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Learning priors for adversarial autoencoders
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Most deep latent factor models choose simple priors for simplicity, tractability, or not knowing what prior to use. Recent studies
show that the choice of the prior may have a profound effect on the expressiveness of the model, especially when its generative
network has limited capacity. In this paper, we propose to learn a proper prior from data for adversarial autoencoders (AAEs).
We introduce the notion of code generators to transform manually selected simple priors into ones that can better characterize
the data distribution. Experimental results show that the proposed model can generate better image quality and learn better
disentangled representations than AAEs in both supervised and unsupervised settings. Lastly, we present its ability to do cross-

domain translation in a text-to-image synthesis task.
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I. INTRODUCTION

Deep latent factor models, such as variational autoencoders
(VAEs) and adversarial autoencoders (AAEs), are becoming
increasingly popular in various tasks, such as image genera-
tion [1], unsupervised clustering [2,3], cross-domain trans-
lation [4], domain generalization [5], and unsupervised
representation learning [6]. These models involve specify-
ing a prior distribution over latent variables and defining a
deep generative network (i.e. the decoder) that maps latent
variables to data space in stochastic or deterministic fash-
ion. Training such deep models usually requires learning
a recognition network (i.e. the encoder) regularized by the
prior.

Traditionally, a simple prior, such as the standard nor-
mal distribution [7], is used for tractability, simplicity, or
not knowing what prior to use. It is hoped that this simple
prior will be transformed somewhere in the deep generative
network into a form suitable for characterizing the data dis-
tribution. While this might hold true when the generative
network has enough capacity, applying the standard normal
prior often results in over-regularized models with only few
active latent dimensions [8].

Some recent works [9-11] suggest that the choice of the
prior may have a profound impact on the expressiveness
of the model. As an example, in learning the VAE with
a simple encoder and decoder, Hoffman and Johnson [9]
conjecture that multimodal priors can achieve a higher vari-
ational lower bound on the data log-likelihood than is pos-
sible with the standard normal prior. Tomczak and Welling
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[11] confirm the truth of this conjecture by showing that
their multimodal prior, a mixture of the variational poste-
riors, consistently outperforms simple priors on a number
of datasets in terms of maximizing the data log-likelihood.
Taking one step further, Goyal et al. [10] learn a tree-
structured non-parametric Bayesian prior for capturing the
hierarchy of semantics presented in the data. All these pri-
ors are learned under the VAE framework following the
principle of maximum likelihood.

Along a similar line of thinking, we propose in this paper
the notion of code generators for learning a prior from data
for AAE. The objective is to learn a code generator network
to transform a simple prior into one that, together with the
generative network, can better characterize the data distri-
bution. To this end, we generalize the framework of AAE in
several significant ways:

o We replace the simple prior with a learned prior by train-
ing the code generator to output latent variables that will
minimize an adversarial loss in data space.

« We employ a learned similarity metric [1] in place of
the default squared error in data space for training the
autoencoder.

o We maximize the mutual information between part of
the code generator input and the decoder output for
supervised and unsupervised training using a variational
technique introduced in InfoGAN [12].

Extensive experiments confirm its effectiveness of gener-
ating better quality images and learning better disentangled
representations than AAE in both supervised and unsu-
pervised settings, particularly on complicated datasets. In
addition, to the best of our knowledge, this is one of the first
few works that attempt to introduce a learned prior for AAE.
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The remainder of this paper is organized as follows:
Section 2 reviews the background and related works.
Section 3 presents the implementation details and the train-
ing procedure of the proposed code generator. Section 4
presents extensive experiments to show the superiority of
our models over prior works. Section 5 showcases an appli-
cation of our model to text-to-image synthesis. Lastly, we
conclude this paper with remarks on future work.

II. RELATED WORK

A latent factor model is a probabilistic model for describing
the relationship between a set of latent and visible variables.
The model is usually specified by a prior distribution p(z)
over the latent variables z and a conditional distribution
p(x|z;0) of the visible variables x given the latent variables
z. The model parameters € are often learned by maximizing
the marginal log-likelihood of the data log p(x; 6).
Variational Autoencoders (VAEs). To improve the
model’s expressiveness, it is common to make deep the
conventional latent factor model by introducing a neural
network to p(x | z;0). One celebrated example is VAE [7],
which assumes the following prior p(z) and p(x | z;6):

p(2) ~ N(z0,I)

px | z0) ~ N(x;0(z:0),0°1) @

where the mean o(z; 0) is modeled by the output of a neu-
ral network with parameters 6. In this case, the marginal
p(x;0) becomes intractable; the model is thus trained by
maximizing the log evidence lower-bound (ELBO):

L($,0) = Eqixg) logp(x | :60) — KL(q(z | x:9) || p(2))
(2)

where q(z | x;¢) is the variational density, implemented
by another neural network with parameter ¢, to approxi-
mate the posterior p(z | x;6). When regarding q(z | x; ¢)
as an (stochastic) encoder and p(x | z;6) as a (stochastic)
decoder, Equation (2) bears an interpretation of training an
autoencoder with the latent code z regularized by the prior
p(z) through the KL-divergence.

Adversarial Autoencoders (AAEs). Motivated by the
observation that VAE is largely limited by the Gaussian
prior assumption, i.e. p(z) ~ N (z; 0, ), Makhzani et al. [3]
relax this constraint by allowing p(z) to be any distribution.
Apparently, the KL-divergence becomes intractable when
p(z) is arbitrary. They thus replace the KL-divergence with
an adversarial loss imposed on the encoder output, requir-
ing that the latent code z produced by the encoder should
have an aggregated posterior distribution' the same as the
prior p(2).

Non-parametric ~ Variational — Autoencoders  (Non-
parametric VAEs). While AAE allows the prior to be arbi-
trary, how to select a prior that can best characterize the data

"The aggregated posterior distribution is defined as q(z) = [ q(z |
X; @)pd(x)dx, where pi(x) denotes the empirical distribution of the train-
ing data.
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Fig. 1. The relations of our work with prior arts.

distribution remains an open issue. Goyal et al. [10] make an
attempt to learn a non-parametric prior based on the nested
Chinese restaurant process for VAEs. Learning is achieved
by fitting it to the aggregated posterior distribution, which
amounts to maximization of ELBO. The result induces a
hierarchical structure of semantic concepts in latent space.

Variational Mixture of Posteriors (VampPrior). The
VampPrior [11] is a new type of prior for the VAE. It con-
sists of a mixture of the variational posteriors conditioned
on a set of learned pseudo-inputs {x;}. In symbol, this prior
is given by

K
P@ ==Y a(z | xi¢) 3)
k=1

Its multimodal nature and coupling with the posterior
achieve superiority over many other simple priors in terms
of training complexity and expressiveness.

Inspired by these learned priors [10,11] for VAE, we pro-
pose in this paper the notion of code generators to learn a
proper prior from data for AAE. The relations of our work
with these prior arts are illustrated in Fig. 1.

3. METHOD

In this paper, we propose to learn the prior from data instead
of specifying it arbitrarily. Based on the framework of AAE,
we introduce a neural network (which we call the code
generator) to transform the manually-specified prior into a
better form. Figure 2 presents its role in the overall archi-
tecture, and contrasts the architectural difference relative to
AAE.

A) Learning the prior

Because the code generator itself has to be learned, we need
an objective function to shape the distribution at its output.
Normally, we wish to find a prior that, together with the
decoder (see Fig. 2(b)), would lead to a prior distribution
that maximizes the data likelihood. We are however faced
with two challenges. First, the output of the code generator
could be any distribution, which may make the likelihood
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Fig. 2. The architecture of AAE without (a) and with (b) the code generator.

function and its variational lower bound intractable. Sec-
ond, the decoder has to be learned simultaneously, which
creates a moving target for the code generator.

To address the first challenge, we propose to impose an
adversarial loss on the output of the decoder when training
the code generator. That is, we want the code generator to
produce a prior distribution that minimizes the adversarial
loss at the decoder output. Consider the example in Fig. 3(a).
The decoder should generate images with a distribution
that in principle matches the empirical distribution of real
images in the training data, when driven by the output of
the code generator. In symbols, this is to minimize

Ly = log(Dy(x)) + log( — Dy(dec(z.))),  (4)

where z. = CG(z) is the output of the code generator CG
driven by a noise sample z ~ p(z), D is the discriminator in
image space, and dec(z,) is the output of the decoder driven
by z..

To address the second challenge, we propose to alternate
the training of the code generator and the decoder/encoder
until convergence. In one phase, termed the prior improve-
ment phase (see Fig. 3(a)), we update the code generator
with the loss function in Eq. (4), by fixing the encoder®. In
the other phase, termed the AAE phase (see Fig. 3(b)), we
fix the code generator and update the autoencoder follow-
ing the training procedure of AAE. Specifically, the encoder
output has to be regularized by minimizing the following
adversarial loss:

£8,\ = log(Dc(z.) + log(1 — De(enc(x))),  (5)

2Supposedly, the decoder needs to be fixed in this phase. It is however
found beneficial in terms of convergence to update also the decoder.
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Fig. 3. Alternation of training phases: (a) the prior improvement phase and (b)
the AAE phase. The shaded building blocks indicate the blocks to be updated.

where z, = CG(z) is the output of the code generator, ernc(x)
is the encoder output given the input x, and D¢ is the
discriminator in latent code space.

Because the decoder will be updated in both phases, the
convergence of the decoder relies on consistent training
objectives of the two training phases. It is however noticed
that the widely used pixel-wise squared error criterion in
the AAE phase tends to produce blurry decoded images.
This obviously conflicts with the adversarial objective in
the prior improvement phase, which requires the decoder
to produce sharp images. Inspired by the notion of learn-
ing similarity metrics [1] and perceptual loss [13], we change
the criterion of minimizing squared error in pixel domain
to be in feature domain. Specifically, in the AAE phase, we
require that a reconstructed image dec(enc(x)) should min-
imize squared error in feature domain with respect to its
original input x. This loss is referred to as perceptual loss
and is defined by

Lyec = | F (dec(enc(x))) — F ()% (6)

where F(-) denotes the feature representation (usually the
output of the last convolutional layer in the image dis-
criminator Dy) of an image. With this, the decoder would
be driven consistently in both phases toward producing
decoded images that resemble closely real images.

B) Learning conditional priors

1) SUPERVISED SETTING

The architecture in Fig. 3 can be extended to learn condi-
tional priors supervisedly. Such priors find applications in
conditional data generation, e.g. conditional image gener-
ation in which the decoder generates images according to
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their class labels s. To this end, we make three major changes
to the initial architecture:

« Firstly, the code generator now takes as inputs a data label
sand a noise variable z accounting for the intra-class vari-
ety, and produces a prior distribution conditional on the
label s (see Fig. 4).

o Secondly, the end-to-end mutual information I(s; dec(z.))
between the label s and the decoded image dec(z,) is max-
imized as part of our training objective to have both the
code generator and the decoder pick up the information
carried by the label variable s when generating the latent
code z; and subsequently the decoded image dec(z.). This
is achieved by maximizing its variational lower bound
L(s; dec(z.)) of I(s; dec(z.)) [12] as given by

Li(s; dec(z.)) = _Ez,s~p(z,s),zc~CG(z,s) [log Q(s | dec(z.))],
7)

where p(z,s) = p(z)p(s) is the joint distribution of the
label s and the noise z, CG(-) is the code generator, and
Q(s | dec(z.)) is a classifier used to recover the label s of
the decoded image dec(z.).

o Lastly, the discriminator D, in latent code space is addi-
tionally provided with the label s as input, to implement
class-dependent regularization at the encoder output dur-
ing the AAE learning phase. That is,

[,gAN = log(Dc(z.,s)) + log(a — Dc(enc(x),s)), (8)

where s is the label associated with the input image x.

The fact that the label s of an input image x needs to
be properly fed to different parts of the network during
training indicates the supervised learning nature of the
aforementioned procedure.

2) UNSUPERVISED SETTING

Taking one step further, we present in Fig. 5 a re-purposed
architecture to learn conditional priors under an unsuper-
vised setting. Unlike the supervised setting where the cor-
respondence between the label s and the image x is explicit
during training, the unsupervised setting is to learn the cor-
respondence in an implicit manner. Two slight changes are
thus made to the architecture in Fig. 4: (1) the label s at the
input of the code generator is replaced with a label drawn
randomly from a categorical distribution; and (2) the dis-
criminator D, in the latent code space is made class agnostic
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Fig. 5. Unsupervised learning architecture with the code generator.

by removing the label input. The former is meant to produce
a multimodal distribution in the latent space while the lat-
ter is to align such a distribution with that at the encoder
output. Remarkably, which mode (or class) of distribution
an image x would be assigned to in latent code space is
learned implicitly. In a sense, we hope the code generator
can learn to discover the intriguing latent code structure
inherent at the encoder output. It is worth pointing out that
in the absence of any regularization or guidance, there is no
guarantee that this learned assignment would be in line with
the semantics attached artificially to each data sample.
Algorithm 1 details the training procedure.

V. EXPERIMENTS

We first show the superiority of our learned priors over
manually-specified priors, followed by an ablation study of
individual components. In the end, we compare the perfor-
mance of our model with AAE in image generation tasks.
Unless stated otherwise, all the models adopt the same
autoencoder for a fair comparison.

A) Comparison with prior works

Latent factor models with their priors learned from data
rather than specified manually should better characterize
the data distribution. To validate this, we compare the per-
formance of our model with several prior arts, including
AAE [3], VAE [7], and Vamprior [11], in terms of Inception
Score (IS). Of these works, AAE chooses a Gaussian prior
and regularizes the latent code distribution with an adver-
sarial loss [14]. VAE [7] likewise adopts a Gaussian prior
yet uses the KL-divergence for regularization. Vamprior [11]
learns for VAE a Gaussian mixture prior. For the results of
Vamprior [11], we run their released software [11] but replace
their autoencoder with ours for a fair comparison.

Table 1 compares their Inception Score for image genera-
tion on CIFAR-10 with a latent code size of 64. As expected,
both AAE [3] and VAE [7], which adopt manually-specified
priors, have a lower IS of 2.15 and 3.00, respectively. Some-
what surprisingly, Vamprior [11], although using a learned
prior, does not have an advantage over VAE [7] with a simple
Gaussian prior in the present case. This may be attributed
to the fact that the prior is limited to be a Gaussian mixture
distribution. Relaxing this constraint by modeling the prior



Algorithm 1 Training procedure.

Initialize O,ne, Oecs Oca» Op,> Ope> Oa
Repeat (for each epoch E;)
Repeat (for each mini-batch x;)
/] AAE phase
If label s exists then
zs~ p(z,5) = p@)P(s)
z. < CG(z,s)
Else
z~ p(2)
z. < CG(2)
End If

Compute L£E v, Lrec

/! Update network parameters
Op. < Op; — VGDC (_’CgAN )
eenc <~ genc - VG (Eg‘AN + Erec)

enc

Qdec < edec - V@,&c ()L * £rec)

/] Prior improvement phase
If label s exists then
Zs~ p(z,5) = p)p(s)
z. < CG(z,s)
Compute E{; 4y and L;(s; dec(z,))
Else
z~ p(2)
z. < CG(2)
Compute LL,
End If

// Update network parameters

QDI <~ QDI - V9D,(_’CIGAN)

If label s exists then
Qdec <~ edec - V@,{K (ﬁIGAN + £l(5; d@C(ZC))
OcG < Oc — Voo, (LL,n + Li(s; dec(z,))
0q < Oq — Vo, (L1(s; dec(z.)))

Else
edec <~ edec - VQdec (EEAN)
bcc < 0cG — Vo (Lhan)

End If

Until all mini-batches are processed
Until termination

Table 1. Comparison with AAE, VAE, and Vamprior on CIFAR-10.

Method Inception Score
AAE [3] w/ a Gaussian prior 2.15
VAE [7] w/ a Gaussian prior 3.00
Vamprior [11] 2.88
Our method w/ a learned prior 6.52

with a neural network, our model achieves the highest IS of
6.52.

Figure 6 further visualizes sample images generated with
these models by driving the decoder with latent codes

LEARNING PRIORS FOR ADVERSARIAL AUTOENCODERS

drawn from the prior or the code generator in our case. It
is observed that our model produces much sharper images
than the others. This confirms that a learned and flexible
prior is beneficial to the characterization and generation of
data.

To get a sense of how our model performs as com-
pared to other state-of-the-art generative models, Table 2
compares their Inception Score on CIFAR-10. Caution
must be exercised in interpreting these numbers as these
models adopt different decoders (or generative networks).
With the current implementation, our model achieves a
comparable score to other generative models. Few sample
images of these models are provided in Fig. 7 for subjective
evaluation.

B) Ablation study

In this section, we conduct an ablation study to understand
the effect of (A) the learned prior, (B) the perceptual loss,
and (C) the updating of the decoder in both phases on
Inception Score [19]. To this end, we train an AAE [3] model
with a 64-D Gaussian prior on CIFAR-10 as the baseline.
We then enable incrementally each of these design choices.
For a fair comparison, all the models are equipped with
an identical autoencoder architecture yet trained with their
respective objectives.

From Table 3, we see that the baseline has the low-
est IS and that replacing the manually-specified prior with
our learned prior increases IS by about 0.9. Furthermore,
minimizing the perceptual loss instead of the conventional
mean squared error in training the autoencoder achieves
an even higher IS of 3.69. This suggests that the perceptual
loss does help make more consistent the training objectives
for the decoder in the AAE and the prior improvement
phases. Under such circumstances, allowing the decoder to
be updated in both phases tops the IS.

C) In-depth comparison with AAE

Since our model is inspired by AAE [3], this section provides
an in-depth comparison with it in terms of image genera-
tion. In this experiment, the autoencoder in our model is
trained based on minimizing the perceptual loss (i.e. the
mean squared error in feature domain), whereas by conven-
tion, AAE [3] is trained by minimizing the mean squared
error in data domain.

Figure 8 displays side-by-side images generated from
these models when trained on MNIST and CIFAR-10
datasets. They are produced by the decoder driven by sam-
ples from their respective priors. In this experiment, two
observations are immediate. First, our model can gener-
ate sharper images than AAE [3] on both datasets. Second,
AAE [3] experiences problems in reconstructing visually-
plausible images on the more complicated CIFAR-10. These
highlight the advantages of optimizing the autoencoder
with the perceptual loss and learning the code genera-
tor through an adversarial loss, which in general produces
subjectively sharper images.

5
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(a)

Fig. 6. Sample images produced by (a) AAE, (b) VAE, (c) Vamprior, and (d) the proposed model. (a) AAE [3], (b) VAE [7], (¢) Vamprior [11], and (d) Proposed

model.

Table 2. Comparison with other state-of-the-art generative models on

CIFAR-10.
Method Inception Score
BEGAN [15] 5.62
DCGAN [16] 6.16
LSGAN [17] 5.98
WGAN-GP [18] 7.86
Our method w/ a learned prior 6.52

Another advantage of our model is its ability to have
better adaptability in higher dimensional latent code space.
Figure 9 presents images generated by the two models when
the dimension of the latent code is increased significantly
from 8 to 100 on MNIST, and from 64 to 2000 on CIFAR-
10. As compared to Fig. 8, it is seen that the increase in
code dimension has little impact on our model, but exerts
a strong influence on AAE [3]. In the present case, AAE
[3] can hardly produce recognizable images, particularly on
CIFAR-10, even after the re-parameterization trick has been
applied to the output of the encoder as suggested in [3]. This
emphasizes the importance of having a prior that can adapt
automatically to a change in the dimensionality of the code
space and data.

D) Disentangled representations

Learning disentangled representations is desirable in many
applications. It refers generally to learning a data representa-
tion whose individual dimensions can capture independent
factors of variation in the data. To demonstrate the ability
of our model to learn disentangled representations and the
merits of data-driven priors, we repeat the disentanglement
tasks in [3], and compare its performance with AAE [3].

1) SUPERVISED LEARNING

This section presents experimental results of using the net-
work architecture in Fig. 4 to learn supervisedly a code gen-
erator CG that outputs a conditional prior given the image
label s for characterizing the image distribution. In particu-
lar, the remaining uncertainty about the image’s appearance
given its label is modeled by transforming a Gaussian noise

Table 3. Inception score of generated images with the models trained on
CIFAR-10: A, B, and C denote respectively the design choices of enabling
the learned prior, the perceptual loss, and the updating of the decoder in

both phases.
Method A B (¢ N
AAE [3] w/ a Gaussian prior and MSE loss 2.15
AAE w/ alearned prior and MSE loss v 3.04
AAE w/ alearned prior and perceptual loss v v 3.69
Ours (full) v v v 6.52

Fig. 8. Images generated by our model and AAE trained on MNIST (upper)
and CIFAR-10 (lower). (a) Our model + 8-D latent code, (b) AAE [3] + 8-D
latent code, (c) Our model + 64-D latent code, and (d) AAE [3] + 64-D latent
code.

z through the code generator CG. By having the noise z be
independent of the label s, we arrive at a disentangled repre-
sentation of images. At test time, the generation of an image
x for a particular class is achieved by inputting the class
label s and a Gaussian noise z to the code generator CG(-)
and then passing the resulting code z. through the decoder
x = dec(z,).

To see the sole contribution from the learned prior, the
training of the AAE baseline [3] also adopts the perceptual
loss and the mutual information maximization; that is, the

Fig. 7. Subjective quality evaluation of generated images produced by state-of-the-art generative models. (a) BEGAN [15], (b) DCGAN [16], (c) LSGAN [17], (d)

WGAN-GP [18], and (e) Proposed model.
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Fig. 9. Images generated by our modeland AAE trained on MNIST (upper) and
CIFAR-10 (lower). In this experiment, the latent code dimension is increased
significantly to 64-D and 2000-D for MNIST and CIFAR-10, respectively. For
AAE, the re-parameterization trick is applied to the output of the encoder as
suggested in [3]. (a) Our model + 100-D latent code, (b) AAE [3] + 100-D latent
code, (c) Our model + 2000-D latent code, and (d) AAE [3] 4+ 2000-D latent
code.

only difference to our model is the direct use of the label s
and the Gaussian noise z as the conditional prior.

Figure 10 displays images generated by our model and
AAE [3]. Both models adopt a 10-D one-hot vector to spec-
ify the label s and a 54-D Gaussian to generate the noise z.
To be fair, the output of our code generator has an identi-
cal dimension (i.e. 64) to the latent prior of AAE [3]. Each
row of Fig. 10 corresponds to images generated by varying
the label s while fixing the noise z. Likewise, each column
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shows images that share the same label s yet with varied
noise z.

On MNIST and SVHN, both models work well in sep-
arating the label information from the remaining (style)
information. This is evidenced from the observation that
along each row, the main digit changes with the label s
regardless of the noise z, and that along each column, the
style varies without changing the main digit. On CIFAR-
10, the two models behave differently. While both produce
visually plausible images, ours generate more semantically
discernible images that match their labels.

Figure 11 visualizes the output of the code generator with
the t-distributed stochastic neighbor embedding (t-SNE).
It is seen that the code generator learns a distinct condi-
tional distribution for each class of images. It is believed that
the more apparent inter-class distinction reflects the more
difficult it is for the decoder to generate images of differ-
ent classes. Moreover, the elliptic shape of the intra-class
distributions in CIFAR-10 may be ascribed to the higher
intra-class variability.

2) UNSUPERVISED LEARNING

This section presents experimental results of using the net-
work architecture in Fig. 5 to learn unsupervisedly a code
generator CG that outputs a prior for best characterizing
the image distribution. In the present case, the label s is
drawn randomly from a categorical distribution and inde-
pendently from the Gaussian input z, as shown in Fig. 5.
The categorical distribution encodes our prior belief about
data clusters, with the number of distinct values over which
it is defined specifying the presumed number of clusters

a/)ayfb7f7
' 75'3/‘

0'1 3‘{‘557%‘%

Fig. 10. Images generated by the proposed model (a)(c)(e) and AAE (b)(d)(f) trained on MNIST, SVHN, and CIFAR-10 datasets in the supervised setting. Each
column of images has the same label/class information but varied Gaussian noise. On the other hand, each row of images has the same Gaussian noise but varied
label/class variables. (a) Our model, (b) AAE [3], (c) Our model, (d) AAE [3], (¢) Our model, and (f) AAE [3].

7



HUI-PO WANG, WEN-HSIAO PENG AND

L}
[
-
]
L}
L}
-
L
-

Wm~ o s WO

WEI-JAN KO

[ R T R Sy

B airplane
. cor
B bird
. cat
EEE deer
. dog
= frog
EEE horse
ship
- truck

=60 =40 =20 []

(b)

Fig. 11. Visualization of the code generator output in the supervised setting. (a) MNIST, (b) SVHN, and (c) CIFAR-10.

in the data. The Gaussian serves to explain the data vari-
ability within each cluster. In regularizing the distribution
at the encoder output, we want the code generator CG to
make sense of the two degrees of freedom for a disentangled
representation of images.

At test time, image generation is done similarly to the
supervised case. We start by sampling s and z, followed by
feeding them into the code generator and then onwards to
the decoder. In this experiment, the categorical distribu-
tion is defined over 10-D one-hot vectors and the Gaussian
is 90-D. As in the supervised setting, after the model is
trained, we alter the label variable s or the Gaussian noise
z one at a time to verify whether the model has learned
to cluster images unsupervisedly. We expect that a good
model should generate images with certain common prop-
erties (e.g. similar backgrounds or digit types) when the
Gaussian part z is altered while the label part s remains
fixed.

The results in Fig. 12 show that on MNIST, both our
model and AAE successfully learn to disentangle the digit
type from the remaining information. Based on the same
presentation order as in the supervised setting, we see that
each column of images (which correspond to the same label
s) does show images of the same digit. On the more com-
plicated SVHN and CIFAR-10 datasets, each column mixes
images from different digits/classes. It is however worth not-
ing that both models have a tendency to cluster images with
similar backgrounds according to the label variable s. Recall
that without any semantic guidance, there is no guaran-
tee that the clustering would be in line with the semantics
attached artificially to each data sample.

Figure 13 further visualizes the latent code distributions
at the output of the code generator and the encoder. Several
observations can be made. First, the encoder is regularized
well to produce an aggregated posterior distribution simi-
lar to that at the code generator output. Second, the code

Fig. 12. Images generated by the proposed model (a)(c)(e) and AAE (b)(d)(f) trained on MNIST, SVHN, and CIFAR-10 datasets in the unsupervised setting. Each
column of images has the same label/class information but varied Gaussian noise. On the other hand, each row of images has the same Gaussian noise but varied
label/class variables. (a) Our model, (b) AAE, (c) Our model, (d) AAE, (e) Our model, and (f) AAE.
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Fig. 13. Visualization of the encoder output versus the code generator output in the unsupervised setting. (a) Encoder (MNIST), (b) Encoder (SVHN), (c) Encoder
(CIFAR-10), (d) Code generator (MNIST), (e) Code generator (SVHN), and (f) Code generator (CIFAR-10).

generator learns distinct conditional distributions accord-
ing to the categorical label input s. Third, quite by accident,
the encoder learns to cluster images of the same digit on
MNIST, as has been confirmed in Fig. 12. As expected, such
semantic clustering in code space is not obvious on more
complicated SVHN and CIFAR-10, as is evident from the
somewhat random assignment of latent codes to images of
the same class or label.

V. APPLICATION: TEXT-TO-IMAGE
SYNTHESIS

This section presents an application of our model to text-
to-image synthesis. We show that the code generator can
transform the embedding of a sentence into a prior suitable

for synthesizing images that match closely the sentence’s
semantics. To this end, we learn supervisedly the correspon-
dence between images and their descriptive sentences using
the architecture in Fig. 4, where given an image-sentence
pair, the sentence’s embedding (which is a 200-D vector)
generated by a pre-trained recurrent neural network is input
to the code generator and the discriminator in image space
as if it were the label information, while the image represen-
tation is learned through the autoencoder and regularized
by the output of the code generator. As before, a 100-D
Gaussian is placed at the input of the code generator to
explain the variability of images given the sentence.

The results in Fig. 14 present images generated by our
model when trained on 102 Category Flower dataset [20].
The generation process is much the same as that described
in Section 1. It is seen that most images match reasonably

Fig. 14. Generated images from text descriptions. (a) This vibrant flower features lush red petals and a similar colored pistil and stamen and (b) This flower has

white and crumpled petals with yellow stamen.

Fig. 15. Generated images in accordance with the varying color attribute in the text description “The flower is pink in color and has petals that are rounded in shape
and ruffled.” From left to right, the color attribute is set to pink, red, yellow, orange, purple, blue, white, green, and black, respectively. Note that there is no green or

black flower in the dataset.
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the text descriptions. In Fig. 15, we further explore how the
generated images change with the variation of the color
attribute in the text description. We see that most images
agree with the text descriptions to a large degree.

VI. CONCLUSION

In this paper, we propose to learn a proper prior from
data for AAE. Built on the foundation of AAE, we intro-
duce a code generator to transform the manually selected
simple prior into one that can better fit the data distribu-
tion. We develop a training process that allows to learn
both the autoencoder and the code generator simultane-
ously. We demonstrate its superior performance over AAE
in image generation and learning disentangled representa-
tions in supervised and unsupervised settings. We also show
its ability to do cross-domain translation. Mode collapse
and training instability are two major issues to be further
investigated in future work.
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APPENDIX
IMPLEMENTATION DETAILS
Tables A1-A3 present the implementation details of each com-

ponent in our model. Each cell in the tables presents the type of
neural networks, the output size, usage of batch normalization,

Table A.1. Implementation details of the encoder and decoder networks.

Encoder Decoder

Input latent code & Réo4e iz

4 % 4 upconv. 512 BN. RELU
stride 1

4 % 4 up sampling residual
block 256 stride 2

Input 32 x 32 images
3 X 3 conv. 64 RELU stride 2 pad 1

3 x 3 residual blcok 64

3 x 3 down sampling residual
blcok 128 stride 2

3 x 3 down sampling residual
blcok 256 stride 2

3 x 3 down sampling residual
block 512 stride 2

4 X 4 avg. pooling stride 1

FC. 2 x code size BN. RELU

FC. code size Linear

4 % 4 up sampling residual
block 128 stride 2

4 % 4 up sampling residual
block 64 stride 2

3 X 3 conv. image channels
Tanh

Table A.2. Implementation details of the code generator networks.

Code Generator

Residual block

Input noise € RMsesize
FC. 2 X noise size BN. RELU

FC. latent code size BN. Linear

Input feature map

3 X 3 conv. out_channels RELU
stride 2 pad 1

3 X 3 conv. out_channels RELU
stride 1 pad 1

skip connection output =
input + residual

RELU




Table A.3. Implementation details of the image and code discriminator.

Image Discriminator D/Q Code Discriminator

Input 32 x 32 images

4 % 4 conv. 64 LRELU stride 2 pad 1

4 X 4 conv. 128 BN LRELU stride 2 pad 1
4 % 4 conv. 256 BN LRELU stride 2 pad 1
FC. 1000 LRELU

FC 1 Sigmoid for D

FC 10 Softmax for Q

Input latent code
FC 1000 LRELU
FC 500 LRELU
FC 200 LRELU
FC 1 Sigmoid

the type of activation function, the size for strides, and the size
of padding.
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