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Research on graph representation learning has received great attention in recent years since most data in real-world applications
come in the form of graphs. High-dimensional graph data are often in irregular forms. They are more difficult to analyze than
image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the
raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we
first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with
insights. Then, we evaluate several stat-of-the-art methods against small and large data sets and compare their performance.
Finally, potential applications and future directions are presented.
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I . I NTRODUCT ION

Research on graph representation learning has gained more
and more attention in recent years since most real-world
data can be represented by graphs conveniently. Examples
include social networks [1], linguistic (word co-occurrence)
networks [2], biological networks [3], and many other mul-
timedia domain-specific data. Graph representation allows
the relational knowledge of interacting entities to be stored
and accessed efficiently [4]. Analysis of graph data can
provide significant insights into community detection [5],
behavior analysis [6], and other useful applications such as
node classification [7], link prediction [8], and clustering
[9]. Various graph embedding techniques have been devel-
oped to convert the raw graph data into a high-dimensional
vector while preserving intrinsic graph properties. This pro-
cess is also known as graph representation learning. With
a learned graph representation, one can adopt machine-
learning tools to perform downstream tasks conveniently.

Obtaining an accurate representation of a graph is chal-
lenging in three aspects. First, finding the optimal embed-
ding dimension of representation [10] is not an easy task
[11]. A representation of a higher dimension tends to pre-
serve more information of the original graph at the cost of
more storage requirement and computation time. A repre-
sentation of a lower dimension is more resource efficient.
It may reduce noise in the original graph as well. How-
ever, there is a risk of losing some critical information from
the original graph. The dimension choice depends on the
input graph type as well as the application domain [12].
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Second, choosing the proper graph property to embed is
an issue of concern if a graph has a plethora of properties.
Graph characteristics can be reflected by node features, link
structures,meta-data information, etc. Determining what
kind of information is more useful is application dependent.
For example, we focus more on the link structure in the
friend recommendation application but more on the node
feature in advertisement recommendation applications. For
the former, the task is mainly grouping users into different
categories to provide the most suitable service/goods. Third,
many graph embedding methods have been developed in
the past. It is desired to have some guidelines in selecting a
suitable embedding method for a target application. In this
paper, we will mainly focus on node prediction and vertex
classification, which are widely used in real-world applica-
tions. We intend to provide an extensive survey on graph
embedding methods with the following three contributions
in mind:

• We would like to offer new comers in this field a global
perspective with insightful discussion and an extensive
reference list. Thus, a wide range of graph embedding
techniques, including the most recent graph representa-
tion models, are reviewed.

• To shed light on the performance of different embedding
methods, we conduct extensive performance evaluation
on both small and large data sets in various application
domains. To the best of our knowledge, this is the first
survey paper that provides a systematic evaluation of a
rich set of graph embedding methods in domain-specific
applications.

• We provide an open-source Python library, called
the Graph Representation Learning Library (GRLL),
to readers. It offers a unified interface for all graph
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embedding methods discussed in this paper. This library
covers the largest number of graph embedding tech-
niques until now.
The rest of this paper is organized as follows. We first

state the problem as well as several definitions in Section
II. Then, traditional and emerging graph embedding meth-
ods are reviewed in Section III. Next, we conduct extensive
performance evaluation on a large number of embedding
methods against different data sets in different application
domains in Section V. The application of the learned graph
representation and the future research directions are dis-
cussed in Sections VI and VII, respectively. Finally, conclud-
ing remarks are given in Section VIII.

I I . DEF IN IT ION AND
PREL IM INAR IES

A) Notations
A graph, denoted by G = (V , E), consists of vertices, V =
{v1, v2, . . . , v|V|}, and edges, E = {ei,j}, where an edge ei,j
connects vertex vi to vertex vj. Graphs are usually repre-
sented by an adjacency matrix or a derived vector space
representation [13]. The adjacency matrix, A, of graph G
contains non-negative weights associated with each edge,
aij ≥ 0. If vi and vj are not directly connected to one
another, aij = 0. For undirected graphs, aij = aji for all
1 ≤ i ≤ j ≤ |V|.

Graph representation learning (or graph embedding)
aims to map each node to a vector where the distance char-
acteristics among nodes is preserved. Mathematically, for
graph G = (V , E), we would like to find a mapping:

f : vi → xi ∈ R
d,

where d � |V|, and Xi = {x1, x2, . . . , xd} is the embedded
(or learned) vector that captures the structural properties
of vertex vi.

The first-order proximity [14] in a network is the pair-
wise proximity between vertices. For example, in weighted
networks, the weights of the edges are the first-order prox-
imity between vertices. If there is no edge observed between
two vertices, the first-order proximity between them is 0.
If two vertices are linked by an edge with a high weight,
they should be close to each other in the embedding
space. This objective can be obtained by minimizing the
distance between the joint probability distribution in the
vector space and the empirical probability distribution of
the graph. If we use the KL-divergence [15] to calculate the
distance, the objective function is given by:

O1 = −
∑

(i,j)∈E
wij log p1(vi, vj), (1)

where
p1(vi, vj) = 1

1 + exp(−viT · vj)
and vi ∈ R

d is the low-dimensional vector representation of
vertex vi and wij is the edge weight between node i and j.
vi,vj are the embeddings for node vi and vj.

The second-order proximity [16] is used to capture the
two-step relationship between two vertices. Although there
is no direct edge between two vertices of the second-order
proximity, their representation vectors should be close in
the embedded space if they share similar neighborhood
structures.

The objective function of the second-order proximity
can be defined as:

O2 = −
∑

(i,j)∈E
wij log p2(vi|vj), (2)

where

p2(vj|vi) = exp(u ′
j
T · ui)∑|V|

k=1 exp(u ′
k

T · ui)
, (3)

and u ′
j ∈ R

d is the vector representation of vertex vj when
it is treated as a specific context for vertex vi.

Graph sampling is used to simplify graphs [17]. Some-
times, even if whole graph is known, we need to use sam-
pling to obtain a smaller graph. If the graph is unknown,
then sampling is regarded as a way to explore the graph.
Commonly used techniques can be categorized into two
types:

• Negative sampling [18, 19]:
Negative sampling is proposed as an alternative to the
hierarchical computation of the softmax. Computing
softmax is expensive since the optimization requires the
summation over the entire set of vertices. It is compu-
tationally expensive for large-scale networks. Negative
sampling is developed to address this problem. It helps
distinguish the neighbors from other nodes by sampling
multiple negative samples according to the noise dis-
tribution. In the training process, correct surrounding
neighbors are positive examples in contrast to a set of
sampled negative examples (usually noise).

• Edge sampling [20, 21]:
In the training stage, it is difficult to choose an appropri-
ate learning rate in graph optimization when the differ-
ence between edge weights is large. To address this prob-
lem, one solution is to use edge sampling that unfolds
weighted edges into several binary edges at the cost of
increased memory. An alternative is treating weighted
edges as binary ones with their sampling probabilities
proportional to the weights. This treatment would not
modify the objective function.

B) Graph embedding input
Graph embedding methods take a graph as the input, where
the graph can be a homogeneous graph, a heterogeneous
graph, a graph with/without auxiliary information, or a
constructed graph [22]. They are detailed below:

• Homogeneous graphs refer to graphs whose nodes and
edges belong to the same type. All nodes and edges of
homogeneous graphs are treated equally.

• Heterogeneous graphs contain different edge types to
represent different relationships among different entities
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Fig. 1. Illustration of graph representation learning input and output.

or categories. For example, their edges can be directed
or undirected. Heterogeneous graphs typically exist in
community-based question answering (cQA) sites, mul-
timedia networks and knowledge graphs. Most social
network graphs are directed graphs [23]. Only the basic
structural information of input graphs is provided in
real-world applications.

• Graphs with auxiliary information [24, 25] are those that
have labels, attributes, node features, information propa-
gation, etc. A label indicates node’s category. Nodes with
different labels should be embedded further away than
those with the same label. An attribute is a discrete or
continuous value that contains additional information
about the graph rather than just the structural informa-
tion. Information propagation indicates dynamic inter-
action among nodes, such as post sharing or “retweet”
while Wikipedia [26], DBpedia [27], Freebase [28], etc.

• Graphs constructed from non-relational data are assumed
to lie in a low dimensional manifold. For this kind of
graph, inputs are usually represented by feature matrix,
X ∈ R

|V|×N , where each row Xi is a N-dimensional fea-
ture vector for the ith training instance. A similarity
matrix, denoted by S, can be constructed by computing
the similarity betweenXi andXj for graph classifications.
An illustration of graph input and output is shown in
Fig. 1.

C) Graph embedding output
The output of a graph embedding method is a set of vec-
tors representing the input graph. Based on the need for
specific application, different information or aspect of the

graphs can be embedded. Graph embedding output could
be node embedding, edge embedding, hybrid embedding,
or whole-graph embedding. The preferred output form is
application-oriented and task-driven, as elaborated below:

• Node embedding represents each node as a vector,
which would be useful for node clustering and classi-
fication. For node embedding, nodes that are close in
the graph are embedded closer together in the vector
representations. Closeness can be first-order proximity,
second-order proximity or other similarity calculation.

• Edge embedding aims to map each edge into a vector. It
is useful for predicting whether a link exists between two
nodes in a graph. For example, knowledge graph embed-
ding can be used for knowledge graph entity/relation
prediction.

• Hybrid embedding is the combination of different types
of graph components such as node and edge embed-
ding. Hybrid embedding is useful for semantic proxim-
ity search and sub-graphs learning. It can also be used
for graph classification based on graph kernels. Sub-
structure or community embedding can also be done
by aggregating individual node and edge embedding
inside it. Sometimes, better node embedding is learned
by incorporating hybrid embedding methods.

• Whole graph embedding is usually done for small
graphs such as proteins and molecules. These smaller
graphs are represented as one vector, and two similar
graphs are embedded to be closer. Whole-graph embed-
ding facilitates graph classification tasks by providing
a straightforward and efficient solution in computing
graph similarities.
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D) Overview of graph embedding ideas
The study of graph embedding can be traced back to 1900s
when people questioned whether all planar graphs with n
vertices have a straight line embedding in an nk × nk grid.
This problem was solved in [30] and [31]. The same result
for convex maps was proved in [32]. More analytic work on
the embedding method and time/space complexity of such
a method were studied in [33] and [34]. However, a more
general approach is needed since most real-world graphs are
not planer. A large number of methods have been proposed
since then.

We provide an overview of various graph embedding
ideas below:

• Dimensionality reduction:
In early 2000s, graph embedding is achieved by dimen-
sionality reduction. For a graph with n nodes, each of
which is of dimension D. These embedding methods
aim to embed nodes into a d-dimensional vector space,
where d � D. They are called classical methods and
reviewed in Section A. Dimensionality reduction is not
very scalable, more advanced methods are needed for
graph representation learning.

• Random walk:
One can trace a graph by starting random walks from
random initial nodes so as to create multiple paths.
These paths reveal the context of connected vertices. The
randomness of these walks gives the ability to explore
the graph, capture the global and local structural infor-
mation by walking through neighboring vertices. Later
on, probability models like skip-gram and bag-of-word
are performed on the randomly sampled paths to learn
node representations. The random walk based methods
will be discussed in Section III, B.

• Matrix factorization:
By leverage the sparsity of real-world networks, one can
apply the matrix factorization technique that finds an
approximation matrix for the original graph. This idea
is elaborated in Section III, C.

• Neural networks:
Neural network models such as convolution neural net-
work (CNN) [35], recursive neural networks (RNN)
[36] and their variants have been widely adopted in
graph embedding. This topic will be described in
Section III, D.

• Large graphs:
Some large graphs are difficult to embed since CNN and
RNN models do not scale well with the numbers of edges
and nodes. New embedding methods are designed tar-
geting at large graphs. They become popular due to their
efficiency. This topic is reviewed in Section III, E.

• Hypergraphs:
Most social networks are hypergraphs. As social net-
works get more attention in recent years, hypergraph
embedding becomes a hot topic, which will be presented
in Section III, F.

• Attention mechanism:

The attention mechanism can be added to existing
embedding models to increase embedding accuracy,
which will be examined in Section III, E.

An extensive survey on graph embedding methods will
be conducted in the next section.

I I I . GRAPH EMBEDD ING METHODS

A) Dimension-reduction-based methods
Classical graph embedding methods aim to reduce the
dimension of high-dimensional graph data into a lower
dimensional representation while preserving the desired
properties of the original data. They can be categorized into
linear and nonlinear two types. The linear methods include
the following:

1 Principal component analysis (PCA) [37]:
The basic assumption for PCA is that that principal com-
ponents that are associated with larger variances rep-
resent the important structure information while those
smaller variances represent noise. Thus, PCA computes
the low-dimensional representation that maximizes the
data variance. Mathematically, it first finds a linear trans-
formation matrix W ∈ R

D×d by solving

W = argmax Tr(WTCov(X)W), d = 1, 2, . . . ,D,
(4)

This equation aims to find the weight vector which
extracts the maximum variance from this new data
matrix, where Tr denotes the trace of a matrix, Cov(X)

denotes the co-variance of data matrix X. D is the orig-
inal dimension of the data, and d is the dimension the
data are reduced to. It is well known that the principal
components are orthogonal and they can be solved by
eigen decomposition of the co-variance of data matrix
[38].

2 Linear discriminant analysis (LDA) [39]:
The basic assumption for LDA is that each class is Gaus-
sian distributed. Then, the linear projection matrix,W ∈
R

D×d, can be obtained by maximizing the ratio between
the inter-class scatter and intra-class scatters. The maxi-
mization problem can be solved by eigen decomposition
and the number of low dimension d can be obtained by
detecting a prominent gap in the eigen-value spectrum.

3 Multidimensional scaling (MDS) [40]:
MDS is a distance-preserving manifold learning method.
It preserves spatial distances. MDS derives a dissimi-
larity matrix D, where Di,j represents the dissimilarity
between points i and j, and produces a mapping in a
lower dimension to preserve dissimilarities as much as
possible.

The above-mentionedthree methods are referred to as
“subspace learning” [11] under linear assumption. However,
linear methods might fail if the underlying data are highly
non-linear [41]. Then, non-linear dimensionality reduction
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(NLDR) [42] can be used for manifold learning. The objec-
tive is to learn the nonlinear topology automatically. The
NLDR methods include the following:

• Isometric feature mapping (Isomap) [43]:
The Isomap finds low-dimensional representation that
most accurately preserves the pairwise geodesic dis-
tances between feature vectors in all scales as measured
along the sub-manifold from which they were sam-
pled. Isomap first constructs neighborhood graph on the
manifold, then it computes the shortest path between
pairwise points. Finally, it constructs low-dimensional
embedding by applying MDS.

• Locally linear embedding (LLE) [44]:
LLE preserves the local linear structure of nearby fea-
ture vectors. LLE first assigns neighbors to each data
point. Then it computes the weights Wi,j that best lin-
early reconstruct the features, Xi, from its neighbors.
Finally, it compute the low-dimensional embedding that
best reconstructed by Wi,j. Besides NLDR, kernel PCA
is another dimensionality reduction technique that is
comparable to Isomap, LLE.

• Kernel methods [45]:
Kernel extension can be applied to algorithms that only
need to compute the inner product of data pairs. After
replacing the inner product with kernel function, data
are mapped implicitly from the original input space to
a higher dimensional space. Then linear algorithms are
applied in the new feature space. The benefit of kernel
trick is that data which are not linearly separable in the
original space could be separable in new high dimen-
sional space. Kernel PCA is often used for NLDR with
polynomial or Gaussian kernels.

B) Random-walk-based methods
Random-walk-based methods sample a graph with a large
number of paths by starting walks from random initial
nodes. These paths indicate the context of connected ver-
tices. The randomness of walks gives the ability to explore
the graph and capture both the global and the local struc-
tural information by walking through neighboring vertices.
After the paths are built, probability models such as skip-
gram [46] and bag-of-words [47] can be performed on these
randomly sampled paths to learn the node representation:

1 DeepWalk [48]:
DeepWalk is the most popular random-walk-based
graph embedding method. In DeepWalk, a target ver-
tex, vi, is said to belong to a sequence S = {v1, . . . , v|s|}
sampled by random walks if vi can reach any vertex in
S within a certain number of steps. The set of vertices,
Vs = {vi−t , . . . , vi−1, vi+1, . . . , vi+t}, is the context of cen-
ter vertex vi with a window size of t (t is the sampling
window size, which is a hyper parameter that can be
tuned). DeepWalk aims to maximize the average loga-
rithmic probability of all vertex context pairs in random

walk sequence S. It can be written as:

1
|S|

|S|∑
i=1

∑
−t≤j≤t,j�=0

log p(vi+j|vi), (5)

where p(vj|vi) is calculated using the softmax function.
It is proven in [49] that DeepWalk is equivalent to fac-
torizing a matrix

M = WT × H, (6)

each entry in M ∈ R
|V|×|V|, Mij, is the logarithm of the

average probability that vertex vi can reach vertex vj
in a fixed number of steps. W ∈ R

k×|V| is the vertex
representation. The information in H ∈ R

k×|V| is rarely
utilized in the classical DeepWalk model.

2 node2vec [50]:
node2vec is a modified version of DeepWalk. In Deep-
Walk, sampled sequences are based onthe depth-first
sampling (DFS) strategy. They consist of neighboring
nodes sampled at increasing distances from the source
node sequentially. However, if the contextual sequences
are sampled by the DFS strategy alone, only a few ver-
tices close to the source node will be sampled. Conse-
quently, the local structure will be easily overlooked. In
contrast with the DFS strategy, the breadth-first sam-
pling (BFS) strategy will explore neighboring nodes
with a restricted maximum distance to the source node
while the global structure may be neglected. As a result,
node2vec proposes a probability model in which the ran-
dom walk has a certain probability, 1/p, to revisit nodes
being traveled before. Furthermore, it uses an in-out
parameter q to control the ability to explore the global
structure. When the return parameter p is small, the ran-
dom walk may get stuck in a loop and capture the local
structure only. When in-out parameter q is small, the
random walk is more similar to a DFS strategy and capa-
ble of preserving the global structure in the embedding
space.

C) Matrix-factorization-based methods
Matrix-factorization-based embedding methods, also called
graph factorization (GF) [51], was the first one to achieve
graph embedding inO(|E|) time for node embedding tasks.
To obtain the embedding, GF factorizes the adjacency
matrix of a graph. It corresponds to a structure-preserving
dimensionality reduction process. There are several varia-
tions as summarized below:

1 Graph Laplacian eigenmaps [52]:
This technique minimizes a cost function to ensure that
points close to each other on the manifold are mapped
close to each other in the low-dimensional space to
preserve local distances.

2 Node proximity matrix factorization [53]:



6 fenxiao chen et al.

This method approximates node proximity in a low-
dimensional space via matrix factorization by minimiz-
ing the following objective function:

min |W − YYcT |, (7)

whereY is the node embedding andYc is the embedding
for the context nodes. W is the node proximity matrix,
which can be derived by several methods. One way to
obtain W is to use equation (6).

3 Text-associated DeepWalk (TADW) [49]:
TADW is an improved DeepWalk method for text data.
It incorporates the text features of vertices in network
representation learning via matrix factorization. Recall
that the entry, mij, of matrix M ∈ R

|V|×|V| denotes the
logarithm of the average probability that vertex vi ran-
domly walks to vertex vj. Then, TADW factorizes Y into
three matrices:

Y = WT × H × T, (8)

whereW ∈ R
k×|V|,H ∈ R

k×ft and T ∈ R
ft×|V| is the text

feature matrix. In TADW, W and HT are concatenated
as the representation for vertices.

4 Homophily, structure, and content augmented (HSCA)
network [54]:
The HSCA model is an improvement upon the TADW
model. It uses skip-gram and hierarchical Softmax to
learn a distributed word representation. The objective
function for HSCA can be written as

min
W,H

(
||M − WTHT||2F + λ

2
(||W||2F + ||H||2F)

+ μ(R1(W) + R2(H))

)
, (9)

where ||.||2 is the matrix l2 norm and ||.||F is the matrix
Frobenius form. In equation (9), the first term aims to
minimize the matrix factorization error of TADW. The
second term imposes the low-rank constraint on W and
H and uses λ to control the trade-off. The last regular-
ization term enforces the structural homophily between
connected nodes in the network. The conjugate gradient
(CG) [55] optimization technique can be used to update
W and H. We may consider another regularization term
to replace the third term; namely,

R(W,H) = 1
4

|V|∑
i=1,j=1

Ai,j

∣∣∣∣
∣∣∣∣
[
wi
Hti

]
−
[
wj
Htj

] ∣∣∣∣
∣∣∣∣
2

2
. (10)

This term will make connected nodes close to each other
in the learned network representation [56].

5 GraRep [57]:
GraRep aims to preserve the high order proximity of
graphs in the embedding space. While the random-walk
based methods have a similar objective, their proba-
bility model and objective functions used are difficult
to explain how the high order proximity is preserved.

GraRep derives a k-th order transition matrix, Ak, by
multiplying the adjacency matrix to itself k times. The
transition probability from vertex w to vertex c is the
entry in the w-th row and c-th column of the k-th order
transition matrix. Mathematically, it can be written as

pk(c|w) = Ak
w,c. (11)

With the transition probability defined in equation (11),
the loss function is defined by the skip-gram model and
negative sampling. To minimize the loss function, the
embedding matrix can be expressed as

Yk
i,j = Wk

i · Ck
j = log

(
Ak
i,j∑

t A
k
t,j

)
− log(β), (12)

where β is a constant λ/N, λ is the negative sampling
parameter, and N is the number of vertices. The embed-
ding matrix, W, can be obtained by factorizing matrix Y
in (12).

6 HOPE [58]:
HOPE preserves asymmetric transitivity in approximat-
ing the high order proximity, where asymmetric tran-
sitivity indicates a specific correlation among directed
graphs. Generally speaking, if there is a directed edge
from u to v, it is likely that there is a directed edge from
v to u as well. Several high order proximities such as the
Katz index [59], the Rooted Page-Rank, the Common
Neighbors, and the Adamic-Adar were experimented in
[58]. The embedding, vi, for node i can be obtained by
factorizing the proximity matrix, S, derived from these
proximities. To factorize S, SVD is adopted, and only the
top-k eigenvalues are chosen.

D) Neural-network-based methods
Neural network models became popular again since 2010.
Being inspired by the success of RNNs and CNNs,
researchers attempt to generalize and apply them to graphs.
Natural language processingmodels often use the RNNs to
find a vector representation for words. The Word2Vec [60]
and the skip-gram models [18] aim to learn the continuous
feature representation of words by optimizing a neighbor-
hood preserving likelihood function. Following this idea,
one can adopt a similar approach for graph embedding,
leading to the Node2Vec method [50]. Node2Vec utilizes
random walks [61] with a bias to sample the neighbor-
hood of a target node and optimizes its representation
using stochastic gradient descent. Another family of neural-
network-based embedding methods adopt CNN models.
The input can be paths sampled from a graph or the whole
graph itself. Some use the original CNN model designed for
the Euclidean domain and reformat the input graph to fit it.
Others generalize the deep neural model to non-Euclidean
graphs.

Several neural-network-based methods based graph
embedding methods are presented below:

1 Graph convolutional network (GCN) [62]:
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GCN allows end-to-end learning of the graph with
arbitrary size and shape. This model uses convolution
operator on the graph and iteratively aggregates the
embedding of neighbors for nodes. This approach is
widely used for semi-supervised learning on graph-
structured data. It is based on an efficient variant of
convolutional neural networks that operate directly on
graphs. GCN learns hidden layer representations that
encode both local graph structure and features of nodes.
In the first step of the GCN, a node sequence will be
selected. The neighborhood nodes will be assembled,
then the neighborhood might be normalized to impose
the order of the graph, then convolutional layers will be
used to learn the representation of nodes and edges. The
propagation rule used is:

f (H(l),A) = σ(D−(1/2)ÂD−(1/2)H(l)W(l)), (13)

where A is the adjacency matrix, with enforced self-
loops to include the node features of itself, Â = A + I,
I is the identity matrix. D̂ is the diagonal node degree
matrix of Â. Under spectral graph theory of CNNs
on graphs, GCN is equivalent to Graph Laplacian in
the non-Euclidean domain [63]. The decomposition of
eigenvalues for the normalized graph Laplacian data can
also be used for tasks such as classification and clus-
tering. GCN usually only uses two convolutional layers
and why it works is not well explained. One recent work
showed that GCN model is a special form of Laplacian
smoothing [64, 65]. This is the reason that GCN works.
Using more than two convolutional layers will lead to
over-smoothing, therefore making the features of nodes
similar to each other and more difficult to separate from
each other.

2 Signed graph convolutional network (SGCN) [66]:
Most GCNs operate on unsigned graphs, however, many
links in real-world have negative links. To solve this
problem, signed GCNs aims to learn graph representa-
tion with the additional signed link information. Neg-
ative links usually contain semantic information that
is different from positive links, also the principles are
inherently different from positive links. The signed
network will have a different representation as G =
(V , E+, E−), where the signs of the edges are differenti-
ated. The aggregation for positive and negative links are
different. Each layer will have two representations, one
for the balanced user where the number of negative links
is even. One for the unbalanced user where the number
of negative links is odd. The hidden states are:

hB(1)
i = σ

⎛
⎝WB(l)

⎡
⎣∑

j∈N+
i

h(0)
j

|N+
i | , h

(0)
i

⎤
⎦
⎞
⎠ , (14)

hU(1)
i = σ

⎛
⎝WU(l)

⎡
⎣∑

j∈N−
i

h(0)
j

|N−
i | , h

(0)
i

⎤
⎦
⎞
⎠ , (15)

where σ is the non-linear activation function, WB(l)

and WU(l) are the linear transformation matrices for
balanced and unbalanced sets.

3 Variational graph auto-encoders (VGAE) [67]:
VGAE uses an autoencoder minimizes the reconstruc-
tion error of the input and the output using an encoder
and a decoder. The encoder maps input data to a
representation space. Then, it is further mapped to a
reconstruction space that preserves the neighborhood
information. VGAE uses GCN as the encoder and an
inner product decoder to embed graphs.

4 GraphSAGE [68]:
GraphSAGE uses a sample and aggregate method to
conduct inductive node embedding. It uses node fea-
tures such as text attributes, node profiles, etc. Graph-
SAGE trains a set of aggregation functions that integrate
features of local neighborhood and pass it to the target
node vi. Then, the hidden state of node vi is updated by:

h(k+1)
i = ReLU

⎛
⎝W(k)h(k)

i ,
∑
n∈N(i)

(ReLU(Q(k)h(k)
n ))

⎞
⎠ ,

(16)

where h(0)
i = Xi is the initial node attributes and

∑
(·)

denotes a certain aggregator function, e.g. average,
LSTM, max-pooling, etc.

5 Structural deep network embedding (SDNE) [69]:
SDNE learns a low-dimensional network-structure-
preserving representation by considering both the
first-order and the second-order proximities between
vertexes using CNNs. To achieve this objective, it adopts
a semi-supervised model to minimize the following
objective function:

||(X̂ − X) 	 B||2F + α

n∑
i,j=1

si,j||yi − yj||22 + vLreg , (17)

whereLreg is anL2-norm regularizing term to avoid over-
fitting, S is the adjacency matrix, andB is the bias matrix.

E) Large graph embedding methods
Some large graphs are difficult to embed using the methods
mentioned previously. Classical dimension reduction-based
methods cannot capture the higher order proximity of large
graphs, therefore cannot generate accurate representation.
Most matrix factorization-based methods cannot take in
large graph all at once, or has a high run time complex-
ity. For example, graph Laplacian eigenmaps has the time
complexity of O(|E|d2), making these methods not suitable
for embedding large graphs. Random-walk based methods,
such as DeepWalk, need to update parameters using back
propagation (BP) [70], which is hardware demanding and
time consuming. To address the scalability issue, several
embedding methods targeting at large graphs have been
proposed recently. They are examined in this subsection.
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Fig. 2. Illustration of a LGCL method [29].

• LGCL [29]:
For each feature dimension, every node in the LGCL
method selects a fixed number of features from its neigh-
boring nodes with value ranking. Figure 2 serves as an
example. Each node in this figure has a feature vector of
dimension n=3. For the target node (in orange), the first
feature component of its six neighbors takes the values
of 9, 6, 5, 3, 0, and 0. If we set the window size to k=4,
then the four largest values (i.e. 9, 6, 5, and 3) are selected.
The same process is repeated for the two remaining fea-
tures. By including the feature vector of the target node
itself, we obtain a data matrix of dimension (k + 1) × n.
This results in a grid-like structure. Then, the traditional
CNN can be conveniently applied so as to generate the
final feature vector. To embed large-scale graphs, a sub-
graph selection method is used to reduce the memory
and resource requirements. As shown in Fig. 3, it begins
with Ninit = 3 randomly sampled nodes (in red) that are
located in the center of the figure. At the first iteration,
the BFS is used to find all first-order neighboring nodes
of initial nodes. Among them, Nm = 5 nodes (in blue)
are randomly selected. At the next iteration, Nm = 7
nodes (in green) are randomly selected. After two itera-
tions, 15 nodes are selected as a sub-graph that serves as
the input to LGCL.

• Graph partition neural networks (GPNN) [71]:
GPNN extends graph neural networks (GNNs) to
embed extremely large graphs. It alternates between
local (propagate information among nodes) and global
information propagation (messages among sub-graphs).
This scheduling method can avoid deep computational
graphs required by sequential schedules. The graph par-
tition is done using a multi-seed flood fill algorithm,
where nodes with large out-degrees are sampled ran-
domly as seeds. The sub-graphs grow from seeds using
flood fill, which reaches out unassigned nodes that are
direct neighbors of the current sub-graph.

• LINE [23]:
LINE is used to embed graphs of an arbitrary type such
as undirected, directed, and weighted graphs. It utilizes
negative sampling to reduce optimization complexity.

Fig. 3. Illustration of the sub-graph selection process [29].

This is especially useful in embedding networks contain-
ing millions of nodes and billions of edges. It is trained to
preserve the first- and second-order proximities, sepa-
rately. Then, the two embeddings are merged to generate
a vector space to better represent the input graph. One
way to merge two embeddings is to concatenate embed-
ding vectors trained by two different objective functions
at each vertex.

F) Hyper-graph embedding
As research on social network embedding proliferates, a
simple graph is not powerful enough to represent the infor-
mation in social networks. The relationship of vertices in
social networks is far more complicated than the vertex-to-
vertex edge relationship. Different from traditional graphs,
edges in hyper-graphs may have a degree larger than two.
All related nodes are connected by a hyper-edge to form a
super-node. Mathematically, an unweighted hyper-graph is
defined as follows. A hyper-graph, denoted by G = (V , E),
consists of a vertex set V = {v1, v2, . . . , vn}, and a hyper-
edge set, E = {e1, e2, . . . , em}. A hyper-edge, e, is said to be
incident with a vertex v if v ∈ e. When v ∈ e, the incidence
function h(v, e) = 1. Otherwise, h(v, e) = 0. The degree of a
vertex v is defined as d(v) = ∑

e∈E,v∈e h(v, e). Similarly, the
degree of a hyper-edge e is defined as d(e) = ∑

v∈V h(v, e).
A hyper-graph can be represented by an incidence matrixH
of dimension |V| × |E | with entries h(v, e).

Hyper-edges possess the properties of edges and nodes
at the same time. As an edge, hyper-edges connect mul-
tiple nodes that are closely related. A hyper-edge can also
be seen as a super-node. For each pair of two super-nodes,
their connection is established by shared incident vertices.
As a result, hyper-graphs can better indicate the community
structure in the network data. These unique characteris-
tics of hyper-edges make hyper-graphs more challenging.
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Fig. 4. The architecture of HGNN [73].

Table 1. Comparison of properties of graphs and hyper-graphs

Graph Hyper-graph

Representation A(|V| × |V|) H(|V| × |E|)
Minimum cut NP-Hard NP-Complete
Spectral clustering Real-valued Real-valued

optimization optimization
Spectral embedding Matrix Project to

factorization eigenspace

An illustration of graph and hyper-graph structures is given
in Fig. 4. It shows how to express a hyper-graph in table
form. The hyper-edges, which are indecomposable [72], can
express the community structure of networks. Furthermore,
properties of graphs and hyper-graphs are summarized and
compared in Table 1. Graphs and hyper-graphs conversion
techniques have been developed. Examples include clique
expansion and star expansion. Due to the indecomposibility
of hyper-edges, conversion from a hyper-graph to a graph
will result in information loss.

Hyper-graph representation learning provides a good
tool for social network modeling, and it has been a hot
research topic nowadays. On the one hand, hyper-graph
modeling can be used for many applications that are difficult
to achieve using other methods. For example, multi-modal
data can be better represented using hyper-graphs than
traditional graph representation. On the other hand, hyper-
graphs can be viewed as a variant of simple graphs. Many
graph embedding methods could be applied onto the hyper-
graphs with minor modifications. There are embedding
methods proposed for simple graphs and they can be
applied to hypergraphs as well as reviewed below:

1 Spectral hyper-graph embedding [74]:
Hyper-graph embedding can be treated as a k-way parti-
tioning problem and solved by optimizing a combinato-
rial function. It can be further converted to a real-valued
minimization problem by normalizing the hyper-graph

Laplacian. Its solution is any lower dimension embed-
ding space spanned by orthogonal eigen vectors of the
hyper-graph Laplacian, �, with the k smallest eigenval-
ues.

2 Hyper-graph neural network (HGNN) [73]:
Inspired by the spectral convolution on graphs in
GCN [62], HGNN applies the spectral convolution to
hyper-graphs. By training the network through a semi-
supervised node classification task, one can obtain the
node representation at the end of convolutional layers.
The architecture is depicted in Fig. 5. The hyper-graph
convolution is derived from the hyper-graph Laplacian,
�, which is a positive semi-definite matrix. Its eigen
vectors provide certain basic functions while its associ-
ated eigenvalues are the corresponding frequencies. The
spectral convolution in each layer is carried out via:

f (X,W, �) = σ(D−1/2
v HWD−1

e HTD−1/2
v X�), (18)

where X is the hidden embedding in each layer, � is the
filter response, andDv andDe are diagonal matrices with
entries being the degree of the vertices and the hyper-
edges, respectively.

3 Deep hyper-network embedding (DHNE) [72]:
DHNE aims to preserve the structural information of
hyper-edges with a deep neural auto-encoder. The auto-
encoder first embed each vertex to a vector in a lower
dimensional latent space and then reconstruct it to the
original incidence vector. In the process of encoding and
decoding, the second-order proximity is preserved to
learn global structural information. The first order prox-
imity is preserved in the embedding space by defining an
N-tuple-wise similarity function. That is, if N nodes are
in the same hyper-edge, the similarity of these nodes in
the embedding space should be high. Based on similar-
ity, one can predict whether N nodes are connected by
a single hyper-edge. However, the N-tuple-wise similar-
ity function should be non-linear; otherwise, it will lead
to contradicted predictions. The local information of a
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Fig. 5. Illustration of graph and hypergraph structures [73].

hyper-graph can be preserved by shortening the distance
of connected vertices in the embedding space.

G) Attention graph embedding
Attention mechanisms can be used to allow the learning
process to focus on parts of a graph that are more rele-
vant to a specific task. One advantage of applying attention
to graphs is to avoid the noisy part of a graph so as to
increase the signal-to-noiseratio [75] in information pro-
cessing. Attention-based node embedding aims to assign an
attention weight, αi ∈ [0, 1], to the neighborhood nodes of
a target node t, where

∑
i∈N(t) αi = 1 and N(t) denotes the

set of neighboring nodes of t.

1 Graph attention networks (GAT) [76]:
GAT utilizes masked self-attentional layers to limit the
shortcomings of prior graph convolutional based meth-
ods. They aim to compute the attention coefficients

αij = exp(LeakyReLU(−→a T[W
−→
hi ||W−→

hj ]))∑
k∈Ni

exp(LeakyReLU(−→a T[W
−→
hi ||W−→

hj ]
, (19)

where W is the weight matrix for the initial linear trans-
formation, then the transformed information on each
neighbor’s feature are concatenated to obtain the new
hidden state, which will be passed through a LeakyReLu
activation function, which is one of the most commonly
used rectifiers. The above attention mechanism is a
single-layer feed-forward neural network parameterized
by the above weight vector.

2 AttentionWalks [77, 78]:
Generally speaking, one can use the random walk to find
the context of the node. For a graph,G, with correspond-
ing transition matrix T and window size c the parame-
terized conditional expectation after a k-step walk can
be expressed as:

E[D|q1, q2, . . . , qc] = In
c∑

k=1

qkTk, (20)

where In is the size-n identity matrix, qk, 1 ≤ i ≤ c, are
the trainable weights, D is the walk distribution matrix
whose entry Duv encodes the number of times node u
is expected to visit node v. The trainable weights are
used to steer the walk toward a broader neighborhood or
restrict it within a smaller neighborhood. Following this

idea, AttentionWalks adopts an attention mechanism to
guide the learning procedure. This mechanism suggests
which part of the data to focus on during the training
process. The weight parameters are called the attention
parameters in this case.

3 Attentive graph-based recursive neural network (AGRNN)
[79]:
AGRNN applies attention to a graph-based recursive
neural network (GRNN) [80] to make the model focus
on vertices with more relevant semantic information.
It builds sub-graphs to construct recursive neural net-
works by sampling a number of k-step neighboring ver-
tices. AGRNN finds a soft attention, αr, to control how
neighbor information should be passed to the target
node. Mathematically, we have:

αr = Softmax(xTW(a)hr), (21)

where xk is the input, W(a) is the weight to learn, and
hr is the hidden state of the neighbors. The aggregated
representation from all neighbors is used as the hidden
state of the target vertex:

hk =
∑

vr∈N(vk)
αrhr, (22)

whereN(vk) denotes the set of neighboring nodes of ver-
tex vk. Although attention has been proven to be useful
in improving some neural network models, it does not
always increase the accuracy of graph embedding [81].

H) Others
1 GraphGAN [82]:
GraphGAN employs both generative and discrimi-
native models for graph representation learning. It
adopts adversarial training and formulates the embed-
ding problem as a mini-max game, borrowing the
idea from the generative adversarial network (GAN)
[83]. To fit the true connectivity distribution ptrue(v|vc)
of vertices connected to target vertex vc, GraphGAN
models the connectivity probability among vertices
in a graph with a generator, G(v|vc; θG), to gener-
ate vertices that are most likely connected to vc. A
discriminator D(v, vc; θD) outputs the edge probabil-
ity between v and vc to differentiate the vertex pair
generated by the generator from the ground truth.
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The final vertex representation is determined by alter-
nately maximizing and minimizing the value function
V(G,D) as:

min
θG

max
θD

V(G,D)

V(G,D) =
V∑
c=1

(Ev∼ptrue(·|vc)[logD(v,vc ;θD)])

+ Ev∼G(·|vc ;θG)[log(1 − D(v, vc; θD)]). (23)

2 GenVector [26]:
GenVector leverages large-scale unlabeled data to
learn large social knowledge graphs. This is a weakly
supervised problem and can be solved by unsuper-
vised techniques with a multi-modal Bayesian embed-
ding model. GenVector can serve as a generative model
in applications. For example, it uses latent discrete
topic variables to generate continuous word embed-
dings, graph-based user embeddings, and integrates the
advantages of topic models and word embeddings.

I V . COMPAR ISON OF D IFFERENT
METHODS AND APPL ICAT IONS

Classical dimensionality reduction methods have been
widely used in graph embedding. They are mathemati-
cally transparent, yet most of them cannot represent the
high order proximity in graphs. DeepWalk-based methods
do not attempt to embed the whole graph but sample the
neighborhood information of each node statistically. On the
one hand, they can capture the long-distance relationship
among nodes. On the other hand, the global information
of a graph may not be fully preserved due to sampling.
Matrix factorization methods find the graph representa-
tion based on the statistics of pairwise similarities. Such
methods can outperform deep-learning method built upon
random walk methods, where only a local context window
is used. However, matrix factorization can be inefficient
and unscalable for large graphs. This is because proximity
matrix construction as well as eigen decomposition demand
higher computational and storage complexities. Moreover,
factorization methods such as LLE, Laplacian Eigenmaps
and Graph Factorization only conserve the first order prox-
imity. The LLE method has a time complexity of O(Ed2)

while the GF has a time complexity ofO(Ed), where d is the
number of dimensions. In contrast, random walks usually
have a time complexity O(|V|d). Moreover, factorization
based method usually such as LLE, Laplacian Eigenmaps,
and Graph Factorization only conserves first order prox-
imity while DeepWalk-based methods can conserve second
order proximity.

Deep learning architectures are mostly built upon neu-
ral networks. Such models rely heavily on modern GPU to
optimize the parameters. They can preserve higher order
proximities. Most state-of-the-art applications are based on
such models. However, they are mathematically intractable
and difficult to interpret. Besides, the training of model

parameters with BP demands high time complexity. Large
graph embedding methods such as LGCL and GPNN can
handle larger graphs. They are suitable for the embedding
of social networks, which contain thousands or millions
of nodes. However, there are several limitations on these
methods. First, these methods have a high time complex-
ity. Second, graphs are dynamic in nature. Social network
graphs and citation graphs in academic database are chang-
ing from time to time, and the graph structure keep grow-
ing over time. However, these methods usually work on
static graphs. Third, they demand the pre-processing of the
raw input data. It is desired to develop scalable embedding
techniques.

Hyper graph embedding can be used to model more
complex data and more dynamic networks, they are pow-
erful in representing the information of social networks.
However, they are more difficult to implement. Other meth-
ods provide alternatives for graph embedding but have not
been used widely. Most of them are still in the “proof-
of-concept” stage. Kernel methods convert a graph into a
single vector. The resulting vector can facilitate graph level
analytical tasks such as graph classification. They are more
efficient than deep network models since they only need
to enumerate the desired atomic substructures in a graph.
However, they have a redundant substructure in the graph
representation. Also, the embedding dimension can grow
exponentially. Generative models leverage the information
from different aspects of the graph such as graph structure,
node attribute, etc. in a unified model. However, modeling
observations based on the assumption of certain distribu-
tions is difficult to justify. Furthermore, generative models
demand a large amount of training data to fit the data, which
might not work well for small graphs.

All the methods mentioned above are summarized in
Table 2.

V . EVALUAT ION

We study the evaluation of various graph representa-
tion methods in this section. Evaluation tasks and data
sets will be discussed in Sections A and B, respectively.
Then, evaluation results will be presented and analyzed in
Section C.

A) Evaluation tasks
The two most common evaluation tasks are vertex clas-
sification and link prediction. We use vertex classification
to compare different graph embedding methods and draw
insights from the obtained results.

• Vertex classification:
Vertex classification aims to assign a class label to each
node in a graph based on the information learned from
other labeled nodes. Intuitively, similar nodes should
have the same label. For example, closely-related pub-
lication may be labeled as the same topic in the cita-
tion graph while individuals of the same gender, similar
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Table 2. Summary of different graph embedding methods

Category Example algorithm Advantage Disadvantage

Dimension reduction based PCA, LDA, MDS, Isomap, LLE,
Kernel methods

Mathematicallytractable, well
understood and easy to implement

Cannot capture higher order
proximity well

Random walk based DeepWalk, node2vec Does not take the whole graph at
once

Sometimes cannot capture global
information very well

Matrix factorization based Graph Laplacian Eigenmaps, Node
proximity Matrix Factorization,
TADW, HSCA, GraRep, HOPE

Can capture global structure High time complexity

Neural network based GCN, SGCN, VGAE, GraphSAGE,
SDNE,

State-of-the-art performance Hardware demanding,training with
BP is time consuming

Large graph embedding LGCL, GPNN, LINE Good scalability High time complexity
Hyper Graph Embedding Spectral Hyper-graphembedding,

HGNN, DHNE
Can model more complex data More difficult to implement

Attention graph embedding GAT, Attention Walks, AGRNN Better long distance node modeling High time complexity
Others GraphGAN, GenVector Provide more alternatives Proof-of-concept stage

age, and shared interests may have the same prefer-
ence in social networks. Graph embedding methods
embed each node into a low-dimensional vector. Given
an embedded vector, a trained classifier can predict
the label of a vertex of interest, where the classifier
can be support vector machine (SVM) [84], logistic
regression [85], kNN (k nearest neighbors) [86], etc.
The vertex label can be obtained in an unsupervised
or semi-supervised way. Node clustering is an unsuper-
vised method that groups similar nodes together. It is
useful when labels are unavailable. The semi-supervised
method can be used when part of the data are labeled.
The F1 score is used for evaluation in binary-class classi-
fication, while the micro-F1 score is used in multi-class
classification. Since accurate vertex representations con-
tribute to high classification accuracy, vertex classifica-
tion can be used to measure the performance of different
graph embedding methods.

• Link prediction [87]:
Link prediction aims to infer the existence of relation-
ship or interaction among pairs of vertices in a graph.
The learned representation should help infer the graph
structure, especially when some links are missing. For
example, links might be missing between two users and
link prediction can be used to recommend friends in
social networks. The learned representation should pre-
serve the network proximity and the structural similar-
ity among vertices. The information encoded in the vec-
tor representation for each vertex can be used to predict
missing links in incomplete networks. The link predic-
tion performance can be measured by the area under
curveor the receiver operating characteristiccurve. A
better representation should be able to capture the con-
nections among vertices better.

We describe the benchmark graph data sets and conduct
experiments in vertex classification on both small and large
data sets in the following subsections.

B) Evaluation data sets
Citation data sets such as Citeseer [88], Cora [89], and
PubMed [90] are examples of small data sets. They can

be represented as directed graphs in which edges indicates
author-to-author or paper-to-paper citation relationship
and text attributes of paper content at nodes.

First, we describe several representative citation data sets
below:

• Citeseer [88]:
It is a citation index data set containing academic papers
of six categories. It has 3312 documents and 4723 links.
Each document is represented by a 0/1-valued word vec-
tor indicating the absence/presence of the correspond-
ing word from a dictionary of 3703 words. Thus, the
text attributes of a document is a binary-valued vector
of 3703 dimensions.

• Cora [89]:
It consists of 2708 scientific publications of seven classes.
The graph has 5429 links that indicate citation relations
between documents. Each document has text attributes
that are expressed by a binary-valued vector of 1433
dimensions.

• Wikipedia [91]:
The Wikipedia is an online encyclopedia created and
edited by volunteers around the world. The data set is
a word co-occurrence network constructed from the
entire set of English Wikipedia pages. This data contains
2405 nodes, 17981 edges and 19 labels.

Next, we present several commonly used large graph data
sets below:

• BlogCatalog [92]:
It is a network of social relationships of bloggers listed
in the BlogCatalog website. The labels indicate blogger’s
interests inferred from the meta-data provided by blog-
gers. The network has 10 312 nodes, 333 983 edges and 39
labels.

• YouTube [93]:
It is a social network of YouTube users. This graph con-
tains 1 157 827 nodes, 4 945 382 edges and 47 labels.
The labels represent groups of users who enjoy common
video genres.

• Flickr [94]:
It is an online photo management and sharing data set.
It contains 80 513 nodes, 5 899 882 edges and 195 labels.
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Table 3. Summary of representative graph data sets

No. of nodes No. of edges No. of classes

Citeseer 3312 4723 6
Cora 2708 5429 7
Wiki 2405 17 981 19
BlogCatalog 10 312 333 983 39
YouTube 1 157 827 4 945 382 47
Flickr 80 513 5 899 882 195

Finally, the parameters of the above-mentioned data sets
are summarized in Table 3.

C) Evaluation results and analysis
Since evaluations were often performed independently on
different data sets under different settings in the past, it is
difficult to draw a concrete conclusion on the performance
of various graph embedding methods. Here, we compare
the performance of graph embedding methods using a
couple of metrics under the common setting and analyze
obtained results. In addition, we provide an open-source
Python library, called the graph representation learning
library (GRLL), to readers in the Github. It offers a uni-
fied interface for all graph embedding methods that were
experimented in this work. To the best of our knowledge,
this library covers the most significant number of graph
embedding techniques until now.

1) Vertex classification
We compare vertex classification accuracy of seven graph
embedding methods on Cora, Citeseer, and Wiki. We used
the default hyper-parameter setting provided by each graph
embedding method. For the classifier, we adopt linear
regression for all methods (except for GCN since it is a semi-
supervised algorithm). We randomly split samples equally
into the training and the testing sets (i.e. 50 and 50).
The default embedding size is 128. The vertex classifica-
tion results are shown in Table 4. DeepWalk and node2vec
offer the highest accuracy for Cora and Wiki, respectively.
The graph convolutional methods (i.e. GCN) yields the
best accuracies in all three data sets because it uses mul-
tiple layers of graph convolution to propagate information
between nodes. The connectivity information is therefore
interchanged and is useful for vertex classification. The
random-walk-based methods (e.g. DeepWalk, node2vec,
and TADW) also get superior performance since they are
able to capture the contextual information in graphs. In
Wiki, data set, the node features are not given so it’s ini-
tialized as an identity matrix. Therefore, TADW couldn’t
get comparable performance as other methods, demon-
strating that good initial attributes for nodes is important
for vertex classification. DeepWalk and node2vec are pre-
ferred among random-walk-based methods since TADW
usually demands initial node features and much more mem-
ory. However, if the initial node attributes are presented,
TADW could get better results than simple random-walk
based methods.

Table 4. Performance comparison of nine common graph embedding
methods in vertex classification on Cora, Citeseer, and Wiki

Cora Citeseer Wiki

DeepWalk [48] 0.829 0.592 0.670
node2vec [50] 0.803 0.597 0.680
GraRep [57] 0.787 0.535 0.650
HOPE [58] 0.646 0.422 0.608
SDNE [69] 0.573 0.427 0.510
LINE [23] 0.762 0.493 0.646
GF [53] 0.573 0.391 0.581
TADW [49] 0.852 0.734 0.411
GCN [62] 0.875 0.740 0.686

2) Visualization
Visualizing the embedding is useful to understand how well
the embedding methods learn from the graph structure and
node attributes. To be considered as good representation,
vectors for nodes in the same class should have shorter
distance and higher similarity to each other. Meanwhile,
vectors for nodes from different classes should be as separa-
ble as possible so the downstream machine learning mod-
els will be able to obtain better performance. To visualize
high-dimensional vectors, we adopt a widely-used dimen-
sion reduction algorithms, t-SNE [95], to transform the
high-dimensional vectors to a two-dimensional space for
visualization. We visualized three major branches of graph
embedding learning methods, which are random-walk-
based (DeepWalk), structural-preservation-based (LINE),
and neural-network-based methods (SDNE). We choose
Cora as the data set to be tested. The results are shown in
Fig. 6. The random-walk-based method provides separa-
ble inter-class representation by capturing the contextual
information in the graphs. Nodes that don’t appear in the
same context tend to be separated. However, the intra-class
vectors are not clustered well due to the randomly sampled
paths. The structural-preservation-based method provides
the most compact intra-class clusters due to preservation
of the first and second order proximity. The graph struc-
ture can be reflected the most by this category of methods.
The representation vectors from the neural-network-based
method are mainly located on a high-dimensional mani-
fold in the latent space. The arrangement of the embedding
is often uneven and biased.The authors in [96] discussed
this effect and proposed a post-processing scheme to solve
the problem. Consequently, the representation vectors from
the neural-network-based method are nearly not linearly-
separable.

3) Clustering quality
We compare various graph embedding methods by exam-
ining their clustering quality in terms of the macro and
micro-F1 scores. The K-means++ algorithm is adopted for
the clustering task. Since the results of K-means++ clus-
tering are dependent upon seed initialization, we perform
10 consecutive runs and report the best result. We tested
them on three large graph data sets (i.e. YouTube, Flickr,
and BlogCatalog). The experimental results are shown in
Table 6. YouTube and Flickr contain more than millions of
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Fig. 6. t-SNE visualization of different embedding methods on Cora. The seven different colors of points represent different classes of the nodes.

nodes and edges and we can only run DeepWalk, node2vec,
and LINE on them with the 24G RAM limit as reported
in the table. We see that DeepWalk and node2vec provide
the best results. They are both random-walk based meth-
ods with different sampling schemes. Also, they demand less
memory as compared with others. In general, random walk
with the skip-gram model is a good baseline for unsuper-
vised graph embedding. GraRep offers a comparable graph
embedding quality for BlogCatalog. However, its memory
requirement is significant so that it is not suitable for large
graphs.

4) Time complexity
Time complexity is an essential factor to consider, which
is especially true for large graphs. The time complexity
of three embedding methods (DeepWalk, node2vec, and
LINE) against three data sets (YouTube, Flickr, and Wiki)

Table 5. Comparison of time used in training (s)

YouTube Flickr Wiki

DeepWalk 37 366.00 3636.14 37.23
node2vec 41 626.94 40 779.22 27.53
LINE 185 153.29 31 707.87 79.42

is compared in Table 5. Three embedding methods all apply
negative sampling [18] to reduce the time complexity. We
observe that the training time of DeepWalk is significantly
lower than node2vec and LINE for larger graph data sets
such as YouTube and Flickr. DeepWalk is an efficient graph
embedding method with high accuracy by considering
embedding quality as well as training complexity.
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Table 6. Comparison of clustering quality of six graph embedding methods in terms of macro- and micro-F1 scores against three large graph data sets

DeepWalk node2vec LINE GraRep GF HOPE

YouTube Macro-F1 0.206 0.221 0.170 N/A N/A N/A
Micro-F1 0.293 0.301 0.266 N/A N/A N/A

Flickr Macro-F1 0.212 0.203 0.162 N/A N/A N/A
Micro-F1 0.313 0.311 0.289 N/A N/A N/A

BlogCatalog Macro-F1 0.247 0.250 0.194 0.230 0.072 0.143
Micro-F1 0.393 0.400 0.356 0.393 0.236 0.308

5) Influence of embedding dimensions
As the embedding dimension decreases, less information
about the input graph is preserved so that the performance
drops. However, some methods will be affected by the
decrease of embedding size than others. We show the
node classification accuracy as a function of the embed-
ding dimension for the Cora and Citeseer data set in Fig. 7.
We compare eight graph embedding methods (DeepWalk,
node2vec, GraRep, HOPE, SDNE, LINE, GF, and TADW)
and their embedding dimensions vary from 4, 8, 16, 32,
64 to 128. The experimental results are shown in Fig. 7.
We see that the performance of the random-walk based
embedding methods (Deep-Walk and node2vec) degrades
slowly. Only about 10 drop in performance when the
embedding dimension size drops from 128 to 4. An excep-
tion is TADW, which requires initial node features to
obtain the final embedding. The initial attributes are usu-
ally sparse and high dimensional, transforming them to a
lower-dimensional embedding space will cause great infor-
mation loss. In contrast, the performance of the structure
preserving methods (LINE and GraRep) drops significantly
(as much as 45) when the embedding size goes from 128 to
4. One explanation is that the structural preserving methods
are compressing the adjacency matrix into a lower dimen-
sional space. When the compression ratio is higher, the dis-
tortion will be higher as well. Random-walk based methods
obtain embedding vectors by selecting paths from the input
graph randomly. Yet, the relationship between nodes is still
preserved when the embedding dimension is small. SDNE
adopts the auto-encoder architecture to preserve the infor-
mation of the input graph so that its performance remains
about the same regardless of the embedding dimension.

6) Influence of training sample ratio
By the training sample ratio, we mean the percentages of
total node samples that are used for the training purpose.
When the ratio is high, the classifier could be overfitted. On
the other hand, if the ratio is too low, the offered information
may not be sufficient for the training purpose. Such analysis
is classifier dependent, and we adopt a simple linear regres-
sion classifier from the python sklearn toolkit in the exper-
iment. The node classification accuracy as a function of the
training sample ratio for the Cora and Citeseer data set is
shown in Fig. 8. Most methods have consistent performance
for the training data ratio between 0.2 and 0.8 except for the
deep learning based methods (SDNE). Its accuracy drops
when the training data ratio is low. It needs a higher ratio of

training data. GCN uses multiple graph convolutional lay-
ers to propagate information between neighboring nodes
so it could get good performance with smaller training set.
However, when the training ratio becomes higher, the accu-
racy for GCN would not increase much or even drop due to
over-fitting.

V I . EMERG ING APPL ICAT IONS

Graphs offer a powerful modeling tool and find a wide
range of applications. Since many real-world data have some
certain relationships among entities, they can be conve-
niently modeled by graphs. Multi-modal data can also be
embedded into the same space through graph representa-
tion learning and, as a result, the information from different
domains can be represented and analyzed in one common
setting.

In this section, we examine three emerging areas that
benefit from graph embedding techniques.

• Community detection:
Graph embedding can be used to predict the label of a
node given a fraction of labeled node [13, 97–99]. Thus,
it has been widely used for community detection [100,
101]. In social networks, node labels might be gender,
demography, or religion. In language networks, docu-
ments might be labeled with categories or keywords.
Missing labels can be inferred from labeled nodes and
links in the network. Graph embedding can be used to
extract node features automatically based on the net-
work structure and predict the community that a node
belongs to. Both vertex classification [102] and link pre-
diction [103, 104] can facilitate community detection
[105, 106].

• Recommendation system:
Recommendation is an important function in social net-
works and advertising platforms [107–109]. Besides the
structure, content and label data [110], some networks
contain spatial and temporal information. For example,
Yelp may recommend restaurants based on a user’s loca-
tion and preference. Spatial-temporal embedding [111] is
an emerging topic in mobile applications.

• Graph compression and coarsening:
By graph compression (graph simplification), we refer to
a process of converting one graph to another, where the
latter has a smaller number of edges. Graph coarsening
can be used for compression, which is a method used
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Fig. 7. The node classification accuracy as a function of the embedding size.

Fig. 8. The node classification accuracy as a function of the embedding size.

to partition a graph in multiple stages. Graph coarsen-
ing is usually used in the first stage for graph embed-
ding. It works by collapsing pairs of nodes and edges
using a determinate criteria. Graph coarsening is useful
because the size of the graphs may be too big to be par-
titioned. Graph compression aims to store a graph more
efficiently and run graph analysis algorithms faster. For
example, a graph is partitioned into bipartite cliques and
replaced by trees to reduce the edge number in [112].
Along this line, one can also aggregate nodes or edges
for faster processing with graph coarsening [113], where
a graph is converted into smaller ones repeatedly using
a hybrid matching technique to maintain its backbone
structure. The structural equivalence matching (SEM)
method [114] and the normalized heavy edge matching
method (NHEM) [115] are two examples.

• Biomedical application:
Graph representation learning can be used to for
biomedical data analysis. For example, brain network
data can be modeled through the graph, with the
brain activities as signals residing on the nodes [116].
The embedding methods can be used for studying
the structures and functions of brains when under
different stimuli. Some frameworks have been proposed

for studying Alzheimer’s disease [117], and brain reac-
tion to magnetoencephalographysignals [118].

• Other application domain:
Graph learning can also be applied to meteorology for
studying networks of weather stations. The authors in
[119, 120] aim to capture the relationship among dif-
ferent weather stations in terms of their attitude. It is
still in the stage of proof of concept and more research
is needed. Graph embedding can also be used in traf-
fic flow inference [121], Internet news propagation study
[122], inter-region political relationship [120], human
robotics interaction [123],ontologies of concepts [124],
etc.

V I I . FUTURE RESEARCH
D IRECT IONS

Graph representation learning is a well-motivated topic.
It is an effective way to convert graph data into a low
dimensional space [125, 126] in which important feature
information are well preserved. Graph analytic can provide
researchers with a deeper understanding of the data with
the help of efficient graph embedding techniques. Based on
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the discussion above, we would like to discuss several future
research opportunities in graph embedding.

• Deep graph embedding:
GCN [62] and some of its adaptation [123] has drawn
great attention due to its superior performance. How-
ever, the number of graph convolutional layers is typi-
cally not higher than two. When there are more graph
convolutional layers in cascade, the performance drops
significantly. It was argued in [65] that each GCN layer
corresponds to graph Laplacian smoothing since node
features are propagated in the spectral domain. When
a GCN is deeper, the graph Laplacian is over-smoothed
and the corresponding node features become obscure.
Each layer of GCN usually only learns one-hop infor-
mation, and two GCN layers learn the first- and second-
order proximity in the graph. It is difficult for a shallow
structure to learn global information. One solution to
fix this problem is to conduct the convolution in the
spatial domain. For example, one can convert graph
data into grid-structure data as proposed in [29]. Then,
the graph representation can be learned using multiple
CNN layers. Another way to address the problem is to
down-sample graphs and merge similar nodes. Such a
graph coarsening idea was adopted by [127–129] to build
deep GCNs. Then, we can build a hierarchical network
structure, which allows us to learn both local and global
graph data in a hierarchical manner.

• Dynamic graph embedding:
Social graphs, such as graphs in Twitter, are always
changing. Another example is graphs of mobile users
whose location information is changing along with time.
To learn the representation of dynamic graphs is an
important research topic and it finds applications in real-
time and interactive processes such as the optimal travel
path planning in a city at traffic hours. Hyper-graphs is
a good option for modeling such dynamics in graphs.
Embed the time sequence into each node can also be
useful; for example, long-short-term-memory (LSTM)
can be used on each vertex to incorporate sequential
changes.

• Scalability of graph embedding:
With the rapid growth of social networks, which contain
millions and billions of nodes and edges, We expect to
see graphs of a larger scale and higher diversity. How to
embed enormous graph data efficiently and accurately
is still an open problem. Deep neural network models
have the state-of-the-art performance. However, these
methods suffer the low efficiency problem. They rely
on modern GPU to find the optimal parameters. Better
paradigms are needed for processing large-scale graphs.
One possibility is to use a feedforward machine-learning
design to process the graph without BP. Another option
is to use better graph coarsening or partitioning method
to preprocess the data.

• Interpretability of graph embedding:
Most state-of-the-art graph embedding methods are
built upon CNNs, which are trained with BP to deter-
mine their model parameters. However, the training

complexity is very high. Some research was performed
to lower the training complexity such as quickprop
[130]. However, training model parameters iteratively
using BP is still time consuming and hardware demand-
ing. In addition, CNNs are mathematically intractable.
Very recently, some researchers have tried to explain
the interpretability of neural network models [131, 132].
The authors in [133] attempt to explain CNNs using an
interpretable and feedforward (FF) design without any
BP. The work in [133] adopts a FFdata-centric approach
to network parameters of the current layer based on
data statistics from the output of the previous layer in
a one-pass manner. It would be worthwile to apply FF
machine-learning methods to graph embedding tasks.
An interpretable design as an alternative to advanced
neural network architectures can shed light on current
graph embedding-related machine-learning research.

V I I I . CONCLUS ION

A comprehensive survey of the literature on graph repre-
sentation learning techniques was conducted in this paper.
We examined various graph embedding techniques that
convert the input graph data into a low-dimensional vec-
tor representation while preserving intrinsic graph prop-
erties. Besides classical graph embedding methods, we
covered several new topics such as neural-network-based
embedding methods, hypergraph embedding and attention
graph embedding methods. Furthermore, we conducted
an extensive performance evaluation of several stat-of-the-
art methods against small and large data sets. For experi-
ments conducted in our evaluation, an open-source Python
library, called the GRLL, was provided to readers. Finally, we
presented some emerging applications and future research
directions. We hope our work can inspire more follow-up
work in graph embedding.

REFERENCES

[1] Bourigault S.; Lagnier C.; Lamprier S.; Denoyer L.; Gallinari P.:
Learning social network embeddings for predicting information dif-
fusion. in Proceedings of the 7th ACM International Conference on
Web Search and Data Mining, ACM, 2014, 393–402.

[2] Globerson A.; Chechik G.; Pereira F.; Tishby N.: Euclidean embed-
ding of co-occurrence data. J. Mach. Learn. Res., 8 (Oct) (2007),
2265–2295.

[3] Theocharidis A.; Van Dongen S.; Enright A.J.; Freeman T.C.: Net-
work visualization and analysis of gene expression data using bio-
layout express 3D. Nat. Protoc., 4 (10) (2009), 1535.

[4] Angles R.; Gutierrez C.: Survey of graph database models. ACM
Comput. Surveys (CSUR), 40 (1) (2008), 1.

[5] Gargi U.; Lu W.; Mirrokni V.; Yoon S.: Large-scale community
detection on YouTube for topic discovery and exploration. in Fifth
International AAAI Conference on Weblogs and Social Media, 2011.

[6] Roggen D.; Wirz M.; Tröster G.; Helbing D.: Recognition of crowd
behavior from mobile sensors with pattern analysis and graph clus-
tering methods. arXiv preprint arXiv:1109.1664, 2011.



18 fenxiao chen et al.

[7] Bhagat S.; Cormode G.; Muthukrishnan S.: Node classification in
social networks. In Social Network Data Analytics, Springer, 2011,
115–148,

[8] Liben-Nowell D.; Kleinberg J.: The link-prediction problem for
social networks. J. Am. Soc. Inf. Sci. Technol., 58 (7) (2007), 1019–1031.

[9] Goyal P.; Ferrara E.: Graph embedding techniques, applications, and
performance: A survey. Knowl. Based Syst., 151, (2018), 78–94.

[10] Yan S.; Xu D.; Zhang B.; Zhang H.-J.: Graph embedding: a general
framework for dimensionality reduction. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), Vol. 2, IEEE, 2005, 830–837.

[11] Yan S.; Xu D.; Zhang B.; Zhang H.-J.; Yang Q.; Lin S.: Graph
embedding and extensions: A general framework for dimensionality
reduction. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2007), 40–51.

[12] Shaw B.; Jebara T.: Structure preserving embedding. In Proceedings
of the 26th Annual International Conference on Machine Learning,
ACM, 2009, 937–944.

[13] Ding C.H.; He X.; Zha H.; Gu M.; Simon H.D.: A min-max cut
algorithm for graph partitioning and data clustering. in Proceeding-
sof the 2001 IEEE International Conference on Data Mining, IEEE,
2001, 107–114.

[14] Cavallari S.; Zheng V.W.; Cai H.; Chang K.C.-C.; Cambria E.: Learn-
ing community embedding with community detection and node
embedding on graphs. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, ACM, 2017,
377–386.

[15] Goldberger J.; Gordon S.; Greenspan H.: An efficient image similar-
ity measure based on approximations of kl-divergence between two
Gaussian mixtures. In Null, IEEE, 2003, 487.

[16] Zhou C.; Liu Y.; Liu X.; Liu Z.; Gao J.: Scalable graph embedding for
asymmetric proximity. InThirty-First AAAI Conference on Artificial
Intelligence, 2017.

[17] Anis A.; Gadde A.; Ortega A.: Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies. IEEE Trans.
Signal Process., 64 (14) (2016), 3775–3789.

[18] Mikolov T.; Sutskever I.; Chen K.; Corrado G.S.; Dean J.: Distributed
representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems, 2013, 3111–3119.

[19] Xu K.; Feng Y.; Huang S.; Zhao D.: Semantic relation classification
via convolutional neural networks with simple negative sampling.
arXiv preprint arXiv:1506.07650, 2015.

[20] Leskovec J.; Faloutsos C.: Sampling from large graphs. InProceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2006, 631–636.

[21] Ribeiro B.; Towsley D.: Estimating and sampling graphs with mul-
tidimensional random walks. In Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement, ACM, 2010, 390–403.

[22] Cai H.; Zheng V.W.; Chang K.C.-C.: A comprehensive survey of
graph embedding: problems, techniques, and applications. IEEE
Trans. Knowl. Data. Eng., 30 (9) (2018), 1616–1637.

[23] Tang J.; Qu M.; Wang M.; Zhang M.; Yan J.; Mei Q.: LINE:
Large-scale information network embedding. In Proceedings of
the 24th International Conference on World Wide Web, 2015,
1067–1077. International World Wide Web Conferences Steering
Committee.

[24] Gilbert A.C.; Levchenko K.: Compressing network graphs. in Pro-
ceedings of the LinkKDD Workshop at the 10th ACM Conference on
KDD, Vol. 124, 2004.

[25] Taylor P.; Black A.W.; Caley R.: Heterogeneous relation graphs as a
formalism for representing linguistic information. SpeechCommun.,
33 (1-2) (2001), 153–174.

[26] Yang Z.; Tang J.; Cohen W.: Multi-modal Bayesian embeddings for
learning social knowledge graphs. arXiv preprint arXiv:1508.00715,
2015b.

[27] Bizer C.; Lehmann J.; Kobilarov G.; Auer S.; Becker C.; Cyganiak R.;
Hellmann S.: Dbpedia – a crystallization point for the web of data.
Web Semant.: Sci., Services Agents World Wide Web, 7 (3) (2009),
154–165.

[28] Bollacker K.; Evans C.; Paritosh P.; Sturge T.; Taylor J.: Freebase:
a collaboratively created graph database for structuring human
knowledge. in Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, ACM, 2008, 1247–1250.

[29] Gao H.; Wang Z.; Ji S.: Large-scale learnable graph convolutional
networks. in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ACM, 2018,
1416–1424.

[30] de Fraysseix H.; Pach J.; Pollack R.: Small sets supporting Fary
embeddings of planar graphs. InProceedings of the TwentiethAnnual
ACM Symposium on Theory of Computing, ACM, 1988, 426–433.

[31] Fáry I.: On straight-line representation of planar graphs. Acta Sci.
Math., 11, (1948), 229–233.

[32] Stein S.K.: Convex maps. Proc. Am.Math. Soc., 2 (3) (1951), 464–466.

[33] Chrobak M.; Payne T.H.: A linear-time algorithm for drawing a
planar graph on a grid. Inf. Process. Lett., 54 (4) (1995), 241–246.

[34] De Fraysseix H.; Pach J.; Pollack R.: How to draw a planar graph on
a grid. Combinatorica, 10 (1) (1990), 41–51.

[35] Krizhevsky A.; Sutskever I.; Hinton G.E.: Imagenet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, 2012, 1097–1105.

[36] Mikolov T.; Karafiát M.; Burget L.; Černockỳ J.; Khudanpur S.:
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