
INTERSPEECH, Dresden, Germany, 2015, 2067-2071.

Yu H; Tan Z.-H.; Ma Z.; Martin R.; Guo J.: Spoofing detection in
automatic speaker verification systems using DNN classifiers and
dynamic acoustic features. IEEE Trans. Neural Netw. Learn. Syst., 29
(10) (2017), 1-12.

115

116

117

18

19

120

12

-

122

123

124

125

126

127

128

129

130

=

13

Shang W.; Stevenson M.: Score normalization in playback attack
detection, in IEEE Int. Conf. on Acoustics Speech and Signal Process-
ing (ICASSP), Adam’s Mark Hotel Dallas, TX, USA, 2010, 1678-1681.

Font R.; Espin J.M.; Cano M.].: Experimental analysis of features for
replay attack detection results on the ASVspoof 2017 challenge, in
INTERSPEECH, Stockholm, Sweden, 2017, 7-11.

Witkowski M.; Kacprzak S.; Zelasko P; Kowalczyk K.; Gatka J.:
Audio replay attack detection using high-frequency features, in
INTERSPEECH, Stockholm, Sweden, 2017, 27-31.

Wang X.; Xiao Y.,; Zhu X.: Feature selection based on CQCCs for
automatic speaker verification spooﬁng, in INTERSPEECH, Stock-
holm, Sweden, 2017, 32-36.

Alluri K.R.; Achanta S.; Kadiri S.R.; Gangashetty S.V.; Vuppala A.K.:
SFF anti-spoofer: III'T-H submission for automatic speaker veri-
fication spoofing and countermeasures challenge 2017, in INTER-
SPEECH, Stockholm, Sweden, 2017, 107-111.

Patil H.A.; Kamble M.R.; Patel T.B.; Soni M.: Novel variable length
Teager energy separation based instantaneous frequency features
for replay detection, in INTERSPEECH, Stockholm, Sweden, 201,
12-16.

Kamble M.R ; Patil H.A.: Novel variable length energy separation
algorithm using instantaneous amplitude features for replay detec-
tion, in INTERSPEECH, Hyderabad, India, 2018, 646-650.

Kamble M.R; Tak H. Patil H.A. Effectiveness of speech
demodulation-based features for replay spoof speech detection,
INTERSPEECH, Hyderabad, India, 2018, 641-64s5.

Jelil S.; Das R.K.; Prasanna S.M.; Sinha R.: Spoof detection using
source, instantaneous frequency and cepstral features, in INTER-
SPEECH, Stockholm, Sweden, 2017, 22-26.

Tapkir P.A,; Patil H.A.: Novel empirical mode decomposition cep-
stral features for replay spoof detection, in INTERSPEECH, Hyder-
abad, India, September 2-6, 2018, 721-725.

Gunendradasan T; Irtza S.; Ambikairajah E.; Epps J.: Transmission
line cochlear model based am-fm features for replay attack detec-
tion, in IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 2019, 6136-6140.

Wickramasinghe B.; Ambikairajah E.; Epps J.; Sethu V.; Li H.: Audi-
tory inspired spatial differentiation for replay spoofing attack detec-
tion, in IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 2019, 6011-6015.

Patil A.T; Rajul A.; Sai PA.K,; Patil H.A.: Energy sepration-based
instantaneous frequency estimation for cochlear cepstral feature for
replay spoof detection, in INTERSPEECH, Graz, Austria, 2019, 1-5,
accepted.

Tak H.; Patil H.A.: Novel linear frequency residual cepstral features
for replay attack detection, in INTERSPEECH, Hyderabad, India,
September 2-6, 2018, 726-730.

Sriskandaraja K.; Suthokumar G.; Sethu V.; Ambikairajah E.: Inves-
tigating the use of scattering coefficients for replay attack detection,
in IEEE Asia-Pacific Signal and Information Processing Association
Annual Summit and Conf. (APSIPA ASC), Kuala Lumpur, Malaysia,
2017, 1195-1198.

Srinivas K.; Patil H.A.: Relative phase shift features for replay
spoof detection system, in Spoken Language Technologies for Under-
resourced languages (SLTU), Gurugram, India, 2018, 1-5.

Saranya M.S.; Padmanabhan R.; Murthy H.A.: Replay attack detec-
tion in speaker verification using non-voiced segments and deci-
sion level feature switching, in IEEE Int. Conf. on Signal Processing
and Communications (SPCOM), Indian Institute of Science (IISc),
Bangalore, 2018, 1-5.



132 Suthokumar G.; Sriskandaraja K; Sethu V; Wijenayake C.;
Ambikairajah E.: Phoneme specific modelling and scoring tech-
niques for anti spoofing system, in IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019,
6106-6110.

133 Liu M.; Wang L.; Dang J.; Nakagawa S.; Guan H.; Li X.: Replay
attack detection using magnitude and phase information with
attention-based adaptive filters, in IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019,
6201-6205.

134 Kamble M.R ; Patil H.A.: Analysis of reverberation via teager energy
features for replay spoof speech detection, in IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK,
2019, 2607-2611.

135 Cai W,; Cai D.; Liu W;; Li G.; Li M.: Countermeasures for automatic
speaker verification replay spoofing attack: on data augmentation,
feature representation, classification and fusion, in INTERSPEECH,
Stockholm, Sweden, 2017, 17-21.

136 Nagarsheth P; Khoury E.; Patil K.; Garland M.: Replay attack detec-
tion using DNN for channel discrimination, in INTERSPEECH,
Stockholm, Sweden, 2017, 97-101.

137 ChenZ.; Xie Z.; Zhang W.; Xu X.: ResNet and model fusion for auto-
matic spoofing detection, in INTERSPEECH, Stockholm, Sweden,
2017, 102-106.

138 Lavrentyeva G.; Novoselov S.; Malykh E.; Kozlov A.; Kudashev
O.; Shchemelinin V.: Audio replay attack detection with deep
learning frameworks, in INTERSPEECH, Stockholm, Sweden, 2017,
82-86.

139 Sailor H.B.; Kamble M.R.; Patil H.A.: Auditory filterbank learning
for temporal modulation features in replay spoof speech detection,
INTERSPEECH, Hyderabad, India, 2018, 666-670.

140 Valenti G; Delgado H.; Todisco M.; Evans N.; Pilati L.: An end-
to-end spoofing countermeasure for automatic speaker verification
using evolving recurrent neural networks, in Odyssey The Speaker
and Language Recognition Workshop, Les Sables d’Olonne, France,
2018, 288-295.

[

Tom E; Jain M.; Dey P: End-to-end audio replay attack detec-
tion using deep convolutional networks with attention, in INTER-
SPEECH, Hyderabad, India, 2018, 681-68s.

14

142 Lai C.-I; Abad A.; Richmond K.; Yamagishi J.; Dehak N.; King S.:
Attentive filtering networks for audio replay attack detection, in
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 2019, 6316-6320.

143 Kamble M.R.; Patil H.A.: Novel amplitude weighted frequency mod-
ulation features for replay spoof detection, in Int. Symp. on Chi-
nese Spoken Language Processing (ISCSLP), Taipei, Taiwan, 2018, to
appear.

144 Alam M.J; Bhattacharya G.; Kenny P.: Boosting the performance
of spoofing detection systems on replay attacks using q-logarithm
domain feature normalization, in Odyssey The Speaker and Lan-
guage Recognition Workshop, Les Sables d’Olonne, France, 2018,
393-398.

145 Tapkir P.A.; Kamble M.R; Patil H.A.: Replay spoof detection using
power function based features, in Asia-Pacific Signal and Informa-
tion Processing Association, Annual Summit and Conf. (APSIPA-
ASC), Hawaii, USA, 2018, to appear.

146 Jelil S;; Kalita S.; Prasanna S.M.; Sinha R.: Exploration of com-
pressed ILPR features for replay attack detection, in INTERSPEECH,
Hyderabad, India, 2018, 631-635.

147 Kamble M.R,; Tak H.; Maddala S.K.; Patil H.A.: Novel demodulation-
based features using classifier-level fusion of GMM and CNN for

SPOOFING AND ANTI-SPOOFING

replay detection, in Int. Symp. on Chinese Spoken Language Process-
ing (ISCSLP), Taipei, Taiwan, 2018, to appear.

148 Stylianou Y.: Removing linear phase mismatches in concatenative

speech synthesis. IEEE Trans. Speech Audio Process., 9 (3) (2001),

232-239.

149 Wu Z. et al.: Anti-spoofing for text-independent speaker verifi-
cation: an initial database, comparison of countermeasures, and
human performance. IEEE/ACM Trans. Audio Speech Lang. Process.,

24 (4) (2016), 768-783.

150 Wester M.; Wu Z.; Yamagishi J.: Human vs. machine spoofing detec-
tion on wideband and narrowband data, in INTERSPEECH 2015,
Dresden, Germany, September 2015, 2047-2051.

151 Wang X.; Lorenzo-Trueba J.; Takaki S.; Juvela L.; Yamagishi J.: A
comparison of recent waveform generation and acoustic modeling
methods for neural-network-based speech synthesis, in IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), Calgary,
Alberta, Canada, 2018, 1-15.

152 Lorenzo-Trueba J.; Fang F; Wang X.; Echizen I.; Yamagishi J.; Kin-
nunen T.: Can we steal your vocal identity from the internet? Initial
investigation of cloning obama’s voice using gan, wavenet and low-
quality found data, in Odyssey, Les Sables d’Olonne, France, 2018,
240-247.

Madhu R. Kamble is a Ph.D. student at DA-IICT, Gand-
hinagar. She did her M. Tech. degree from Cummins Col-
lege of Engineering, Pune, Maharashtra, India in 2015 in
Signal Processing specialization and the B.Tech degree from
PV.PLT, Budhgaon, Sangli, Maharashtra in 2012. She has
been awarded with Rajiv Gandhi National Fellowship (RGNF)
for her doctoral research studies. Her research interest is in
voice biometrics, in particular, analysis of spoofing attacks
and development of countermeasures. Recently, she offered
a tutorial jointly with Prof. Patil on the same topic in
IEEE-WIE Conference, at AISSM’s Pune in Dec 2016. She
was the co-instructor for a tutorial in Asia-Pacific Signal
and Information Processing Association Annual Summit and
Conference (APSIPA-ASC), Kuala Lumpur, Malaysia, 2017.
She is a research intern at Samsung Research Institute,
Bangalore (SRI-B), India during May-Nov 2019. She is a stu-
dent member of ISCA, student member of IEEE, IEEE Sig-
nal Processing Society, and APSIPA. She is a reviewer for
Computer, Speech and Language and Nerocomputing Jour-
nal, Elsevier. She received ISCA and IEEE SPS student travel
grant to present her papers during INTERSPEECH, 2017 and
ICASSP 2019.

Hardik B. Sailor is a Post Doctoral researcher in the Uni-
versity of Sheffield, UK. He completed his Ph.D. degree in
2018 at DA-IICT, Gandhinagar, India. He received the B.E.
degree from Government Engg. College (GEC), Surat in 2010.
In 2013, he received the M.Tech. degree from DA-IICT, Gand-
hinagar. He was also a project staff member of MeitY, Govt.
of India sponsored consortium project, “Automatic Speech
Recognition for Agricultural Commodities Phase-II”, (April
2016—March 2018). At DA-IICT, he was a project staff mem-
ber of MeitY, Govt. of India sponsored project on, “Develop-
ment of Text-to-Speech (TTS) Synthesis Systems for Indian
languages Phase-1I”, from May 2012 to March 2016. His
research area includes representation learning, auditory pro-
cessing, Automatic Speech Recognition (ASR), and sound

17



18

MADHU R. KAMBLE et al.

classification. His main research is focused on developing rep-
resentation learning to model the auditory processing. He
has published 25 research papers in top conferences and
peer-reviewed journals. He is a student member of IEEE,
IEEE Signal Processing Society, and International Speech
Communication Association (ISCA). He is a reviewer for
IEEE/ACM Transactions in Audio, Speech, and Language Pro-
cessing, IEEE Signal Processing Letters, and Applied Acous-
tics, Elsevier. Recently, he received ISCA student travel grant
650 euros to present his three co-authored papers during
INTERSPEECH 2018.

Hemant A. Patil received the B.E. degree from the North
Mabharashtra University, Jalgaon, India, in 1999, the M.E.
degree from Swami Ramanand Teerth Marathwada Univer-
sity, Nanded, India, in 2000, and the Ph.D. degree from the
Indian Institute of Technology, Kharagpur, India, in 2006.
He is currently a Professor at Dhirubhai Ambani Institute
of Information and Communication Technology, Gandhina-
gar, India. He has coedited a book with Dr. A. Neustein
(Editor-in-Chief, IJST, Springer) on Forensic Speaker Recog-
nition: Law Enforcement and Counter-Terrorism (New York,
NY, USA: Springer). He served as PI/Co-PI for three MeitY
and two DST sponsored projects. Prof. Patil was a chair of
satellite workshop committee during INTERSPEECH, 2018,
Hyderabad, India. He is selected as APSIPA Distinguished Lec-
turer (DL) for 2018-2019 and delivered 21 APSIPA DLs in
three countries, namely, India, Canada, and China. Recently,
he is elected as ISCA DL for 2020-2021. He is an affiliate
member of the IEEE SLTC and a member of the IEEE Sig-
nal Processing Society, the IEEE Circuits and Systems Soci-
ety (Awards), and the International Speech Communication
Association (ISCA).

Haizhou Li (M’91-SM’01-F’14) received the B.Sc., M.Sc., and
Ph.D degrees in electrical and electronic engineering from
South China University of Technology, Guangzhou, China, in
1984, 1987, and 1990, respectively. He is currently a Professor
with the Department of Electrical and Computer Engineering,
National University of Singapore (NUS), Singapore. He is also
a Conjoint Professor at the University of New South Wales,
Kensington, NSW, Australia. Prior to joining NUS, he taught
in the University of Hong Kong (1988-1990) and South China
University of Technology (1990-1994). He was a Visiting Pro-
fessor with CRIN in France (1994-1995), Research Manager
with the Apple-ISS Research Centre (1996-1998), Research
Director with Lernout & Hauspie Asia Pacific (1999-2001),
Vice President with InfoTalk Corp. Ltd. (2001-2003), and the
Principal Scientist and Department Head of Human Lan-
guage Technology with the Institute for Infocomm Research,
Singapore (2003-2016). His research interests include auto-
matic speech recognition, speaker and language recognition,
and natural language processing. He is currently the Editor-
in-Chief for the IEEE/ACM TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING (2015-2018), a
Member of the Editorial Board of Computer Speech and Lan-
guage (2012—-2018). He was an elected Member of IEEE Speech
and Language Processing Technical Committee (2013-2015),
the President of the International Speech Communication
Association (2015-2017), the President of Asia Pacific Signal
and Information Processing Association (2015-2016), and the
President of Asian Federation of Natural Language Process-
ing (2017-2018). He was the General Chair of ACL 2012 and
INTERSPEECH 2014. He was the recipient of the National
Infocomm Award 2002 and the Presidents Technology Award
2013 in Singapore. He was named one of the two Nokia Visiting
Professors in 2009 by the Nokia Foundation.



	I. INTRODUCTION
	II. ASV SYSTEM: SPOOFINGATTACKS
	A) Impersonation
	B) Synthetic speech
	C) Voice conversion
	D) Replay

	III. DATABASES ANDPERFORMANCE EVALUATIONMETRICS
	A) ASVspoof 2015 challenge
	B) AVspoof database
	C) ASVspoof 2017 challenge
	D) ASVspoof 2019 challenge
	E) ReMASC
	F) Performance evaluation metrics

	IV. COUNTERMEASURES FORSYNTHETIC SPOOFING ATTACKS
	1) Traditional approaches
	2) Representation learning approaches

	V. COUNTERMEASURES FORREPLAY SPOOFING ATTACKS
	1) Acoustic features
	2) Representation of learning approaches

	VI. LIMITATIONS ANDTECHNOLOGICAL CHALLENGES
	VII. SUMMARY ANDCONCLUSIONS

