
SIP (2020), vol. 9, e9, page 1 of 7 © The Authors, 2020.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/ATSIP.2020.7

original paper

Theoretical analysis of skip connections and
batch normalization from generalization and
optimization perspectives
yasutaka furusho and kazushi ikeda

Deep neural networks (DNNs) have the same structure as the neocognitron proposed in 1979 but have much better performance,
which is because DNNs include many heuristic techniques such as pre-training, dropout, skip connections, batch normalization
(BN), and stochastic depth. However, the reasonwhy these techniques improve the performance is not fully understood. Recently,
two tools for theoretical analyses have been proposed. One is to evaluate the generalization gap, defined as the difference between
the expected loss and empirical loss, by calculating the algorithmic stability, and the other is to evaluate the convergence rate
by calculating the eigenvalues of the Fisher information matrix of DNNs. This overview paper briefly introduces the tools and
shows their usefulness by showing why the skip connections and BN improve the performance.
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I . I NTRODUCT ION

Deep neural networks (DNNs) have been changing the his-
tory of machine learning in terms of performance [1–4].
Although their high performance originates from their
exponential expressive power owing to the depth [5–8], such
deep networks are difficult to train owing to the so-called
vanishing gradient. In fact, a classic feedforward network
with 56 layers had a larger empirical risk than one with 20
layers [9], implying that the network is not fully trained.
To overcome this degradation problem, many heuristics
have been proposed and some of them improved their per-
formance. In particular, skip connections in the residual
networks (ResNet) [9,10] and batch normalization (BN) [11]
enable extremely deep NNs (1202 layers) to be trained with
a small empirical risk and a small expected risk. In addition,
a ResNet skipping two layers showed better performance
than a ResNet skipping one layer or a standard feedforward
neural network [9].

In the case of the linear model, the expected risk and
empirical risk have been theoretically evaluated. The model
selection theory such as AIC [12] and MDL [13] evalu-
ated the expected risk by measuring the gap between a
trainedmodel and a truemodel that generate data using the
Cramer–Rao bound. The convex analysis evaluated how fast
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the empirical risk decreases by calculating properties of loss
landscape such as the strong convexity, Lipschitzness, and
smoothness [14]. However, these theoretical analyses can-
not be applied to recently proposed DNN techniques since
DNNs have singular points [15,16] and are non-convex [17]
even when its activation function is the identity. The sin-
gular points make the Fisher information matrix degener-
ate and thus the Cramer–Rao bound doesn’t hold, which
implies that the classical model selection theory cannot be
applied. The non-convexity also makes the convex analysis
difficult to apply.

Regardless of the difficulty, the recent popularity of
DNNs has promoted the development of new methodolo-
gies as below for theoretical analyses of DNN techniques
[18–26]. One is to calculate the algorithmic stability to
evaluate the generalization gap defined as the difference
between the expected risk and empirical risk. The other is to
calculate the eigenvalues of the Fisher information matrix
of DNNs to evaluate how fast the empirical risk decreases
around the minimal point.

Since this method is widely applicable and has succeeded
in quantifying the effectiveness of skip connections and
BN, this overview paper briefly introduces the method and
shows how to apply it to DNN techniques.

I I . PROBLEM FORMULAT ION

A) Samples for training
Let the training set be denoted by S = {z(n)}Nn=1, where each
training example z(n) consists of an input x(n) and the
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corresponding target y(n). An example z(n) = (x(n), y(n))
is independently identically chosen from a probability dis-
tribution D on the joint space Z of the input space X and
the output space Y . Note that the indices of the examples
are omitted if they are clear from the context.

B) Training of deep neural network
The DNN f : X × � → Y with parameters θ ∈ � predicts
the corresponding target y ∈ Y for a given input x ∈ X ,
where � is the parameter space. Its performance is mea-
sured on the basis of the expected risk,

R(θ) = Ez [�(z, θ)] , (1)

where �(z, θ) = 1
2

∥∥f (x; θ) − y
∥∥2 is the squared loss.

The parameters are trained by the gradient descent (GD),

θt+1 = θt − η∇θRS(θt), (2)

to minimize the empirical risk,

RS(θ) = 1
|S|

∑
z∈S

�(z, θ), (3)

instead of the expected risk because the data distributionD
is not known, where θt and η denote the output of the GD at
the tth update and the learning rate, respectively. Note that
the parameters θ0 are initialized according to the method
specified in each subsequent analysis section.

C) Decomposition of expected risk
The expected risk is decomposed into two components,

R(θt) = R(θt) − RS(θt)︸ ︷︷ ︸
generalization gap

+ RS(θt)︸ ︷︷ ︸
empirical risk

. (4)

The generalization gapmeasures the difference between the
expected risk and empirical risk, while the empirical risk
expresses how fast theGDoptimizes the parameters. Recent
analytical techniques evaluate each of them as described
next.

I I I . GENERAL IZAT ION GAP

A) Formulation of ResNets
We evaluate the effectiveness of ResNets by deriving upper
bounds of the generalization gaps of the following linear
DNNs: f : RD × � → R

D, where θ denotes the parameters
of each NN.

MLP:

f (x; θ) =
L∏
l=1

Wlx, (5)

ResNet1:

f (x; θ) =
L∏
l=1

(Wl + I)x, (6)

Fig. 1. Algorithmic stability. It measures howmuch the removal of one example
z(n) from the training set S affects the trained model A(Sn).

ResNet2:

f (x; θ) =
L/2∏
l=1

(W2lW2L−1 + I)x. (7)

Although theseDNNs are linear with respect to the input
x and have the same expressive ability, they are noncon-
vex with respect to the parameter θ and have different
parameter representations.

B) Algorithmic stability
A training algorithm A receives the training set S and out-
puts a trained model A(S). The algorithmic stability mea-
sures how much the removal of one example z(n) from the
training set S affects the trainedmodelA(Sn) in terms of the
expected loss, where Sn = S\z(n) (Fig. 1).

Definition 1 (Definition 4 in [18]). The training algorithm
A is pointwise hypothesis stable if there exists εstab such that
∀n ∈ [N],

EA,S [|�(z(n),A(S)) − �(z(n),A(Sn)|] ≤ εstab, (8)

where the expectation is taken with respect to the randomness
of the algorithmA and the training set S.

A stable algorithm A with small εstab outputs a trained
model with a small generalization gap in the framework of
statistical learning theory.

Theorem 1 (Theorem 11 in [18]). If the training algorithm
A is pointwise hypothesis stable, the following holds with
probability at least 1 − δ :

R(A(S)) − RS(A(S)) ≤
√
M2 + 12MNεstab

2Nδ
, (9)

where M is an upper bound of the loss function.

The algorithmic stability εstab of the GD depends on the
flatness of the loss landscape around a global minimum.
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Fig. 2. Excess risk is smaller than a quadratic function of parameters θ . The
constant μ for the PL condition controls its flatness.

Definition 2 (Definition 4 in [19]). The empirical risk RS
satisfies the Polyak–Lojasiewicz (PL) condition with a con-
stant μ if the following holds:

∀θt ∈ �, RS(θt) − RS(θ
∗) ≤ 1

2μ
‖∇θRS(θt)‖2 , (10)

where θ∗ is a global minimum.

Here, the constant μ for the PL condition expresses the
flatness of the loss landscape around a global minimum. If
the empirical risk RS satisfies the PL condition with μ and
is β-smooth, that is, the gradient is β-Lipschitz, then the
following inequality holds:

RS(θt) − RS(θ∗) ≤ β2

2μ

∥∥∥∥∥θt −
∏
�∗

(θt)

∥∥∥∥∥
2

, (11)

where
∏

�∗(θt) is the projection of θt on the set of global
minima �∗. This shows that an excess risk is smaller than
a quadratic function of parameters and that the constant μ
controls its flatness (Fig. 2).

A training algorithm has better stability if it converges
faster and its loss function has flatter minima.

Theorem 2 (Theorem 3 in [19]). Suppose that the empir-
ical risk RS satisfies the PL condition with μ and the loss
function is α-Lipschitz. If the training algorithmA converges
parameters to the global minima θ∗ with ‖θt − θ∗‖ ≤ εt , it is
pointwise hypothesis stable, that is,

εstab ≤ 2αεt + 2α2

μ(N − 1)
. (12)

C) Upper bounds of the generalization errors
We applied the above stability analysis toMLP, ResNet1, and
ResNet2 under Assumptions 1 and 2 [24].

Assumption 1. The input correlation matrix is the identity,∑
(x,y)∈S xx

T = I.

Assumption 2. The eigenvalues of the output–input correla-
tion matrix

∑
(x,y)∈S yx

T are greater than one.

These assumptions are rather weak since a dataset sat-
isfies Assumption 1 if it is preprocessed by principal com-
ponent analysis (PCA) whitening. In addition, the PCA-
whitened MNIST dataset satisfies Assumption 2.

Table 1. PL condition of the L-layer linear DNNs.

Model Constant μ for the PL condition Reference

MLP La2L−2
min /C [19]

ResNet1 L(1 − amax)
2L−2/C [20]

ResNet2 L(1 − a2max)
L−2a2min/C [24]

Fig. 3. Constants μ for the PL-condition of the 10-layer linear DNNs.

Table 2. Convergence of the L-layer linear DNNs.

Model Speed of the parameter convergence εt

MLP & ResNet1 (1 − ηLγ 2(L−1))tε0

ResNet2

⎛
⎜⎜⎜⎝1 − ηL

γ 2 − 1
2γ 2︸ ︷︷ ︸
≤1

γ 2(L−1)

⎞
⎟⎟⎟⎠

t

ε0

Theorem 3 (Theorems 3 and 4 in [24]). Initialize the lin-
ear DNNs by orthogonal initialization [27]. Then, under
Assumptions 1 and 2,ResNet2 has flatterminima, as shown in
Table 1,where amin and amax are theminimumandmaximum
singular values of the weights, during training, respectively,
and C is a constant (Fig. 3). In addition, its parameters con-
verge slower than the other DNNs, as shown in Table 2,where
γ is the minimum singular value of the transform by the layer
during training.

Remark 1. Theorem 3 implies that ResNet2 has a smaller gen-
eralization gap thanMLPorResNet1 when the parameters are
updated by the GD a sufficient number of times.

D) Numerical experiments
To confirm the validity of the above analyses and the appli-
cability to the DNNs with the ReLU activation function,
φ(·) = max{0, ·}, some numerical experiments were car-
ried out. The dataset was theMNIST dataset [28] after PCA
whitening, so that ∀d ∈ [D],E[xd] = 0 and Var(xd) = 1,
and projection into the principal subspace of 10 dimensions.

We initialized the DNNs with 10 hidden units in each
layer by the orthogonal initialization and trained these by
the GD. During the training, the training loss, the test loss,
and the approximate value of the stability εstab,

1
N

N∑
n=1

|�(z(n),A(S)) − �(z(n),A(Sn))|, (13)
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Fig. 4. Training loss (solid lines) and test loss (dotted lines) of the 10-layer
DNNs with the ReLU activation.

Fig. 5. Approximation of the stability εstab of the 10-layer DNNs with the ReLU
activation.

were calculated every five updates (Figs. 4 and 5). The results
show that ResNet2 had a greater stability and a smaller gen-
eralization gap than the other DNNs and that the analyses
are valid even for the DNNs with the ReLU activation.

I V . EMP IR ICAL R ISK

A) Formulation of batch normalization
We evaluate the effectiveness of BN by deriving the empir-
ical risk of the following DNNs with the ReLU activation
φ(·) = max{0, ·}:

ResNet:

uli = φ(hl−1
i ), hli =

D∑
j=1

Wl
i,ju

l
j + hl−1

i ,

ŷ = 1ThL.

(14)

ResNet with BN:

uli = φ(BN(hl−1
i )), BN(hli) = hli − Ex

[
hli

]
√
Var

(
hli

) ,

hli =
D∑
j=1

Wl
i,ju

l
j + hl−1

i , ŷ = 1ThL. (15)

Here, h0 = W0x is the projection of the input, and the
expectation of the BN is taken with respect to the input
in the batch of the GD. Without the loss of generality, the

projection matrix is a square matrix initialized by Xavier
initialization [29], and the inputs in the training set are
normalized to Ex[xi] = 0 and Var(xi) = 1.

B) Hessian and Fisher information matrices
The empirical risk RS(θt) is approximated by the second-
order Taylor expansion around the minima θ∗,

RS(θt) = RS(θ∗) + 1
2
(θt − θ∗)TH(θ∗)(θt − θ∗), (16)

whereH(θ∗) = ∇θ∇θRS(θ∗) is theHessianmatrix. TheHes-
sian matrix is decomposed as H(θ∗) = U�UT , where U
and � are a unitary square matrix comprising the eigen-
vectors and a diagonal matrix filled with the eigenvalues,
respectively, which simplifies the empirical risk to

RS(θt) = RS(θ∗) + 1
2
vTt �vt , (17)

where vt = UT(θt − θ∗), and the GD to

vt+1 = (I − η�) vt . (18)

Let λmin and λmax be the minimum and maximum eigen-
values of H(θ∗), respectively. The GD converges when the
learning rate is η = 2/λmax and it converges fastest when the
learning rate is η = 1/λmax. The fastest convergence rate is
the reciprocal of the condition number, λmax/λmin [21], as is
well known in adaptive filtering theory [30]. However, the
Hessian matrix and its eigenvalues are difficult to calculate
owing to the complicated structure of DNNs.

Recently, the Fisher information matrix (FIM) of
p(x, y; θ),

F(θ) = Ex
[∇θ log p(x; θ)∇θ log p(x; θ)T

]
, (19)

has been found to approximate the Hessian matrix of a
DNN, f (x; θ), where p(x, y; θ) = p(x)p(y|x; θ), p(y|x; θ) =
N (f (x; θ), 1), and p(x) is the probability of the input. In this
case, the FIM is rewritten as

F(θ) = Ex
[∇θ f (x; θ)∇θ f (x; θ)T

]
(20)

and the following holds:

H(θ) = F(θ) − Ex
[
(y − f (x; θ)) · ∇θ∇θ f (x; θ)

]
, (21)

the second term of which is negligible when the error is
small. In addition, the eigenvalues of the FIM of a suffi-
ciently wide neural network do not change during train-
ing [31,32].

C) Bounds of the empirical risk
We calculated the eigenvalues of the FIMs of the naive
ResNet and the ResNet with BN averaged over the random
He initialization [33] (expected FIM) under Assumptions 3
and 4 [25].
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Fig. 6. Activation rate of the hidden units in each layer.

Fig. 7. Mean eigenvalues and maximum eigenvalues of the expected FIM.

Assumption 3. The forward signal uli is independent of the
backward error signal ∂f (x; θ)/∂hli.

Assumption 4. Half of the hidden units per layer are active
φ′(hli) = 1.

Although Assumption 3 is rather unrealistic, some theo-
rems have been derived on the basis of Assumption 3 and
their results were in agreement with those of numerical
experiments [22,34,35]. In addition, the binary class PCA-
whitened MNIST dataset satisfies Assumption 4 (Fig. 6).

Theorem 4 (Modification of Table 1 in [25]). Under
Assumptions 3 and 4, the maximum eigenvalue λmax of the
expected FIM of the ResNet grows exponentially with the

depth,
mλ ≤ λmax ≤ (L + 1)D2mλ,

mλ = L + 4
4L + 4

· 2L,
(22)

where mλ is the mean of all the eigenvalues {λi}(L+1)D2

i=1 .

Remark 2. The learning rate of theGDmust be exponentially
small with respect to the depth of the ResNet for convergence
of the parameters to the minima.

Theorem 5 (Modification of Table 1 in [25]). Under
Assumptions 3 and 4, BN relaxes the exponential growth of
the eigenvalue to L log L order at most,

mλ ≤ λmax ≤ (L + 1)D2mλ, (23)

mλ = HL+1 + 1
2

, (24)

where HL = ∑L
k=1

1
k is the harmonic number.

Remark 3. BN enables the GD to use a larger learning rate
than that of the ResNet for convergence of the parameters to
the minima.

Note that our discussion is focused on the minima θ∗.
This is justified by the fact that the GD and the stochas-
tic GD make the parameters into the minima under some
conditions [31,36,37].

D) Numerical experiments
To confirm the validity of the above analyses, some numer-
ical experiments were carried out. The dataset was a subset
of the MNIST dataset [28] with class labels of 0 and 1
after the PCA whitening so that ∀d ∈ [D],E[xd] = 0, and
Var(xd) = 1, with projection into the principal subspace of
50 dimensions.

We initialized the ResNet and ResNet with BN, which
have 50 hidden units in each layer, by the He initialization,
calculated the mean eigenvalues andmaximum eigenvalues
of the expected FIMs of these DNNs, and found that the
mean eigenvalues were in agreement with the theoretical
values and that the maximum eigenvalues were bounded by
the theoretical upper and lower bounds (Fig. 7).

Fig. 8. Training loss under various settings. Read lines: theoretical lower-bounds of the maximum learning rates. White color: divergence (the loss >1000).
(a) ResNet. (b) ResNet with BN.
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Fig. 9. Loss of the 4-layer DNNs (solid line: average, shadowed area: within one
s.d.)

In addition, the convergence properties of the ResNet
and ResNet with BN were numerically examined. Each
algorithm with various numbers of layers L and learning
rates η updated the parameters 50 times for each run and
the training loss was averaged over five runs (Fig. 8). It was
found that the algorithms converged if the learning rate was
less than the lower bounds of the stable convergence, that is,
2/(upper bound of λmax).

From amore practical viewpoint, we evaluated the train-
ing loss and test loss of the ResNet and ResNet with BN at
each update, where each algorithm used an optimal learn-
ing rate, η = 1/(upper bound of λmax) (Fig. 9). The result
shows that the BNaccelerates the convergence and increases
the stability.

V . CONCLUS ION

Some theoretical tools have been developed to analyze the
theoretical properties of DNNs. We applied them to DNNs
with new techniques such as skip connections and BN
and showed why and how they improve the performance
of DNNs. Skip connections reduce the generalization gap
of standard DNNs, and the reductions are greater when
the connections skip two layers at once, by smoothing the
loss landscape around the minima. BN enables the GD to
use a larger learning rate for convergence and accelerates
training by smoothing the entire loss landscape. These ana-
lytical techniques may help researchers develop new DNN
models.
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