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NLCA-Net: a non-local context attention
network for stereo matching
zhibo rao,1 mingyi he,1 yuchao dai,1 zhidong zhu,1 bo li1 and renjie he1,2

Accurate disparity prediction is a hot spot in computer vision, and how to efficiently exploit contextual information is the key
to improve the performance. In this paper, we propose a simple yet effective non-local context attention network to exploit the
global context information by using attentionmechanisms and semantic information for stereo matching. First, we develop a 2D
geometry feature learning module to get a more discriminative representation by taking advantage of multi-scale features and
form them into the variance-based cost volume. Then, we construct a non-local attention matching module by using the non-
local block and hierarchical 3D convolutions, which can effectively regularize the cost volume and capture the global contextual
information. Finally, we adopt a geometry refinement module to refine the disparity map to further improve the performance.
Moreover, we add the warping loss function to help the model learn the matching rule of the non-occluded region. Our experi-
ments show that (1) our approach achieves competitive results on KITTI and SceneFlow datasets in the end-point error and the
fraction of erroneous pixels (D1); (2) our proposed method particularly has superior performance in the reflective regions and
occluded areas.

Keywords: Stereo matching, Non-local attention, Geometry context, Geometry refine

Received 30 April 2019; Revised 7 June 2020

I . I NTRODUCT ION

Stereo matching plays an essential role in computer vision
tasks, including autonomous driving [1, 2], object detec-
tion and recognition [3, 4], and 3D reconstruction and
understanding [5–7]. For a couple of rectified stereo images,
disparity refers to the apparent pixel difference or motion
between a pair of corresponding pixels on the left and right
images [8, 9].

The dense disparity map estimation methods have been
studied for many years. For the traditional stereo matching
methods (e.g. semi-global matching (SGM) [9], non-local
cost aggregation [10], second-order smoothness priors [11]),
the classical pipeline involves the finding of correspond-
ing points by matching cost, cost aggregation, optimiza-
tion, disparity refinement, and post-processing based on the
local or global features. In general, the traditional meth-
ods often focus on using the prior knowledge of images
to construct the warping function through for improving
matching accuracy.

For disparity prediction based on deep learning, recent
efforts have yielded many high-quality outputs due to deep
fully convolutional neural networks (FCN) [12, 13] and a
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large amount of training data [14–16]. Classically, main-
stream methods contain a four-step pipeline, while each
step is important to the overall matching performance: 2D
feature extraction, cost volume construction, 3D feature
matching, and disparity regression [13, 17, 18]. Zbontar and
LeCun first calculated the matching costs by convolutional
neural networks (CNNs) to improve the performance, and
the result showed that CNNs could learn more robust fea-
tures from images and produced reliable matching cost
in this task [17]. Following this work, many researchers
[13, 19–22] proposed several methods to improve matching
accuracy [13, 22], reduce some parameters [18], or achieve
self-supervision ability [21].

Albeit the above success, the stereo matching methods
based on deep learning still exist some limitations. First, the
prediction pixels have terrible performance in the occluded,
repeated object, and reflective regions [23, 24] due to a lack
of sufficient understanding of the scene. Second, it is diffi-
cult to improve further accurate correspondence estimation
if solely applying the concatenation operation between dif-
ferent viewpoints in cost volume construction [13, 20]; it is
caused by the concatenation operation that is lack of the
physical meaning about similarity. Due to the above prob-
lems, the performance of used networks has encountered
bottlenecks.

In this paper, we propose a novel non-local context atten-
tion network (NLCA-Net) to exploit the global context
information for stereo matching. First, we utilize spatial
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pyramid pooling (SPP) and dilated convolutions to extract
the semantic information. Next, we apply a variance-based
method to build cost volume. Then, we use the hierarchical
3D convolution and non-local block [25] to set up the non-
local attention matching (NLAM) module for regularizing
the cost volume. Finally, we adopt a soft argmin operation to
get the initial disparitymap and then refine it via combining
the semantic information. At last, we further improve the
accuracy of the non-occlusion region by the warping loss
function.

Our main contributions are listed below:

• We design a non-local context attentionmodule to exploit
the global context information for regularizing the cost
volume, thus improving the performance of the matching
task, particularly on the occlusion.

• We use a variance-based method instead of traditional
concatenation operation to build cost volume, which
provides the similarity information and reduces some
memory.

I I . RELATED WORK

To improve the accuracy of disparity map estimation in
stereo matching, many researchers have tried to optimize
cost volume or matching cost computation and got fantas-
tic achievements. Interested readers are suggested to read
the surveys to get an overview of the typical matching
algorithms and different optimization methods [26–28].
In this section, we will focus on a brief discussion about
the related methods, involving traditional methods, deep
leaning matching methods, and semantic segmentation
methods, respectively.

In general, traditional stereo matching methods care
more about how to compute the matching cost accurately
and how to apply local or global features to refine the dis-
paritymap [29, 30]. Guney andGeiger used inverse graphics
techniques to integrate objects as a non-local regularizer,
then applied the conditional random field (CRF) frame-
work to refine the disparity map; its result showed the value
of this method on the KITTI dataset [31]. Seki and Polle-
feys developed deep neural networks based on SGM for
predicting accurate dense disparity map and introduced a
novel loss function that fully uses sparsely annotated dispar-
ity maps features; their method replaced manually-tuned
penalties for regularization [23]. Moreover, Gidaris and
Komodakis proposed a generic architecture that improved
the labels by detecting incorrect labels, replacing incor-
rect labels with new ones, and refining the renewed labels
(DRR); their method achieved a significant improvement
surpassing prior approaches [32]. These methods used the
ideas of traditional disparity map post-processing to reduce
the mismatch in ambiguous regions and improve disparity
estimation.

Recently, in stereo matching areas, the end-to-end net-
works have been developed to predict whole disparity maps

without post-processing. Mayer et al. introduced two end-
to-end networks for estimating disparity (DispNet) and
optical flow (FlowNet), and created a large synthetic dataset
called SceneFlow, which improved the performance [14].
Chang and Chen introduced PSMNet, an end-to-end net-
work for feature fusion using SPP and dilated convolution
architectures [20]. Zhong et al. used image warping error
as the loss function to drive the learning process, achiev-
ing a self-improving ability [21]. Kendall et al. exploited the
way of cost volume regularization and shown 3D convo-
lutions’ effect in the context learning of stereo matching
[13]. Guo et al. divided left–right features into different
groups to obtain multiple matching cost proposals for mea-
suring feature similarities and reducing some parameters
[18]. Yin et al. composed local matching distributions to
form the global match density for lessening the dispar-
ity candidates [22]. The main idea of these methods was
to construct the cost volume or use external informa-
tion (e.g. optical flow or edge) to improve the accuracy
of disparity estimation, ignoring the effect of global scene
understanding.

In the field of semantic segmentation, how to fuse
the context information is an important topic. Many
researchers proposed different methods to exploit global
context information andmake substantial progress in recent
years. Long et al. demonstrated the value of the FCN in the
semantic segmentation, and the performance had been dra-
matically improved [33]. Chen et al. designed a DeepLab_v3
that could capture multi-scale context with further boost
performance by adopting multiple atrous rates, and the
system of DeepLab_v3 without DenseCRF post-processing
[34]. Ranjan and Black proposed the SPyNet, which intro-
duced image pyramids to predict optical flow by a coarse-
to-fine approach [35]. The above approaches showed that
the idea ofmulti-scale architecture was essential for exploit-
ing global context information in the field of semantic
segmentation.

In this work, we exploit the potential of the non-local
attention mechanism to enhance the scene understanding
at the global-scope level. Moreover, we construct the cost
volume by the variance-based method to add the similarity
information comparedwith traditional concatenation oper-
ation. As described above, we propose the NLCA-Net for
improving the matching accuracy, especially in the occlu-
sions and reflective regions.

I I I . OUR METHOD

In this section, we propose the NLCA-Net. The network
architecture is illustrated in Fig. 1, and the detailed param-
eters are presented in Appendix A. Our model consists of
five parts: feature extraction and fusion, cost volume con-
struction, feature matching, disparity map regression, and
refinement. The implementation detail is described in the
following sub-sections, respectively.
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Fig. 1. Our end-to-end deep stereo regression architecture, NLCA-Net (Non-Local Context Attention network). Ourmodel consists of three modules: 2D geometry
feature learning (GFL), non-local attention matching (NLAM), and geometry refinement (GR) module.

Fig. 2. The 2D geometry feature learning module (GFL). x × x, s, f denote the size of the convolution kernel, stride, and the number of convolution filters
respectively. ×n denotes the block repeats n times.

A) Feature extraction and fusion by 2D
geometry feature learning module
Previous methods failed to predict an accurate disparity in
ill-posed regions because the network did not understand
the context well. On the other hand, semantic segmentation
methods have a fantastic performance in understanding the
context. Thus, we are inspired by many semantic segmenta-
tion methods and get a robust descriptor that determines
the context relationship from the pixel (particularly for ill-
posed regions) via the SPP struct. We design the 2D geom-
etry feature learning (GFL) module, as shown in Fig. 2. For
description convenience, we set the input resolution of the
stereo pairs to be H × W, and the basic number F of the
convolution filter to be 32.

In this module, we apply a series of 2D convolutional
operations to extract the semantic information, and each
convolutional operation is followed by a batch normaliza-
tion (BN) layer and a rectified linear unit (ReLU) layer. The
GFL module consists of the unary feature extraction part
and the multi-scale feature fusion part.

(1) The unary feature extraction part
The unary feature extraction part contains the block 1–4
and SPP, which are the basic or residual unit for learning
the unary feature. In block 3 and block 4, dilated convo-
lution is applied to enlarge the receptive field further. In
SPP, we use themulti-scale average pooling to compress fea-
tures and a 1× 1 convolution to reduce feature dimension;
then, the feature maps are upsampled to the original size.
Next, we concatenate the unary feature of block 2, block 4,

and SPP. After the unary feature extraction part, we could
obtain the aggregated unary feature volume with the size
H/4× W/4× 10F.

(2) The multi-scale feature fusion part
The multi-scale feature fusion part is block 5, which is used
for fusing the aggregated unary feature volume. To avoid
losing the critical information, we first adopt 128 convolu-
tional filters with the size 3× 3 to fuse them, then use the
32 convolutional filters with the size 3× 3 to reduce fea-
ture dimension. After the multi-scale feature fusion part,
we could obtain the semantic information with the size
H/4× W/4× F.

B) Cost volume construction by
variance-based cost metric
In previous works [13, 19–21], the cost volume is the critical
step which links 2D and 3D convolution. To achieve bet-
ter performance, we aggregate the semantics feature of left
and right image Vl,Vr to one cost volume C via variance-
based cost metric (VBCM)M. LetW,H,D, F be the input
image height and width, the disparity sample number, and
the feature number. Thus, the size of the semantics feature
is Vl = Vr = (H/4) × (W/4) × F, and the size of cost vol-
ume C = (D/4) × (H/4) × (W/4) × F. We define the cost
metric as the mapping M : {Vl,Vr,1}, . . . , {Vl,Vr,(D/4)}︸ ︷︷ ︸

D/4

→



4 zhibo rao et al.

Fig. 3. The non-local attentionmatchingmodule (NLAM). TheNLAMmodule consists of featurematching part and scale recovery part. Note that the featuremaps
are shown as feature dimensions, e.g. D × H × W × Fmeans a feature map with disparity numberD, heightH, width W, and feature numberF. Here, L∗denotes
different scale levels of the feature maps.

C that:

C = M
(
{Vl,Vr,1}, · · · ,

{
Vl,Vr, D4

})

= stack

(
(Vl − Vi)

2 + (Vr,i − Vi)
2

2

)
,

(1)

where Vr,i means traversed right semantics feature with a
preset disparity range i, Vi means the average of Vl and Vr,i,
and all operations above are element-wise.

Most traditional stereo matching methods aggregate the
cost volume between the left and right images in a heuristic
way. However, recent works apply the concatenation oper-
ation instead of the mean or subtraction operation [13, 36].
This is the way that depends on network learning entirely.
Here we choose the variance-based operation instead of the
concatenation operation, due to which provides no direc-
tion about what the networks should do in the feature
matching module. In contrast, our variance-based oper-
ation explicitly measures the left–right feature difference,
which reflects the similarities between themand saves about
half ofmemory. The truematched pair should have the low-
est cost value, whereas it should have a higher cost. The
output size of variance-based cost volume is D/4× H/4×
W/4× F.

C) Feature matching by non-local attention
matching module
To regularize the matching cost volume along the dis-
parity dimension as well as spatial dimensions, we pro-
pose a 3D CNN architecture for learning the matching
feature: the NLAM module. In [25], the non-local block
was designed to compute the response at a position as a

weighted sum of the features at all positions, and it showed
a significant improvement for video classification and poses
estimation. However, the cost volume is too big for the
non-local block, leading it cannot be directly applied to
the matching task. From another point, the essence of the
non-local block is the attention mechanism. Therefore, we
could combine the non-local block and the hierarchical 3D
convolution for setting up the NLAM module, as shown
in Fig. 3.

In this module, we apply a series of 3D convolutional
operations to obtain the matching volume, and each con-
volutional operation is followed by a BN layer and a ReLU
layer. The NLAMmodule consists of feature matching part
and scale recovery part.

(1) The feature matching part
The feature matching part contains 26 convolutions with
stride one or two for regularizing the variance-based cost
volume. This part has four levels, and we pass the feature
maps between the same level to form the residual archi-
tecture, avoiding losing the critical information. Each level
consists of an up-sampling or a sub-sampling convolution,
and a residual block. After the L4 level, we adopt a non-local
block as an attention block for further improving global
matching learning.

To further understand the non-local attention mecha-
nism, our feature matching part could be viewed as the
group of the hierarchical 3D convolution block and the
non-local block. The hierarchical 3D convolution block is
an encoder–decoder architecture; it encodes the feature
map by sub-sampling and decodes the encoded feature by
up-sampling, as shown in Fig. 4.
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Fig. 4. The encoder–decoder architecture. The pink block means the encoding
process. The green block means the decoding process.

As shown in Fig. 4, we define the encoder and decoder
process, respectively as:

Ei+1 = FEi+1(Ei)

Di = FDi(Di−1) + En−i,
(2)

where n denotes the number of the encoder and decoder, i
denotes the level of the encoder or decoder, and FE or FD
denotes the process of each encoder or decoder.

In the encoder–decoder architecture, the worst draw-
back is that the convolution is a local operation. It causes
the network to not further improve the receptive fields to
evaluate the impact of global information on the current
pixel. Thus, we use the non-local block as attention mode
for promoting the understanding ability of global context,
as shown in Fig. 3.

The non-local operationN (·) could be represented as:
yi = 1

C(x)

∑
∀j

f (xi, xj)g(xj), (3)

where x, y denotes the input and output, respectively, i
denotes the index of an output position, j denotes the index
of all possible positions, f (·) denotes the response function
of global influence on current position xi, g(·) denotes a rep-
resentation of the input signal at the position xj, and C(·)
denotes the total influence for normalizing the response.

In our non-local block, we apply the Gaussian function
to compute similarity in an embedding space. We set the
response function f (·) as:

f (xi, xj) = eθ(xi)Tφ(xj), (4)

where θ(xi) = Wθ · xi, φ(xj) = Wφ · xj. Similarly, g(·)
could be set as g(xj) = Wg · xj. Thus, the C(·) could be set as
C(x) = ∑

∀jf (xi, xj). In this response function, the process
of (1/C(x))

∑
∀jf (xi, xj) could be viewed as a softmax oper-

ation. In addition, we add y and x for a residual learning. In
our architecture, the non-local block could be defined as:

D0 = N (E4) + E4. (5)

After the non-local attention step, we feed the fused
global feature into the decoding process as presented in
equation (2) or Fig. 4. The non-local block could improve
the performance of matching effectively. After this part, we
could obtain the matching volume but in a low resolution
1/4H × 1/4W × 1/4D. Thus, we should recover the scale to
get the final matching volume.

Fig. 5. Geometry refinement module (GR). The initial disparity map, the left
image, and the semantics feature are fed to the GR module. After this module,
we get refined disparity map. Here, blue block means the 32 convolutions with
the size3× 3, and green block means the 1 convolution with the size3× 3.

(2) The scale recovery part
The scale recovery part contains one convolution and two
de-convolutions for recovering the size of the input image.
The output of ourNLAMmodule is a finalmatching volume
with sizeD × H × W from the variance-based cost volume.

D) Disparity map regression by soft argmin
In this step, we will estimate the initial disparity map from
thematching volume. Thus, we naturally embed ourmatch-
ing volume into a 3D to 2D process. The simplest way to
recover the initial disparity map d̂ from the matching vol-
umeM is the pixel-wise winner-take-all such as an argmax
operation. However, this way is unable to predict sub-pixel
estimation and less robust [5, 13]. Thus, we predict the dis-
parity map by passing an argmin operation. First, we con-
vert thematching volumeM to the probability volumeP via
the softmax operation σ(·). Then, we take the sum of each
disparity d weighted with its probability. The soft argmin
process is defined as:

d̂ =
Dmax∑
d=0

d × P(d) =
Dmax∑
d=0

d × σ(−Md), (6)

whereP(d) denotes the probability estimation for all pixels
of the image at disparity d.Md denotes all value of the d-th
layer in the matching volumeM.

The abovemethod could accurately approximate the dis-
parity d in the range from 0 to Dmax. The output initial
disparity map is the same size as the input image.

E) Disparity map refinement by geometry
refinement module
The initial disparity map from the probability volume is a
qualified output, but the boundaries may suffer from over-
smoothing in the recovery size part of the NLAM module,
or the completeness of the object suffers from the miss-
ing piece in the occlusion area. Notice that the input image
contains complete boundary information, and the output
of 2D GFL module contains the semantics feature, we thus
use the input image and the semantics feature as guidance
to refine the initial disparity map. Inspired by the recent
multi-view stereo algorithm [5], we redesign a geometry
refinement (GR)module at the end of NLCA-Net, as shown
in Fig. 5.
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Table 1. Evaluation of NLCA-Net with different settings.

Network setting SceneFlow KITTI 2015

GFL VBCM NLAM GR LossL1 LossL1 + Lossw Param Mem. D1-all () Mem. D1-all ()

(Res-Net 50)
√

2.3M 3.7G 6.32 3.6G 6.17√ √
2.4M 3.7G 5.33 3.6G 4.90√ √

(3D-Conv)
√

2.8M 5.6G 3.80 5.5 G 3.63√ √ √ √
5.3M 7.6G 3.09 7.6G 2.14√ √ √ √ √
5.4M 7.6G 3.06 7.6G 2.08√ √ √ √ √
5.4M 7.9G 2.98 7.9G 2.00√ √ √ √ √ √
5.4M 7.6G 2.87 7.6G 1.96

Computed the percentage of three-pixel-error on the SceneFlow and KITTI 2015 test set.

Fig. 6. SceneFlow test data qualitative results. From left: left stereo input image, ground-truth, disparity prediction.

In the GR module, the initial disparity map, the left
image, and the semantics feature are concatenated as the
input. Notice that the size of the semantics feature is only
quarter in width and height dimension compared to input
images. Therefore, we first upsample the semantics feature,
then use the 1× 1 convolutional filter to adjust it. Next, we
concatenate them as a 38-feature input and send them to
eight-layer residual network, which consists of the 32 con-
volutional filters with the size 3× 3. After that, we apply one
convolutional filter to obtain the difference, and the initial
disparity map is added back to generate the refined dispar-
itymap. The last layer does not contain the BN layer and the
ReLU layer. After the GR module, we could get the refined
disparity map.

F) Loss function
The loss functions consider both the initial disparity map
and the refined disparity map.We use the L1 loss to evaluate

the difference between the ground truth and the predicted
disparity map. Due to the ground truth sparse disparity
map, we only consider those pixels which are valid. The
LossL1 is defined as:

LossL1 = 1
N1

∑
p∈Pvalid

||d(p) − d̂i(p)||1 + ||d(p) − d̂r(p)||1,

(7)

where Pvalid denotes the set of valid ground truth pixels, N1
denotes the total number of valid ground truth pixels, d(p)
denotes the ground truth of pixel p, d̂i(p) denotes the initial
disparity map value of pixel p, and d̂r(p) denotes the refined
disparity map value of pixel p.

To further improve the robustness and performance of
the non-occluded area, we apply the warping loss to our loss
function. The warping function is widely used in the tradi-
tional methods, and the previous learning method utilizes
the warping function to structure the warping loss which
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Fig. 7. KITTI 2012 test data qualitative results. We compare our approach with state-of-the-art methods (HD3-S and GwcNet), and we highlight our advantage in
the error maps. Note that, in the error maps, the deeper red pixels mean higher error rate in the occluded regions and white pixels denote ≥5 pixels error in the
non-occluded regions.

Fig. 8. KITTI 2015 test data qualitative results. From left: left stereo input image, disparity prediction, error map. Note that, in the error maps, depicting correct
estimates (<3 px or <5 error) in blue and wrong estimates in red color tones.

Table 2. Influence of weight values for λ1, λ2, α, and β on
three-pixel-error.

Network setting D1-all

λ1 λ2 α β SceneFlow () KITTI 2015 ()

0 0 1 0 3.43 2.20
0.5 0.5 0.5 0.5 3.57 2.24
0.5 0.5 0.6 0.4 3.60 2.28
0.5 0.5 0.7 0.3 3.54 2.16
0.5 0.5 0.8 0.2 3.37 2.13
0.5 0.5 0.9 0.1 3.29 2.21
0.6 0.4 0.8 0.2 3.13 2.19
0.7 0.3 0.8 0.2 3.05 2.08
0.8 0.2 0.8 0.2 2.99 1.99
0.85 0.15 0.8 0.2 2.87 1.96
0.9 0.1 0.8 0.2 2.95 2.02

We empirically found that 0.85/0.15/0.8/0.2 yielded the best performance
on the SceneFlow test set.

gives the network self-supervised ability [21]. To solve the
different illumination between left–right images, we intro-
duce a structural similarity (SSIM) term S(·) [37] to improve

Table 3. Influence of the different numbers of the non-local blocks on
the model.

SceneFlow KITTI 2015

Model R EPE D1-all () Out-Noc () Out-ALL ()

NLCA-Net 0 0.92 2.96 1.84 2.13
1 0.87 2.87 1.79 1.96
2 0.84 2.80 1.76 1.92
3 0.82 2.76 1.74 1.90

Here R denotes the number of the non-local blocks.

the robustness. The Lossw is defined as:

Lossw(IL, I′L) = 1
N2

∑
p∈nvalid

λ1
1− S(IL, I′L)

2
+ λ2|IL − I′L|,

(8)

where nvalid denotes the set of pixels in the non-occluded
area, N2 denotes the total number of valid pixels in the
non-occluded area, IL denotes the left image, I′L denotes the
warping image which is reconstructed from the right image
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Table 4. Results on KITTI 2012 stereo benchmark.

Error rates of 2 pixels Error rates of 3 pixels Error rates of 4 pixels Error rates of 5 pixels

Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All EPE Runtime
Method () () () () () () () () (px) (s)

L-ResMatch [38] 3.64 5.06 2.27 3.40 1.76 2.67 1.50 2.26 0.7 48
MC-CNN-acrt [24] 3.90 5.45 2.37 3.63 1.90 2.85 1.64 2.39 0.7 67
GC-NET [13] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.6 0.9
PSMNet [20] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.5 0.41
SsSMnet [21] 3.34 4.24 2.30 3.00 1.82 2.39 1.53 2.01 0.7 0.8
SGM-Net [23] 3.60 5.15 2.29 3.50 1.82 2.39 1.60 2.36 0.7 67
SPS-St [30] 4.98 6.28 3.39 4.41 2.72 3.52 2.33 3.00 0.8 2
Displets v2 [31] 3.43 4.46 2.37 3.09 1.97 2.52 1.72 2.17 0.7 0.8
PBCP[39] 3.62 5,01 2.36 3.45 1.88 2.74 1.62 2.32 0.7 67
HD3-Stereo[22] 2.00 2.56 1.40 1.80 1.12 1.43 0.94 1.19 0.5 0.14
GwcNet[18] 2.16 2.71 1.32 1.70 0.99 1.27 0.80 1.03 0.5 0.32
NLCA-Net 2.01 2.55 1.25 1.62 0.94 1.22 0.76 0.98 0.4 0.43
NLCA-Net* 1.97 2.51 1.22 1.59 0.92 1.20 0.75 0.97 0.4 0.44

Average end-point-error (EPE) and the percentage of different pixel-error are used for evaluations on the KITTI 2012 test set. Compared with other
algorithms, our approach achieves the best performance in most cases.
*The number of the non-local blocks is 3.

and the refined disparity map, and λ1, λ2 denote the bal-
ance between structural similarity and image appearance
difference.

Our loss function for stereo matching is defined as:

Loss = αLossL1 + βLossw, (9)

where α denotes the weight of LossL1 , and β denotes the
weight of Lossw.

I V . EXPER IMENTS

In this section, we will evaluate the performance of our
method on two widely used stereo datasets: SceneFlow and
KITTI. First, we show our implementation details about the
network setting and training method, as shown in Section
A. Then, we compare the contribution of the different com-
ponents in NLCA-Net, as shown in Section B. Finally, we
quantize the performance of our method and compare it
with the state-of-the-art methods on the KITTI 2012 and
2015, as shown in Section C.

A) Implementation details
In this section, we implement NLCA-Net by Tensorflow
with 5.46 M trainable parameters, and the code will be
released at the Github website.1 To obtain the final model,
we should choose the hyper-parameters, train, and evaluate
the model.

(1) Hyper-parameters and datasets
For the hyper-parameters in this network, we set the max
disparity D = 192 to ensure all possible disparity values in
the image could be detected. In the loss function, we initially
apply λ1 = 0, λ2 = 0, α = 1, and β = 0 and then empiri-
cally test the best parameters based on our experiments.

1https://github.com/NPU-IAP/NLCA-Net

For the datasets, we will train and evaluate our approach
on these stereo datasets as follows:

• SceneFlow: a large synthetic dataset consists of 35454
training and 4370 testing images with the size H × W =
540× 960, which provides dense and clear disparitymaps
as ground truth. It could help us to adequately assess the
performance of different model variants without worry-
ing about over-fitting, and to make the pre-trained model
have better generalization performance.

• KITTI 2012: a challenging and varied road scene dataset
contains 194 training and 195 testing images with the size
H × W = 376× 1236, which only provides sparse dispar-
ity maps as ground truth for training images.

• KITTI 2015: a real-world street views dataset contains 200
training and 200 testing images with the size H × W =
374× 1236, which only provides sparse disparity maps as
ground truth for training images.

(2) Training method
For the training process, our network can be trained from
random initialization in an end-to-end way with the super-
vision of stereo pairs and optimized using AdamOptimizer
with β1 = 0.9, β2 = 0.999, and a batch size of 1 for each
GPUs. Before training, we normalize stereo pairs with pixel
intensities level ranging from 0 to1, and randomly crop
them into 256× 512. During the training process, we adopt
the multi-step training method with four Nvidia 1080Ti
GPUs. Thus, the training process consists of two parts: the
pre-training process and the fine-tuning process.

• In the pre-training process on the SceneFlow dataset, the
learning rate is initially set to 1× 10−3 for 30 epochs and
obtains the pre-train model.

• In the fine-tuning process on the KITTI dataset, the learn-
ing rate is set to 1× 10−3 for 800 epochs and then reduced
to 1× 10−4 for the other 100 epochs. After the training
process, we get the final model.
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(3) Evaluating metric
For evaluating our model and comparing with the state-
of-the-art methods published recently, we show our results’
errors with the following metrics, which have been widely
used in the website of KITTI dataset:

MAE = 1
|N|

∑
i∈T

|d̂ − d|,

D1−bg =

∑
i∈bg

[|d̂ − d| > m ∧ i = vaild]∑
i∈bg

[i = vaild]
,

D1−fg =

∑
i∈fg

[|d̂ − d| > m ∧ i = vaild]∑
i∈fg

[d = vaild]
,

D1−all =
∑
i∈T
[|d̂ − d| > m ∧ i = vaild]∑

i∈T
[d = vaild]

,

where d denotes the ground truth of disparity, d̂ denotes
the estimated depth,m denotes the threshold of error pixel,
[·] denotes the Iverson bracket, bg represents the set of all
points in background regions of the images, fg represents
the set of all points in foreground regions of the images, and
T represents the set of all points in the images.

B) Ablation study for NLCA-Net
To verify our design’s effectiveness, we conduct experi-
ments with different settings to evaluate NLCA-Net on the
SceneFlow dataset. We train different model variants like
the pre-training process, as presented in Section A. We first
compare the performance of different settings, including the
2D GFL module, VBCM, the NLAM module, and the GR
module, as shown in Table 1. Then, we present the represen-
tative results of our model and ablation study of loss weight,

Table 5. Results on KITTI 2015 stereo benchmark.

All pixels Non-occluded pixels

D1-bg D1-fg D1-all D1-bg D1-fg D1-all
Method () () () () () ()

L-ResMatch [38] 2.72 6.95 3.42 2.35 5.76 2.91
MC-CNN-acrt [24] 2.89 8.88 3.89 2.48 7.64 3.33
GC-NET [13] 2.21 6.16 2.87 2.02 5.58 2.61
PSMNet [20] 1.86 4.62 2.32 1.71 4.31 2.14
SsSMnet [21] 2.70 6.92 3.40 2.46 6.13 3.06
SGM-Net [23] 2.66 8.64 3.66 2.23 7.44 3.09
SPS-St [30] 3.84 12.67 5.31 3.50 11.61 4.84
Displets v2 [31] 3.00 5.56 3.43 3.43 4.46 3.09
PBCP [39] 2.58 8.78 3.61 2.27 7.71 3.17
HD3-Stereo [22] 1.70 3.63 2.02 1.56 3.43 1.87
GwcNet [18] 1.74 3.93 2.11 1.61 3.49 1.92
NLCA-Net 1.53 4.09 1.96 1.39 3.80 1.79
NLCA-Net* 1.52 3.79 1.90 1.39 3.55 1.74

Our approach achieves comparable performance to state-of-the-art meth-
ods.
*The number of the non-local blocks is 3.

Table 6. Comparisons of different state-of-the-art methods in the
reflective regions.

Error rates of reflective regions

2 pixels 3 pixels 4 pixels 5 pixels EPE
Method () () () () (px)

MC-CNN-acrt [24] 27.58 20.70 17.17 14.89 4.1
GC-NET [13] 19.07 12.80 9.77 7.99 2.0
PSMNet [20] 16.06 10.18 7.29 5.64 1.4
SsSMnet [21] 22.98 16.59 13.21 11.08 3.6
SGM-Net [23] 25.70 18.97 15.62 13.55 3.8
SPS-St [30] 24.35 18.00 14.88 13.07 3.6
Displets v2 [31] 16.25 10.41 8.02 6.61 2.2
GA-Net [40] 15.63 9.85 7.10 5.54 1.5
GwcNet [18] 14.57 9.28 6.70 5.22 1.4
NLCA-Net 14.49 9.00 6.43 4.88 1.4
NLCA-Net* 14.11 8.78 6.19 4.68 1.6

Average end-point-error (EPE) and the percentage of different pixel-error
are used for evaluations on the KITTI 2012 test set. Compared with other
algorithms, our approach achieves the best performance in most cases.
*The number of the non-local blocks is 3.

Fig. 9. Part zoom-up of the error maps on the occluded region. From left: orig-
inal image, HD3-Stereo, GwcNet, and ours. The result shows that our method
can notably reduce the error rate on the occluded area and handle well with the
large textureless regions.

as shown in Fig. 6 and Table 2. Moreover, we test the impact
of the different numbers of the non-local on the model, as
shown in Table 3.

As shown in Fig. 6 and Table 1, it qualitatively demon-
strates the benefits of using themoduleswhichweproposed.
First, the 2D GFL and NLAM modules show a signifi-
cant performance improvement for the matching accuracy.
For the GFL module, it enhances the scene understanding
ability of the model effectively; for the NLAM module, it
has a strong regularization ability to learning the match-
ing rules and can facilitate the learning process. Second,
the GR module and Lossw function improve the matching
accuracy a little. On a good baseline, the GR module could
further improve the performance and Lossw function could
achieve 1 improvement on whole pixels and 4 on non-
occluded pixels. Finally, the VBCM provides better testing
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accuracy compared with traditional concatenation way, and
it saves half-memory of the cost volume, which reduces
about 300M running memory of the whole framework.

As shown in Table 2, we conduct experiments with var-
ious combinations of loss weights which have the relation-
ship about λ1 + λ2 = 1 and α + β = 1. For the baseline, we
only use the L1 loss function and then continuously adjust
the loss weights to find the weights which yield the best
performance. The result shows that the weight settings of
0.85 for λ1, 0.15 for λ2, 0.8 for α, and 0.2 for β obtain the best
performance, which is a 2.87 three-pixel-error rate on the
SceneFlow test set and a 1.96 three-pixel-error rate on the
KITTI test set.

Finally, we also test our model with different non-local
block (NL-block) numbers. In this part, we set a model
withoutNL-block as the baseline. The impact ofNL-block is
tested by increasing the NL-block number in the model. As
shown in Table 3, we list the results with different NL-blocks
on the SceneFlow and KITTI 2015, indicating that perfor-
mance can be improved by introducing NL-block into the
model. It is also noticed that the improvement decays gradu-
ally as the number of NLB increases, showing the boundary
effect.

C) KITTI 2012 and 2015 benchmark results
To evaluate the performance of our model, we compare
the performance of NLCA-Net with other state-of-the-art
methods on the KITTI dataset. We use the multi-step train-
ing method to train the model, as shown in Section A. We
present the representative images of our model and other
state-of-the-art methods, as shown in Figs 7 and 8. Then,
we evaluate the performance of our model on the KITTI
website,2 as shown in Tables 4 and 5. Besides, we compare
ourmodel with other competing algorithms in the reflective
regions, as presented in Table 6.

As shown in Figs 7 and 8, the proposed method could
produce dense and clear disparity maps. For the non-
occluded region, the proposed method shows the powerful
performance; the disparity maps predicted by NLCA-Net
are sharper and more complete than other learning meth-
ods. Even if in the occluded region, the proposed method
still provides high-level performance and significantly out-
performs other state-of-the-art methods, as shown in Fig. 9.
The results show that our method can notably reduce the
error rate on the occluded area and handle well with the
large textureless regions. It also means the semantic infor-
mation plays an important role, which offers the boundary
information to perfect the edge pixels of objects. Overall,
the proposed method shows the incredible expressiveness
in the matching task.

As shown in Tables 4 and 5, it qualitatively demonstrates
the performance of the proposed method. Compared with
other methods, the proposed method yields more precise
and robust disparitymaps, particularly in the non-occluded
regions. For the KITTI 2012 dataset, our approach is very

2http://www.cvlibs.net/datasets/kitti/eval_stereo.php

close to HD3-Stereo [22] on non-occluded (Out-Noc) in
the error rate of 2 pixels; but for other quality indexes,
our method all achieves the best performance as shown in
the table. For the KITTI 2015 dataset, our approach shows
comparable performance and markedly outperforms other
competing algorithms, including the previous best result
(HD3-Stereo [22] and GwcNet [18]). In short, the proposed
approach is superior to state-of-the-art methods in most
cases.

As shown in Table 6, it qualitatively shows the advan-
tage of our model in the reflective regions. In our designs,
we use attention mechanisms and semantic information
to enhance the ability of scene understanding. Thus, in
the reflective region, the proposed method achieves the
best performance of all quality indexes and significantly
outperforms other state-of-the-art methods. It indicates
the effectiveness of our matching network based on the
contextual attention mechanism, which exhibits robustness
to the reflective regions.

V . CONCLUS IONS

In this work, we present a highly efficient network archi-
tecture for stereo matching. The proposed model can
exploit the global context information to achieve supe-
rior performance in the matching task. The NLAM sig-
nificantly enhances the ability of scene understanding to
improve the accuracy in the challenging regions, such
as occlusions and large textureless/reflective areas. The
variance-based cost volume can provide the similarity infor-
mation and reduces some memory, thus further improv-
ing the performance. The experiment shows that the pro-
posed method can improve the performance in challeng-
ing regions and outperform state-of-the-art methods in
most cases. For future work, we are interested in explor-
ing the generative adversarial network’s potential to achieve
higher accurate semi-supervised or unsupervised stereo
matching.
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APPENDIX A

Detailed network structure. The core architecture of ourNLCA-
Net contains three modules: (1) geometry feature learning
module (GFL); (2) non-local attention matching module
(NLAM); (3) geometry refinement module (GR). We illustrate
the detailed structure of our method is presented in Table 7.
Each 2D or 3D convolutional layer contains three steps: con-
volution, batch normalization (BN), and ReLU non-linearity
(unless otherwise specified).

Zhibo Rao received his M.S. degree in electronic informa-
tion engineering from Nanchang Hangkong University in
2017. He is currently a Ph.D. student in the School of Elec-
tronics and Information, Northwestern Polytechnical Univer-
sity, Xi’an, China. His research interests are pattern recog-
nition, image processing, and deep learning. He has pub-
lished some papers on the ICIP, APSIPA, 3DV, ICIEA,
etc.

Table 7. The summary of our non-local context attention network, NLCA-Net.

Layer description (k, s, f ) Output dimension

No. Input images H × W

Geometry feature learning module (GFL)
conv0_1 3× 3, 2, 32 1/2H × 1/2W × F
conv0_2 [3× 3, 1, 32]× 3 1/2H × 1/2W × F

conv0_3
[
3× 3, 1, 32
3× 3, 1, 32

]
× 3 1/2H × 1/2W × F

conv0_4 3× 3, 2, 64 1/4H × 1/4W × 2F[
3× 3, 1, 64
3× 3, 1, 64

]
× 15

conv0_5 3× 3, 1, 128 1/4H × 1/4W × 4F[
3× 3, 128, dila = 2
3× 3, 128, dila = 2

]
conv0_6 3× 3, 1, 128 1/4H × 1/4W × 4F[

3× 3, 128, dila = 4
3× 3, 128, dila = 4

]

SPP

⎡
⎢⎢⎣
ave_pooling : 64, 1× 1, 1, 32
ave_pooling : 32, 1× 1, 1, 32
ave_pooling : 16, 1× 1, 1, 32
ave_pooling : 8, 1× 1, 1, 32

⎤
⎥⎥⎦ 1/4H × 1/4W × 4F

bilinear interpolation and concatenation
concat conv0_4, conv0_6, and SPP 1/4H × 1/4W × 10F

conv0_7 3× 3, 1, 128 1/4H × 1/4W × F
3× 3, 1, 32 (without BN and ReLU)
construct cost volume via variance-based cost metric 1/4D × 1/4H × 1/4W × F

Non-local attention matching module (NLAM)
conv3_0 3× 3× 3, 1, 32 1/4D × 1/4H × 1/4W × F[

3× 3× 3, 1, 32
3× 3× 3, 1, 32

]
conv3_1 – conv3_4 3× 3× 3, 2, (i + 1) × 32 1

2(i+2) D × 1
2(i+2) H × 1

2(i+2) W × (i + 1)F[
3× 3× 3, 1, (i + 1) × 32
3× 3× 3, 1, (i + 1) × 32

]
, i = 1, 2, 3, 4

conv3_5 non-local block 1/64D × 1/64H × 1/64W × 4F
deconv3_3 – deconv3_0 deconv: 3 × 3× 3, 2, (i + 1) × 32 1

2(i+2) D × 1
2(i+2) H × 1

2(i+2) W × (i + 1)F[
3× 3× 3, 1, (i + 1) × 32
3× 3× 3, 1, (i + 1) × 32

]
, i = 3, 2, 1, 0

add conv3_i
deconv3_4 deconv: 3× 3× 3, 2, 16 1/2D × 1/2H × 1/2W × 1/4F
conv3_6 3× 3× 3, 1, 8 1/2D × 1/2H × 1/2W × 1/4F
deconv3_4 deconv: 3× 3× 3, 2, 1 (without ReLU and BN) D × H × W × 1
initial disparity map Soft argmin H × W

Geometry refinement module (GR)
conv4_0 resize conv0_7 to H × W × F via bilinear interpolation H × W × F

and apply convolutional layer with 1× 1, 1, 32 to fine tuning feature
concat left image, disparity map, and conv4_0 H × W × (F + 4)

conv4_1 3× 3, 1, 32 H × W × F

conv4_2
[
3× 3, 1, 32
3× 3, 1, 32

]
× 4 H × W × F

conv4_5 3× 3, 1, 1 (without BN and ReLU) H × W
refined disparity map add conv4_5 and initial disparity map H × W
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