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Discreteness and group sparsity aware detection
for uplink overloaded MU-MIMO systems
ryo hayakawa, ayano nakai-kasai and kazunori hayashi

This paper proposes signal detection methods for frequency domain equalization (FDE) based overloaded multiuser multiple
input multiple output (MU-MIMO) systems for uplink Internet of things (IoT) environments, where a lot of IoT terminals are
served by a base station having less number of antennas than that of IoT terminals. By using the fact that the transmitted
signal vector has the discreteness and the group sparsity, we propose a convex discreteness and group sparsity aware (DGS)
optimization problem for the signal detection. We provide an optimization algorithm for the DGS optimization on the basis
of the alternating direction method of multipliers (ADMM). Moreover, we extend the DGS optimization into weighted DGS
(W-DGS) optimization and propose an iterative approach named iterative weighted DGS (IW-DGS), where we iteratively solve
theW-DGS optimization problemwith the update of the parameters in the objective function.We also discuss the computational
complexity of the proposed IW-DGS and show that we can reduce the order of the complexity by using the structure of the channel
matrix. Simulation results show that the symbol error rate (SER) performance of the proposedmethod is close to that of the oracle
zero forcing (ZF) method, which perfectly knows the activity of each IoT terminal.
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I . I NTRODUCT ION

Typical Internet of things (IoT) data collection environment
using a base station with a large number of antennas in the
5th generation mobile communications systems (5G) [1, 2]
can be considered as a special case of the massive multiuser
multiple input multiple output (MU-MIMO) communica-
tions system. One of fundamental differences between the
conventional massive MU-MIMO [3] and the IoT data col-
lection is that the number of IoT nodes, in other words, the
number of transmit antennas is typically much greater than
that of receiving antennas even when a large antenna array
is employed at the base station. Combined use with multi-
ple access schemes will enable us to serve a large number
of IoT nodes, but it also introduces additional delay, which
may not be acceptable in many IoT applications.
MIMO systems having greater number of transmit

antennas (more precisely, transmit streams) than that of
receiving antennas is called overloaded MIMO [4–6]. The
signal detection problem in such scenario is very difficult
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due to the underdetermined nature of the problem. How-
ever, if the transmit symbol takes discrete values on a finite
set (alphabet) as in the case of digital communications, we
can detect signals on the basis ofmaximum likelihood (ML)
approach. Since theML approach is not tractable in the case
of massive overloaded MIMO detection, the signal detec-
tion method based on the local neighborhood search has
been proposed [7].Moreover, since the computational com-
plexity of the method is still too high when we use more
than tens of transmit antennas, we have proposed a sig-
nal detection scheme using sum of absolute values (SOAV)
optimization [5], which is based on the idea of convex opti-
mization and compressed sensing [8, 9]. This approach is
especially effective when the number of antennas is large
and the number of elements in the alphabet is small.
Taking advantage of the fact that the transmission rate

from each IoT node is typically low, we have proposed a
detection scheme for uplink orthogonal frequency division
multiplexing (OFDM) IoT signals [10], where the over-
loaded MIMO signal reconstruction scheme in [5, 11] is
employed. However, the method cannot take the depen-
dency between the real and the imaginary parts of the
complex transmitted symbol into consideration because it is
based on the SOAVoptimization in the real-valued domain.
In fact, it cannot use the fact that the real and the imaginary
parts of the transmitted signal become 0 simultaneously
for non-active terminals. To tackle this problem, in [12],
we have employed a sparse complex discrete-valued vector
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reconstruction method named sum of complex sparse reg-
ularizers (SCSR) optimization [13]. In [12], we have focused
on the overloaded MU-MIMO using single carrier block
transmission with cyclic prefix (SC-CP) without precoding,
which is equivalent to theMU-MIMOOFDMwith precod-
ing by a common discrete Fourier transform (DFT) matrix.
In MU-MIMO SC-CP systems, neither the operations of
inverse DFT (IDFT) nor the precoding is required at the
transmitter, which can greatly reduce the complexity of IoT
nodes. Moreover, the SC-CP signals have lower peak-to-
average power ratio (PAPR) than the OFDM signals.
In this paper, we propose signal detection methods for

uplink overloaded MU-MIMO systems on the basis of
the preliminary conference papers [10, 12]. As mentioned
above, the methods in [10, 12] use the discreteness of the
transmitted signal vector to detect signals. However, since
only a small number of terminals are typically active in the
IoT transmission [14], the transmitted signal vector com-
posed by concatenating transmitted signal vectors from all
IoT nodes has not only the discreteness but also the group
sparsity, i.e. most subvectors corresponding to the non-
active terminals have all zero elements. To utilize such group
sparsity, we propose discreteness and group sparsity aware
(DGS) optimization, which uses two regularizers to pro-
mote both the discreteness and the group sparsity of the
transmitted signal vector. TheDGS optimization is a convex
optimization problem in the complex-valued domain and
hence it can also utilize the dependency between the real
and the imaginary parts of the transmitted signals. We pro-
vide an optimization algorithm for the DGS optimization
on the basis of the alternating direction method of mul-
tipliers (ADMM) [15–19]. Moreover, we extend the DGS
optimization into the weighted DGS (W-DGS) optimiza-
tion so that we can use the prior information of the trans-
mitted signal vector. We then propose an iterative approach
called iterative weighted DGS (IW-DGS), where we iterate
the W-DGS optimization and the parameter update in the
objective function.We also discuss the computational com-
plexity of the proposed IW-DGS. By using the structure of
the channelmatrix, we can reduce the order of the complex-
ity. Simulation results show that the proposed IW-DGS can
achieve good symbol error rate (SER) performance close to
the oracle zero forcing (ZF) method, which perfectly knows
the activity of each IoT terminal. We also show that the per-
formance of the proposed method in MU-MIMO OFDM
is significantly improved by using the precoding with the
Hadamard matrix or the DFT matrix.
The additional contributions of this paper against the

preliminary conference papers [10, 12] are summarized as
follows.

• We newly propose the DGS optimization and the corre-
sponding ADMM-based algorithm, which utilizes both
the discreteness and the group sparsity of the transmitted
signal vector. On the other hand, the method in the pre-
liminary papers [10, 12] uses only the discreteness. In fact,
the proposed DGS optimization can be considered as an

extension of the SCSR optimization [13] used in [12]. Sim-
ulation results show that the performance is significantly
improved by using the group sparsity.

• We also propose the iterative approach using the W-DGS
optimization, which can achieve much better perfor-
mance than the DGS optimization.

• We discuss the computational complexity of the proposed
method, and show that we can reduce the order of the
complexity by using the structure of the channel matrix.

• We demonstrate that the performance of the proposed
method is comparable to the oracle ZF method, which
perfectly knows the support of the transmitted signal
vector, i.e. active IoT terminals, via computer simulations.

The rest of the paper is organized as follows. We
describe the overloaded MU-MIMO OFDM system and
the overloaded MU-MIMO SC-CP system in Section II.
In Section III, we propose the overloaded signal detection
methods. Section IV shows simulation results to demon-
strate the performance of the proposed approach. Finally,
Section V gives some conclusions.
We use the following notations in this paper. R is the set

of all real numbers andC is the set of all complex numbers.
We denote the real part and the imaginary part by Re{·}
and Im{·}, respectively. The transpose and the Hermitian
transpose are indicated by (·)T and (·)H, respectively. We
represent the imaginary unit by j, anN × N identity matrix
by IN , the M × N zero matrix by 0M×N , the N × 1 vector
whose elements are all 1 by 1N , and the N × 1 vector whose
elements are all 0 by 0N . For a vector u = [u1 . . . uN]T ∈
C

N , we define the �1 and �2 norms of u as ‖u‖1 =∑N
n=1 |un|

and ‖u‖2 =
√∑N

n=1 |un|2, respectively. diag(u1, . . . , uN) ∈
C

N×N denotes the diagonal matrix whose (n, n) element is
un. We represent the sign function by sign(·). For a convex
function φ : CN → R ∪ {∞}, the proximity operator of φ
is defined as

proxφ (u) = arg min
x∈CN

{
φ (x) + 1

2
‖x − u‖22

}
.

I I . SYSTEM MODEL

In this section, we describe the systemmodel considered in
this paper. In Table 1, we summarize the notation for the
system model.

A) Precoded MU-MIMOOFDM system
We consider uplink communications of IoT environments,
which is modeled as a precoded MU-MIMO OFDM sys-
tem. Figure 1 shows the systemmodel, where the number of
transmit terminals is N, the number of receiving antennas
at the base station isM, and the number of subcarriers isQ.
Given that the number of transmit terminal is typically large
in IoT environments, we focus on the overloaded scenario
and assumeM < N in this paper. The symbol alphabet and
the frequency domain transmitted OFDM symbol vector
from the n-th transmit IoT terminal are denoted by S and
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Table 1. Notation for the system model

Notation Definition

N number of transmit terminals
Nact number of active transmit terminals
M number of receiving antennas
Q number of subcarriers
L length of channel impulse response
S symbol alphabet
sn frequency domain transmitted OFDM symbol vector from

the n-th transmit IoT terminal
rf,OFDMm frequency domain received OFDM signal vector at them-th

receiving antenna
rf,SC-CPm frequency domain received SC-CP signal vector at them-th

receiving antenna
rt,SC-CPm time domain received SC-CP signal vector at them-th

receiving antenna
λ

(m,n)
q frequency response between the n-th IoT terminal and the

m-th receiving antenna
h(m,n)

� impulse response between the n-th IoT terminal and the
m-th receiving antenna

P precoding matrix
D DFT matrix
vfm frequency domain additive white noise vector at them-th

receiving antenna
vtm time domain additive white noise vector at them-th

receiving antenna
σ 2v noise variance

Fig. 1. Uplink MU-MIMO OFDM system for IoT environment.

sn, respectively. Here, taking IoT environment-specific fea-
ture into consideration, we assume only Nact IoT terminals
out of N terminals are active meaning that only Nact ter-
minals transmit OFDM signal blocks. Non-active N − Nact
terminals actually keep silent, but we can regard they trans-
mit all zero signal block 0Q. We thus have sn ∈ SQ when the
n-th terminal is active, and otherwise sn = 0Q.Whenweuse
the cyclic prefix with the length greater than or equal to the
channel order, the received signal vector after the removal
of the cyclic prefix is given by⎡
⎢⎣
rf,OFDM1
...

rf,OFDMM

⎤
⎥⎦ =

⎡
⎢⎣

�(1,1)P · · · �(1,N)P
...

. . .
...

�(M,1)P · · · �(M,N)P

⎤
⎥⎦
⎡
⎢⎣
s1
...
sN

⎤
⎥⎦+

⎡
⎢⎣
vf1
...
vfM

⎤
⎥⎦ , (1)

where rf,OFDMm ∈ C
Q is the frequency domain received

OFDM signal block at them-th receiving antenna [10]. The
diagonalmatrix�(m,n) = diag(λ(m,n)

1 , . . . , λ(m,n)
Q ) ∈ C

Q×Q is
composed of the channel frequency responses with the

order of L − 1 between the n-th IoT terminal and the
m-th receiving antenna. The diagonal elements can be writ-
ten as

⎡
⎢⎣

λ
(m,n)
1
...

λ
(m,n)
Q

⎤
⎥⎦ =

√
QD

⎡
⎢⎢⎢⎣
h(m,n)
1
...

h(m,n)
L
0Q−L

⎤
⎥⎥⎥⎦ , (2)

where D ∈ C
Q×Q is a Q-point unitary DFT matrix defined

as

D = 1√
Q

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 e−j 2π×1×1

Q · · · e−j 2π×1×(Q−1)
Q

...
...

...
1 e−j 2π×(Q−1)×1

Q · · · e−j 2π×(Q−1)×(Q−1)
Q

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

and h(m,n)
1 , . . . , h(m,n)

L denotes the impulse response of the
frequency-selective channel between the n-th IoT termi-
nal and m-th receiving antenna. P ∈ C

Q×Q is a precoding
matrix required to achieve good detection performance by
the convex optimization-based detection scheme.Note that,
in [10], we have numerically confirmed that we do not have
to use different precoding matrices among IoT terminals,
and a common Hadamard precoding matrix leads to good
SER performance. vfm ∈ C

Q is the frequency domain addi-
tive white noise vector at the m-th receiving antenna with
mean 0Q and covariance matrix σ 2v IQ.

B) Non-precoded MU-MIMO SC-CP system
Here, we show a non-precoded MU-MIMO SC-CP sig-
nal model. Assuming the length of cyclic prefix is greater
than or equal to the channel order L − 1, the time domain
received signal block at the m-th receiving antenna of the
base station is written as

rt,SC-CPm =
N∑
n=1

DH�(m,n)Dsn + vtm, (4)

where vtm ∈ C
Q is the time domain additive white noise

vector at the m-th receiving antenna having mean 0Q and
covariance matrix σ 2v IQ [12, 20]. By stacking from rt,SC-CP1 to
rt,SC-CPM in (4), and multiplying a unitary matrix of

⎡
⎢⎢⎢⎢⎣
D 0 · · · 0

0 D
...

...
. . . 0

0 · · · 0 D

⎤
⎥⎥⎥⎥⎦ ∈ C

QM×QM (5)

from the left of both sides, we have the frequency domain
received non-precoded SC-CP IoT signal vector at the base
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station as

⎡
⎢⎣
rf,SC-CP1
...

rf,SC-CPM

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣
D 0 · · · 0

0 D
...

...
. . . 0

0 · · · 0 D

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣
rt,SC-CP1
...

rt,SC-CPM

⎤
⎥⎦ (6)

=

⎡
⎢⎣

�(1,1)D · · · �(1,N)D
...

...
�(M,1)D · · · �(M,N)D

⎤
⎥⎦
⎡
⎢⎣
s1
...
sN

⎤
⎥⎦+

⎡
⎢⎣
vf1
...
vfM

⎤
⎥⎦ ,
(7)

where rf,SC-CPm ∈ C
Q is the frequency domain received SC-

CP signal vector at the m-th base station antenna and
vfm = Dvtm (m = 1, . . . ,M). It should be noted here that this
received signal model can be regarded as a special case of
(1), where the precoding matrix P is set to be D. Thus,
if DFT matrix D is appropriate for the precoding matrix
of overloaded MU-MIMO OFDM system with the con-
vex optimization-based signal detection, then the choice
of non-precoded SC-CP signaling is extremely suited for
IoT environments because this approach requires neither
the IDFT operation nor the precoding operation at the IoT
node (transmitter side).

I I I . PROPOSED S IGNAL
DETECT ION METHOD

The MU-MIMO OFDM signal model (1) and the MU-
MIMO SC-CP signal model (7) can be represented as

r = As + v. (8)

Specifically, we have

r =
[(
rf,OFDM1

)T · · ·
(
rf,OFDMM

)T]T
∈ C

QM (9)

in MU-MIMO OFDM systems and

r =
[(
rf,SC-CP1

)T · · ·
(
rf,SC-CPM

)T]T
∈ C

QM (10)

in MU-MIMO SC-CP systems. A is the whole channel
matrix given by

A =

⎡
⎢⎣

�(1,1)P · · · �(1,N)P
...

...
�(M,1)P · · · �(M,N)P

⎤
⎥⎦ , (11)

where P = D in the case of MU-MIMO SC-CP. s =
[sT1 · · · sTN]T ∈ C

QN and v =
[(
vf1
)T · · · (vfM)T]T

∈ C
QM

are the transmit symbol vector and the additive noise vector,
respectively.
In this section, we describe the proposed signal detection

method to estimate the transmitted symbol vector s from
the received signal vector r and the channel matrixA in (8).

A) Discreteness and group sparsity of
transmitted symbol vector
One of the main ideas of the proposed method is based on
the fact that the transmitted symbol has the discreteness, i.e.
the element of s is in the finite set S ∪ {0}. For the recon-
struction of such discrete-valued vector, several methods
have been proposed [21–24]. Thesemethods reconstruct the
discrete-valued vector in the real domain. For the recon-
struction of the complex discrete-valued vector, SCSR opti-
mization [13] has been proposed by extending the approach
in [24]. For details of the related methods, see Section III-F.
When only a few transmit terminals are active, the trans-

mitted symbol vector s has not only the discreteness but
also the group sparsity, i.e. sn = 0Q holds for most trans-
mit terminals, because the transmitted symbol vector of
non-active terminals can be regarded as 0Q. Note that not
only is s sparse, but multiple transmitted symbols from the
non-active IoT terminal become zero simultaneously when
OFDM or SC-CP signaling is employed. Such group spar-
sity has been utilized as prior knowledge in the literature
of compressed sensing and sparse regression [25–27] as well
as wireless communications [28, 29]. Thus, we can expect a
certain improvement of the detection performance by using
the group sparsity of the transmitted signal vector s.

B) Proposed DGS optimization
The proposedmethod utilizes both the discreteness and the
group sparsity of s discussed in the previous subsection. The
proposed DGS optimization problem is given by

minimize
x∈CQN

{ S∑
�=1

q�g� (x − c�1) + α

N∑
n=1

‖xn‖2
}

subject to ‖r − Ax‖2 ≤ ε, (12)

where c1, . . . , cS denotes all elements in {0} ∪ S . For exam-
ple, when we use quadrature phase shift keying (QPSK)
and setS = {1+ j,−1+ j,−1− j, 1− j

}
, we have S = 5 and

c1 = 0, c2 = 1+ j, c3 = −1+ j, c4 = −1− j, c5 = 1− j. The
vector xn ∈ C

Q is the n-th subvector of x = [xT
1 · · · xT

N
]T ∈

C
QN . q� (> 0), α (> 0), and ε (> 0) are parameters
(� = 1, . . . , S), where ∑S

�=1 q� = 1. The function g�(·) is a
sparse regularizer for a sparse vector in the complex-valued
domain. In this paper, we consider two convex regularizers
given by

h1(u) = ‖u‖1 (13)

=
QN∑
i=1

√
Re{ui}2 + Im{ui}2, (14)

h2(u) = ‖Re{u}‖1 + ‖Im{u}‖1 (15)

=
QN∑
i=1

(|Re{ui}| + |Im{ui}|) (16)

in accordance with [13]. The first one h1(·) is based on the
modulus of the complex number, whereas the second one
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h2(·) considers the real part and the imaginary part sepa-
rately.We can also use some non-convex sparse regularizers
as in [30], though the global optimizer cannot be necessarily
obtained.
The objective function of the DGS optimization (12)

is the weighted sum of two regularizers. The first term∑S
�=1 q�g� (x − c�1) in (12) has been proposed in [13] as

a regularizer for the discrete-valued vector. On the basis
of the idea of compressed sensing [8, 9], the sparse reg-
ularizer g�(·) is applied by using the fact that s − c�1 has
some zero elements. A good choice of the sparse regular-
izer depends on the symbol alphabet S . For example, when
we use QPSK and set c1 = 0, c2 = 1+ j, c3 = −1+ j, c4 =
−1− j, c5 = 1− j, it is reasonable to define g1(·) = h1(·) and
g�(·) = h2(·) (� = 2, . . . , 5). For more detailed discussion,
see [13]. In addition to the first regularizer, we also use
the regularizer α

∑N
n=1 ‖xn‖2 to promote the group sparsity

of s. Note that we use the �2 norm ‖xn‖2 =
√∑Q

i=1
∣∣xn,i∣∣2

of the complex-valued vector xn = [xn,1 · · · xn,Q
]T ∈ C

Q,
whereas the �2 norm of the real valued vector is commonly
used in the literature [25–27].
It should be noted that the conventional method [10]

considers an optimization problem in the real domain,
whereas theDGSoptimization problem (12) is the optimiza-
tion in the complex domain C

QN . Such approach enables
us to directly utilize the discrete nature of the transmitted
symbols in the complex domain. Moreover, the DGS opti-
mization can utilize the group sparsity of the transmitted
symbol vector, which has not been used in the conventional
methods.

C) Proposed algorithm for DGS optimization
based on ADMM
We here propose an algorithm for the DGS optimiza-
tion. Since the objective function of the DGS optimization
problem (12) is not differentiable, simple gradient-based
methods cannot be applied.However, we can derive an opti-
mization algorithm for the DGS optimization (12) on the
basis of ADMM [15–19] by appropriate reformulation as
shown below. We firstly rewrite the DGS optimization
problem (12) with new variables z1, . . . , zS, zGS ∈ C

QN and
zB ∈ C

QM as

minimize
x,z1 ,...,zS ,zGS∈C

QN

zB∈C
QM

{ S∑
�=1

q�g� (z� − c�1)

+ α

N∑
n=1

∥∥zGS,n∥∥2 + χB (zB)

}

subject to x = z1 = · · · = zL = zGS,

Ax = zB. (17)

In (17), we express the constraint ‖r − Ax‖2 ≤ ε in (12)
by χB (zB) = χB (Ax) in the objective function, where

we define B := {u ∈ C
QM | ‖r − u‖2 ≤ ε

}
and the corre-

sponding indicator function

χB(zB) =
{
0 (zB ∈ B)

∞ (zB /∈ B)
. (18)

Since the objective function in (17) becomes infinity when x
does not satisfy the constraint ‖r − Ax‖2 ≤ ε, the optimiza-
tion problem (17) is equivalent to the original optimization
problem (12). The vector zGS,n ∈ C

Q is the n-th subvector of
zGS = [zT

GS,1 · · · zT
GS,N]

T ∈ C
QN . To further rewrite the opti-

mization problem (17), we denote the objective function as

gGS(zGS) =
N∑
n=1

∥∥zGS,n∥∥2 , (19)

f (z) =
S∑

�=1
q�g� (z� − c�1) + αgGS(zGS) + χB (zB) .

(20)

The constraint in (17) can also be summarized as �x = z,
where we define

z = [zT
1 · · · zT

S z
T
GS z

T
B
]T

∈ C
(S+1)QN+QM (21)

� = [IQN · · · IQN IQN AT]T
∈ C

((S+1)QN+QM)×QN . (22)

By using the above expression, the DGS optimization prob-
lem (17) can be finally represented as

minimize
x∈C

QN

z∈C
(S+1)QN+QM

f (z)

subject to �x = z. (23)

The optimization problem (23) is a standard form for
ADMM, and hence we can derive the optimization
algorithm based on ADMM.
The update equations of ADMM for (23) are given by

xk+1 = arg min
x∈CQN

{
ρ
∥∥�x − zk + wk∥∥2

2

}
, (24)

yk+1 = �xk+1 + wk, (25)

zk+1 = arg min
z∈C(S+1)QN+QM

{
f (z) + ρ

∥∥yk+1 − z
∥∥2
2

}
, (26)

wk+1 = yk+1 − zk+1, (27)

where ρ (> 0) is a parameter andwk ∈ C
(S+1)QN+QM . In the

algorithm, xk is the estimate for the transmitted signal vec-
tor s at the k-th iteration. The Wirtinger derivative [31] of
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∥∥�x − zk + wk
∥∥2
2 in (24) with respect to x is given by

∂

∂xH

{∥∥�x − zk + wk∥∥2
2

}
= ((S + 1)IQN + AHA

)
x

−
( S∑

�=1
(zk� − wk

�) + (zkGS − wk
GS) + AH(zkB − wk

B)

)
.

(28)

Here, in the same manner as z in (21), we define
wk
1 , . . . ,w

k
S,w

k
GS ∈ C

QN and wk
B ∈ C

QM as the subvectors of
the vector

wk =
[
wk
1
T · · · wk

S
T wk

GS
T wk

B
T
]T

∈ C
(S+1)QN+QM . (29)

From (28), (∂/∂xH){∥∥�x − zk + wk
∥∥2
2} = 0 gives the

explicit formula for the update of xk in (24) as

xk+1 = ((S + 1)IQN + AHA
)−1 ( S∑

�=1

(
zk� − wk

�

)

+ (zkGS − wk
GS
)+ AH (zkB − wk

B
))
. (30)

The update of yk in (25) can be expressed separately as

yk+1 =

⎡
⎢⎢⎢⎢⎢⎣

yk1
...
ykS
ykGS
ykB

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

x + wk
1

...
x + wk

S
x + wk

GS
Ax + wk

B

⎤
⎥⎥⎥⎥⎥⎦ . (31)

Next, we consider the update of zk in (26), which can be
denoted as

zk+1 = prox(1/2ρ)f
(
yk+1

)
(32)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 + prox(q1/2ρ)g1

(
yk+11 − c11

)
...

cS1 + prox(qS/2ρ)gS

(
yk+1L − cL1

)
prox(α/2ρ)gGS

(
yk+1GS

)
prox(1/2ρ)χB

(
yk+1B

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

because the function f (·) is separable as in (20), where we
have also used the property of proximity operator for trans-
lation [17]. As discussed in [13], the proximity operator of

γ g�(·) can be computed by using

[
proxγ h1 (u)

]
i
=
⎧⎨
⎩(|ui| − γ )

ui
|ui| (|ui| ≥ γ )

0 (|ui| < γ )
, (34)

[
proxγ h2 (u)

]
i
= sign (Re{ui})max (|Re{ui}| − γ , 0)

+ j · sign (Im{ui})max (|Im{ui}| − γ , 0) ,
(35)

where γ > 0 and u = [u1 · · · uQN]T ∈ C
QN . We denote the

i-th element of the vector by [·]i. The proximity operator of
γ gGS(·) is given by

[
proxγ gGS(u)

]
n

=
⎧⎨
⎩

(‖un‖2 − γ )
un

‖un‖2
(‖un‖2 ≥ γ )

0Q (‖un‖2 < γ )
, (36)

where un ∈ C
Q and [proxγ gGS(u)]n ∈ C

Q are the n-th

subvectors of u = [uT
1 · · · uT

N
]T ∈ C

QN and proxγ gGS(u),
respectively. The proximity operator of γχB(·) can be writ-
ten as the projection onto B, i.e.

proxγχB(u) =
⎧⎨
⎩r + ε

u − r
‖u − r‖2

(‖u − r‖2 ≥ ε)

u (‖u − r‖2 < ε)

. (37)

We summarize the proposed algorithm for the DGS opti-
mization (23) in Algorithm 1.

Algorithm 1 Proposed Algorithm for DGS Optimiza-
tion (23)
Input: r ∈ C

QM ,A ∈ C
QM×QN

Output: ŝ ∈ C
CN

1: Fix ρ > 0, z01 , . . . , z
0
L, z

0
GS,w

0
1 , . . . ,w

0
L,w

0
GS ∈ C

QN ,
z0B,w

0
B ∈ C

QM

2: for k = 0 to Kitr − 1 do
3: xk+1 = ((S + 1)IQN + AHA

)−1
4: ×

(∑S
�=1
(
zk� − wk

�

)+ (zkGS − wk
GS
)

5: +AH
(
zkB − wk

B
))

6: yk+1� = xk+1 + wk
� (� = 1, . . . , S)

7: yk+1GS = xk+1 + wk
GS

8: yk+1B = Axk+1 + wk
B

9: zk+1� = c�1 + prox q�
2ρ g�

(
yk+1� − c�1

)
10: (� = 1, . . . , S)
11: zk+1GS,n =

[
prox α

2ρ gGS

(
yk+1GS

)]
n
(n = 1, . . . ,N)

12: zk+1B = prox 1
2ρ χB

(
yk+1B

)
13: wk+1

� = yk+1� − zk+1� (� = 1, . . . , L)
14: wk+1

GS = yk+1GS − zk+1GS
15: wk+1

B = yk+1B − zk+1B
16: end for
17: ŝ = xKitr
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D) IW-DGS
By using the weighting technique in [5, 13, 32], we here
extend the DGS optimization into the W-DGS optimiza-
tion so that we can use prior information. Moreover, we
propose an iterative approach named IW-DGS, where we
iteratively solve the W-DGS optimization with the updated
parameters.
Assuming that the sparse regularizer g�(·) is separable as

h1(·) or h2(·), we extend the DGS optimization (12) to the
W-DGS optimization given by

minimize
x∈CQN

{ S∑
�=1

QN∑
i=1

qi,�g� (xi − c�) +
N∑
n=1

αn ‖xn‖2
}

subject to ‖r − Ax‖2 ≤ ε, (38)

where qi,�,αn (> 0) are the parameters. When qi,� = q�

(i = 1, . . . ,QN) and αn = α (n = 1, . . . ,N), the W-DGS
optimization (38) is equivalent to the DGS optimization
(12). In the W-DGS optimization (38), we can use the dif-
ferent coefficients qi,� and αn for each transmitted symbol si
and transmitted subvector sn, respectively.We can thus tune
these parameters if we have some prior information about
s, e.g. a tentative estimate of s.
We provide the ADMM-based algorithm for theW-DGS

optimization (38). Letting g̃GS,n(zGS) = ‖zGS,n‖2 and f̃ (z) =∑S
�=1
∑QN

i=1 qi,�g�(zi,� − c�) +∑N
n=1 αng̃GS,n(zGS) + χB(zB),

we can rewrite the W-DGS optimization problem (38) as

minimize
x∈C

QN

z∈C
(S+1)QN+QM

f̃ (z)

subject to �x = z, (39)

where z = [zT
1 · · · zT

S z
T
GS z

T
B
]T ∈ C

(S+1)QN+QM , z� =[
z1,� · · · zQN,�

]T ∈ C
QN (� = 1, . . . , S), and zGS = [zT

GS,1 · · ·
zT
GS,N]

T ∈ C
QN . The ADMM-based algorithm for (39) can

be obtained by replacing the update of zk� and zkGS,n in
Algorithm 1 with

zk+1� =

⎡
⎢⎢⎢⎣

c� + prox q1,�
2ρ g�

(
yk+11,� − c�

)
...

c� + prox qCN,�
2ρ g�

(
yk+1CN,� − c�

)
⎤
⎥⎥⎥⎦ , (40)

zk+1GS,n = prox αn
2ρ g̃GS,n

(
yk+1GS,n

)
(41)

=

⎧⎪⎨
⎪⎩
(∥∥∥yk+1GS,n

∥∥∥
2
− αn

2ρ

)
yk+1GS,n∥∥∥yk+1GS,n

∥∥∥
2

(∥∥∥yk+1GS,n

∥∥∥
2
≥ αn

2ρ

)
0Q

(∥∥∥yk+1GS,n

∥∥∥
2
< αn

2ρ

) ,
(42)

respectively, where the vector yk+1GS,n ∈ C
Q is the n-th subvec-

tor of yk+1GS = [yk+1GS,1
T · · · yk+1GS,N]

T
T
.

We propose an iterative algorithm named IW-DGS in
Algorithm 2, where we iteratively compute the solution of

Algorithm 2 IW-DGS
Input: r ∈ C

QM ,A ∈ C
QM×QN

Output: ŝ ∈ C
QN

1: Initialize qi,� = q� (i = 1, . . . ,QN and � = 1, . . . , S) and
αn = α (n = 1, . . . ,N)

2: for t = 1 to T do
3: Fix ρ,α > 0, z01 , . . . , z

0
L, z

0
GS,w

0
1 , . . . ,w

0
L,w

0
GS ∈

C
QN , and z0B,w

0
B ∈ C

QM

4: for k = 0 to Kitr − 1 do
5: xk+1 = ((S + 1)ICN + AHA

)−1
6: ×

(∑S
�=1
(
zk� − wk

�

)+ (zkGS − wk
GS
)

7: +AH
(
zkB − wk

B
))

8: yk+1� = xk+1 + wk
� (� = 1, . . . , S)

9: yk+1GS = xk+1 + wk
GS

10: yk+1B = Axk+1 + wk
B

11: zk+1i,� = c� + prox qi,�
2ρ g�

(
yk+1i,� − c�

)
12: (i = 1, . . . ,QN and � = 1, . . . , S)
13: zk+1GS,n = prox αn

2ρ g̃GS,n

(
yk+1GS,n

)
(n = 1, . . . ,N)

14: zk+1B = prox 1
2ρ χB

(
yk+1B

)
15: wk+1

� = yk+1� − zk+1� (� = 1, . . . , L)
16: wk+1

GS = yk+1GS − zk+1GS
17: wk+1

B = yk+1B − zk+1B
18: end for

19: qi,� =

∣∣∣xKitri − c�
∣∣∣−1∑S

�′=1
∣∣∣xKitri − c�′

∣∣∣−1
20: (i = 1, . . . ,QN and � = 1, . . . , S)
21: αn =

∥∥xKitrn
∥∥−1
2∑N

n′=1
∥∥∥xKitrn′

∥∥∥−1

2

Nα (n = 1, . . . ,N)

22: end for
23: ŝ = xKitr

theW-DGS optimization with the update of the parameters
qi,� andαn. In Fig. 2, we show the illustration of the proposed
IW-DGS. At each outer iteration t, we update the parame-
ters by using the tentative estimate at the previous iteration
t − 1. In this paper, we consider the update given by

qi,� =
∣∣ŝprei − c�

∣∣−1∑S
�′=1
∣∣ŝprei − c�′

∣∣−1 , (43)

αn =
∥∥ŝpren

∥∥−1
2∑N

n′=1
∥∥ŝpren′

∥∥−1
2

Nα, (44)

where we define ŝpre = [(ŝpre1 )T · · · (ŝpreN )T
]T = [ŝpre1 · · ·

ŝpreQN]
T ∈ C

QN as the estimate of s at the previous iteration.
The denominators in (43) and (44) play the role of normal-
ization to satisfy

∑S
�=1 qi,� = 1 for any i = 1, . . . ,QN and∑N

n=1 αn = Nα, respectively. By using (43) and (44), we can
utilize the tentative estimate ŝpre as the prior information.
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Fig. 2. Illustration of IW-DGS.

For example, the parameter qi,� becomes largewhen the cor-
responding tentative estimate ŝprei is close to c�. In this case,
the new estimate of si also tends to be close to c�. Similarly,
the parameter αn becomes large when the norm of corre-
sponding tentative estimate ŝpren is small. In this case, the new
estimate of sn also tends to become almost 0Q.

E) Computational complexity
We here discuss the computational complexity of IW-
DGS in Algorithm 2. The order of the complexity is
dominated by the computation of the inverse matrix
((S + 1)IQN + AHA)−1, which requires O(Q3N3) complex-
ity in a direct calculation [33, Ch. 11]. However, by using the
structure of A, the order of the complexity can be reduced.
We firstly consider the computational complexity for

((S + 1)IQN + AHA)−1 in the case of MU-MIMO OFDM
systems (11) without precoding, i.e. P = IQ. In this case,
� := (S + 1)IQN + AHA ∈ C

QN×QN is composed of N2
diagonal matrices as

� =

⎡
⎢⎣

�(1,1) · · · �(1,N)

...
. . .

...
�(N,1) · · · �(N,N)

⎤
⎥⎦ , (45)

where �(n1 ,n2) = diag(θ(n1 ,n2)
1 , . . . , θ(n1 ,n2)

Q ) = δn1n2(S + 1)
IQ +∑M

m=1(�
(m,n1))H�(m,n2) ∈ C

Q×Q and δn1n2 denotes the
Dirac delta. Since �(n1 ,n2) is a diagonal matrix as well as
�(m,n1) and �(m,n2), each �(n1 ,n2) can be computed with
O(QM). We define

�̃c =

⎡
⎢⎣

θ(1,1)
c · · · θ(1,N)

c
...

. . .
...

θ(N,1)
c · · · θ(N,N)

c

⎤
⎥⎦ ∈ C

N×N (46)

and its inverse matrix

�̃c =

⎡
⎢⎣

ω(1,1)
c · · · ω(1,N)

c
...

. . .
...

ω(N,1)
c · · · ω(N,N)

c

⎤
⎥⎦ (47)

:= �̃
−1
c ∈ C

N×N , (48)

which correspond to the c-th subcarrier. The inverse matrix
of� in (45) can be written as

�−1 =

⎡
⎢⎣

�(1,1) · · · �(1,N)

...
. . .

...
�(N,1) · · · �(N,N)

⎤
⎥⎦ , (49)

where �(n1 ,n2) = diag(ω(n1 ,n2)
1 , . . . ,ω(n1 ,n2)

Q ) ∈ C
Q×Q. Since

each �̃c ∈ C
N×N (c = 1, . . . ,Q) in (48) can be obtained

with O(N3), the overall complexity for the inverse matrix
((S + 1)IQN + AHA)−1 becomes O(QN3), which is much
lower than O(Q3N3) in the direct calculation. It should
be noted that we can compute each �̃c in parallel. More-
over, the computation of the inverse matrix is required only
once in the algorithm. Since the matrix-vector multiplica-
tion related toA requiresO(Q2MN), the overall complexity
of IW-DGS with respect to the system size is O(Q2MN +
QN3) in this case. Note that, in practice, we can compute
the matrix-vector multiplication more efficiently by using
the sparsity of A, i.e. the number of non-zero elements in A
is onlyQMN, whereas the number of all elements isQ2MN.
Even when we use some precoding, we can also reduce

the order of the complexity as long as the precoding
matrix P is orthogonal, i.e. PPH = IQ. From the Sher-
man–Morrison–Woodbury formula [34], we have

((S + 1)IQN + AHA)−1 = 1
S + 1 IQN − 1

(S + 1)2A
H

×
(
IQM + 1

S + 1AA
H
)−1

A.

(50)

By using the orthogonality of P, the matrix � := IQM +
1

S+1AA
H ∈ C

QM×QM in (50) can bewrittenwithM2 diagonal
matrices as

� =

⎡
⎢⎣

�(1,1) · · · �(1,M)

...
. . .

...
�(M,1) · · · �(M,M)

⎤
⎥⎦ , (51)

where�(m1 ,m2) is given by�(m1 ,m2) = δm1m2IQ + (1/(S + 1))∑M
m=1�

(m,n2)P(�(m,n1)P)H = δm1m2IQ + (1/(S + 1))∑M
m=1

�(m,n2)(�(m,n1))H ∈ C
Q×Q (m1,m2 = 1, . . . ,M). Since each

�(m1 ,m2) is a diagonal matrix, we can calculate the inverse
matrix �−1 with O(QM3) in the same manner for � in
(45). Once we have �−1 = (IQM + (1/(S + 1))AAH)−1, we
can update xk only with some matrix-vector multiplica-
tions by using (50). Given that the matrix-vector multipli-
cation requires O(Q2MN), the overall complexity is given
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Table 2. Convex optimization-based methods for discrete-valued vector reconstruction

Method SOAV SSR SCSR DGS (proposed)

Reference [23, 24] [10] [30] [13] [12] [30]
Domain real real real complex complex complex complex
Convexity convex convex non-convex convex convex non-convex convex
Measurement model i.i.d. etc. MU-MIMO i.i.d. i.i.d. etc. MU-MIMO i.i.d. MU-MIMO
Discreteness � � � � � � �
Group sparsity �

by O(Q2MN + QM3) in this case. One drawback of such
approaches is thatwe requiremore number ofmatrix-vector
multiplications compared to the case where we obtain
the inverse matrix ((S + 1)IQN + AHA)−1 in advance.
However, when the complexity for ((S + 1)IQN + AHA)−1

is prohibitive, the approach with the Sherman–Morrison–
Woodbury formula (50) would be a promising
candidate.

F) Related work
We here discuss some related optimization problems pro-
posed for the discrete-valued vector reconstruction. Table 2
summarizes the conventional optimization problems and
the proposed DGS optimization.
The use of the discreteness in the optimization prob-

lem has been proposed as the SOAV optimization [23, 24],
where the sum of �1 norms is used as the regularizer for
the discrete-valued vector. The idea of the SOAV optimiza-
tion has been extended to the discrete-valued vector recon-
struction in the complex-valued domain [13]. Moreover, the
extension to non-convex optimization has been proposed
for both real- and complex-valued cases [30]. The non-
convex optimization in the real-valued domain is called
sum of sparse regularizers (SSR) optimization. Such non-
convex optimization-based approaches can achieve better
performance than the convex ones in some cases. However,
the convergence of the algorithm is not guaranteed for the
non-convex optimization, and the performance is sensitive
to the choice of the parameters.
The works in [13, 23, 24, 30] do not focus on the signal

detection in MU-MIMO systems, and hence the structure
of the measurement matrix is different from the chan-
nel matrix considered in this paper. In [30], for example,
the ideal i.i.d. Gaussian matrix is used. To evaluate the
performance in the MU-MIMO signal detection, the con-
vex SOAV optimization and SCSR optimization have been
applied to the scenario in [10, 12], respectively. The results
show that the use of the discreteness by the convex opti-
mization problems is effective also in theMU-MIMO signal
detection.
The main advantage of the proposed DGS optimization

against the above methods is to utilize the group sparsity
of the unknown vector, which is preferable for the signal
detection in IoT environments considered in this paper.
Moreover, unlike [30], the convergence of the proposed
algorithm based on ADMM is guaranteed because the DGS
optimization is convex.

I V . S IMULAT ION RESULTS

We evaluate the performance of the proposed signal detec-
tion methods via computer simulations. We assume the
QPSK modulation with 1+ j,−1+ j,−1− j, 1− j and set
(c1, c2, c3, c4, c5) = (0, 1+ j,−1+ j,−1− j, 1− j). The num-
ber of subcarriers is Q = 64 and the length of channel
impulse response is L = 10.We use g1(·) = h1(·) and g�(·) =
h2(·) (� = 2, . . . , 5) as the sparse regularizers. In the sim-
ulations, the received signal r and the channel matrix A
are scaled such that the scaled channel matrix Ã satisfies
‖Ã‖2 = 1. We set the parameter ε in the optimization prob-
lems (12) and (38) as

√
QMσ 2v , where σ 2v denotes the noise

variance after the scaling. The parameter of ADMM is set to
ρ = 1. The number of inner iterations in ADMM is Kitr =
200.
We investigate the initial parameters q� (� = 1, . . . , S)

and α of the proposed IW-DGS in Algorithm 2. From
the symmetry of the QPSK constellation, we can set
q2 = · · · = q5. Hence, we firstly tune the parameter q1 by
evaluating the performance of the DGS optimization with
q2 = · · · = q5 = (1− q1)/4. Figure 3 shows the SER perfor-
mance of the proposed IW-DGS with α = 20 versus q1.In
the figure, T denotes the number of outer iterations in IW-
DGS. We assume the MU-MIMO OFDM system without
precoding (P = IQ), where (N,M) = (100, 25), Nact = 15
and Eb/N0 = 15 dB. The figure shows that the best parame-
ter in this case is q1 = 0, which means that we do not have
to promote the sparsity of the transmitted symbol vector by
the first regularizer

∑S
�=1
∑QN

i=1 qi,�g� (xi − c�) in (38). This
could be because the sparsity is sufficiently promoted by the
second regularizer

∑N
n=1 αn ‖xn‖2 in (38) when αn > 0. We

thus use q1 = 0 and q2 = · · · = q5 = 0.25 hereafter. Next,
we examine the parameter α to control the balance between
the two regularizers. Figure 4 shows the SERperformance of
IW-DGSwith q1 = 0 and q2 = · · · = q5 = 0.25 versus α for
(N,M) = (100, 40), Nact = 25 and Eb/N0 = 15 dB. We can
see that the SER performance of IW-DGS is significantly
improved as T increases. Note that α = 0 means that we
do not utilize the group sparsity of the transmitted signal
vector at all, and hence the DGS optimization with α = 0
corresponds to the conventional SCSR optimization [13].
The figure shows that we can significantly improve the SER
performance by promoting the group sparsity with posi-
tive α. This alsomeans that the proposedDGS optimization
can achievemuch better performance than the conventional
SCSR optimization. From the figure, we fix α = 20 in the
following simulations.
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Fig. 3. SER performance of IW-DGS with α = 20 in MU-MIMO OFDM
without precoding ((N,M) = (100, 25), Nact = 15, Eb/N0 = 15 dB).

Fig. 4. SER performance of IW-DGS inMU-MIMOOFDMwithout precoding
((N,M) = (100, 40), Nact = 25, Eb/N0 = 15 dB).

Figures 5 and 6 show the SER performance of IW-
DGS versus Eb/N0 in MU-MIMO OFDM systems without
precoding.We have (N,M) = (50, 25),Nact = 10 in Fig. 5,
and (N,M) = (100, 50),Nact = 20 in Fig. 6. In the figures,
‘oracle ZF’ denotes the oracle ZF method, which per-
fectly knows the activity of each IoT terminal. Specifi-
cally, the estimate of the oracle ZF method is given by
ŝact = (AH

actAact)−1A
H
actr, where ŝact ∈ C

QNact is the estimate
of transmitted symbols of active IoT terminals and Aact ∈
C

QM×QNact is the corresponding submatrix of the whole
channel matrix A. We can see that the performance of IW-
DGS with T = 10 is close to that of the oracle ZF, especially
for larger-scale problems. Moreover, the proposed IW-DGS
can achieve better performance than the oracle ZF for high
Eb/N0.
We then evaluate the effect of the precoding matrix P in

MU-MIMO OFDM systems. Figure 7 shows the SER per-
formance of IW-DGS versus N.We haveM = 0.4N, Nact =
0.3N, and Eb/N0 = 15 dB. In the figure, ‘non-precoded’
shows the SERperformancewhenwe donot use the precod-
ing, i.e. P = IQ. ‘Hadamard’ shows the performance with
the precoding by the Hadamard matrix of order Q. ‘DFT’

Fig. 5. SER performance of IW-DGS inMU-MIMOOFDMwithout precoding
((N,M) = (50, 25), Nact = 10).

Fig. 6. SER performance of IW-DGS inMU-MIMOOFDMwithout precoding
((N,M) = (100, 50), Nact = 20).

Fig. 7. SER performance of IW-DGS versus N (M = 0.4N, Nact = 0.3N,
Eb/N0 = 15 dB).
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Fig. 8. SER performance of IW-DGS inMU-MIMOSC-CP ((N,M) = (50, 25),
Nact = 10).

shows the performance in the case with the DFT precod-
ing, which is equivalent to MU-MIMO SC-CP systems. We
can see that the performance in the precoded systems is
much better than that in the non-precoded case. Even when
N = 10, we can achieve the SER of 10−4 by using the
precoding.
Finally, we show the SER performance versus Eb/N0 in

MU-MIMO SC-CP systems. Figure 8 shows the SER per-
formance of IW-DGS inMU-MIMO SC-CPwith (N,M) =
(50, 25) and Nact = 10.We can see that the proposed IW-
DGS with T = 10 can also achieve almost the same perfor-
mance as the oracle ZF in this case.

V . CONCLUS ION

In this paper, we have proposed the signal detectionmethod
for the uplink overloadedMU-MIMO systems for IoT envi-
ronments. First, we have shown that theMU-MIMOSC-CP
system can be regarded as the MU-MIMO OFDM sys-
tem with the DFT precoding. Since the SC-CP approach
requires neither IDFT operation nor precodingmatrixmul-
tiplication at the transmitter side, it is suited to the IoT
data collection scenario, where cost, capability, and energy
of the transmitter are extremely limited. Moreover, PAPR
of SC-CP signals is lower than that of OFDM signals. We
then have proposed the signal detection method named
IW-DGS, where we iteratively solve the W-DGS optimiza-
tion with updating the parameters in the objective function.
The proposed IW-DGS can utilize both the discreteness and
the group sparsity of the transmitted signal vector. By
using the structure of the channel matrix, we can reduce
the order of the computational complexity of the proposed
IW-DGS. Simulation results show that IW-DGS can achieve
good performance close to the oracle ZF method in the
overloaded scenarios, where the number of receiving anten-
nas is less than that of IoT terminals. Moreover, by using the
precoding with the Hadamard matrix or the DFT matrix,
we can significantly improve the SER performance of the

proposed method. Future work includes the extensive per-
formance evaluation of the proposed method and exten-
sion to a non-convex optimization-based approach with the
iterative weight update.
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