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PortraitGAN for flexible portrait manipulation
jiali duan,1 xiaoyuan guo2 and c.-c. jay kuo1

Previous methods have dealt with discrete manipulation of facial attributes such as smile, sad, angry, surprise, etc., out of
canonical expressions and they are not flexible, operating in single modality. In this paper, we propose a novel framework
that supports continuous edits and multi-modality portrait manipulation using adversarial learning. Specifically, we adapt
cycle-consistency into the conditional setting by leveraging additional facial landmarks information. This has two effects: first
cycle mapping induces bidirectional manipulation and identity preserving; second pairing samples from different modalities
can thus be utilized. To ensure high-quality synthesis, we adopt texture-loss that enforces texture consistency and multi-level
adversarial supervision that facilitates gradient flow. Quantitative and qualitative experiments show the effectiveness of our
framework in performing flexible and multi-modality portrait manipulation with photo-realistic effects. Code will be made
public: shorturl.at/chopD.
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I . I NTRODUCT ION

Our digital age has witnessed a soaring demand for flex-
ible, high-quality portrait manipulation, not only from
smart-phone apps but also from photography industry, e-
commerce, and movie production, etc. Portrait manipu-
lation is a widely studied topic [1–6] in computer vision
and computer graphics. From another perspective, many
computer vision problems can be seen as translating image
from one domain (modality) to another, such as coloriza-
tion [7], style transfer [8–11], image inpainting [12], and
visual attribute transfer [13], etc. This cross-modality image-
to-image translation has received significant attention [14,
15] in the community. In this paper, we define different styles
as modalities and try to address multi-modality transfer
using a single model. In terms of practical concern, transfer
between each pair of modalities as opposed to SPADE [16]
or GANPaint [17] whose manipulation domain is fixed.

Recently, generative adversarial networks have demon-
strated compelling effects in synthesis and image translation
[14, 15, 18–21], among which [15, 22] proposed cycle-
consistency for unpaired image translation. In this paper,
we extend this idea into a conditional setting by leverag-
ing additional facial landmarks information, which is capa-
ble of capturing intricate expression changes. Benefits that
arise with this simple yet effective modifications include:

1University of Southern California, 3740 McClintock Avenue, Los Angeles, USA
2Emory University, 201 Dowman Dr, Atlanta, USA

Corresponding author:
Jiali Duan
Email: jialidua@usc.edu

First, cycle mapping can effectively prevent many-to-one
mapping [15, 23] also known as mode-collapse. In the
context of face/pose manipulation, cycle-consistency also
induces identity preserving and bidirectionalmanipulation,
whereas previous method [1] assumes neutral face to begin
with or is unidirectional [24, 25], manipulating in the same
domain. Second, face images of different textures or styles
are considered different modalities and current landmark
detector will not work on those stylized images. With our
design, we can pair samples from multiple domains and
translate between each pair of them, thus enabling land-
mark extraction indirectly on stylized portraits. Our frame-
work can also be extended to makeups/de-makeups, aging
manipulation, etc., once corresponding data are collected.
In this work, we leverage [10] to generate pseudo-targets, i.e.
stylized faces to learn simultaneous expression and modal-
ity manipulations, but it can be replaced with any desired
target domains.

However, there remain two main challenges to achieve
high-quality portrait manipulation. We propose to learn a
single generator G as in [26]. But StarGAN [26] deals with
discrete manipulation and fails on high-resolution images
with irremovable artifacts. To synthesize images of photo-
realistic quality (512 × 512), we propose multi-level adver-
sarial supervision inspired by [27, 28] where synthesized
images at different resolution are propagated and combined
before being fed into multi-level discriminators. Second,
to avoid texture inconsistency and artifacts during transla-
tion between different domains, we integrate Gram matrix
[8] as a measure of texture distance into our model as it
is differentiable and can be trained end-to-end using back
propagation. Figure 1 shows the result of our model.
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Fig. 1. More results for continuous shape edits and simultaneous shape and modality manipulation results by PortraitGAN.

Extensive evaluations have shown both quantitatively
and qualitatively that ourmethod is comparable or superior
to state-of-the-art generative models in performing high-
quality portrait manipulation. Our model is bidirectional,
which circumvents the need to start from a neutral face or
a fixed domain. This feature also ensures stable training,
identity preservation, and is easily scalable to other desired
domain manipulations. In the following section, we review
related works to ours and point out the differences. Details
of PortraitGAN are elaborated in Section III. We evalu-
ate our approach in Section IV and conclude the paper in
Section V.

I I . RELATED WORK

Face editing
Face editing or manipulation is a widely studied area in
the field of computer vision and graphics, including face
morphing [29], expression edits [30, 31], age progression
[32], facial reenactment [1, 6, 33]. However, these mod-
els are designed for a particular task and rely heavily on
domain knowledge and certain assumptions. For example,
[1] assumes neutral and frontal faces to begin with while
[6] employs 3D model and assumes the availability of tar-
get videoswith variation in both poses and expressions. Our
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model differs from them as it is a data-driven approach that
does not require domain knowledge, designed to handle
general face manipulations.

Image translation
Our work can be categorized into image translation with
generative adversarial networks [14, 18, 22, 27, 34, 35], whose
goal is to learn a mapping G : X → Ŷ that induces an
indistinguishable distribution to target domain Y , through
adversarial training. For example, Isola et al. [14] take
image as a condition for general image-to-image transla-
tion trained on paired samples. Later, Zhu et al. [15] build
upon [14] by introducing cycle-consistency loss to obviate
the need of matched training pairs. In addition, it alleviates
many-to-one mapping during training generative adversar-
ial networks also known as mode collapse. Inspired by this,
we integrate this loss into our model for identity preserva-
tion between different domains.

Another seminal work that inspired our design is Star-
GAN [26], where target facial attributes are encoded into
a one-hot vector. In StarGAN, each attribute is treated as a
different domain and an auxiliary classifier used to distin-
guish these attributes is essential for supervising the training
process. Different from StarGAN, our goal is to perform
continuous edits in the pixel space that cannot be enumer-
ated with discrete labels. This implicitly implies a smooth
and continuous latent space where each point in this space
encodes meaningful axis of variation in the data. We treat
different style modalities as domains in this paper and
use two words interchangeably. In this sense, applications
like beautification/de-beautification, aging/younger, with
beard/without beard can also be included into our general
framework. We compare our approach against CycleGAN
[15] and StarGAN [26] during experiments and illustrate in
more details about our design in the next section.

Landmark guided generation
In [36], an offline interpolation process is adopted for gen-
erating face boundary map, to be used for GMM clustering
and as conditional prior. There are two key differences:
(1) the number of new expressions depends on clustering,
possibly not continuous; (2) boundary heat map is esti-
mated offline. In [37], facial landmarks are represented as
VAE encoding for GAN. In contrast, the major goal of our
framework is to support online, flexible, even interactive
in user experience, which is why we process and leverage
landmarks in a different way, as a channel map.

There are also works that use pose landmarks as condi-
tion for person image generation [25, 38–40]. For example,
[24] concatenates one-hot pose feature maps in a channel-
wise fashion to control pose generation. Different from
our approach, each landmark constitutes one channel. In
[41], keypoints and segmentation mask of birds are used
to manipulate locations and poses of birds. To synthesize
more plausible human poses, Siarohin et.al [39] develop
deformable skip connections and compute a set of affine
transformations to approximate joint deformations. These

works share some similarity with ours as both facial land-
mark and human skeleton can be seen as a form of pose rep-
resentation. However, the above works deal with manipula-
tion in the original domain and does not preserve identity.

Style transfer
Exemplar-guided neural style transfer was first proposed by
Gatys et al. [8]. The idea is to preserve content from the orig-
inal image and mimic “style” from a reference image. We
adopt Gram matrix in our model to enforce pattern consis-
tency. We apply a fast neural-style transfer algorithm [10]
to generate pseudo targets for multi-modality manipula-
tions. Another branch of work [16, 42] try to model style
distribution in another domain which is in favor of one-
to-many mapping in the target domain, or collection style
transfer [43].

I I I . PROPOSED METHOD

Problem formulation
Given domains X1,X2,X3, . . . ,Xn of different modalities,
our goal is to learn a single general mapping function

G : Xi → Xj, ∀i, j ∈ {1, 2, 3, . . . , n} (1)

that transforms IA from domain A to IB from domain
B in a continuous manner. Equation 1 implicitly implies
that G is bidirectional given desired conditions. We use
facial landmark Lj ∈ R1×H×W to denote facial expres-
sion in domain j. Facial expressions are represented
as a vector of 2D keypoints with N = 68, where each
point ui = (xi, yi) is the ith pixel location in Lj. We use
attribute vector c = [c1, c2, c3, . . . , cn] to represent the target
domain. Formally, our input/output are tuples of the form
(IA,LB, cB)/(IB,LA, cA) ∈ R(3+1+n)×H×W .

Model architecture
The overall pipeline of our approach is straightforward,
shown in Fig. 2 consisting of three main components:
(1) A generator G(I ,L, c), which renders an input face in
domain c1 to the same person in another domain c2 given
conditional facial landmarks. G is bidirectional and reused
in both forward as well as backward cycle. First mapping
IA → ÎB → ÎA and then mapping back IB → ÎA → ÎB
given conditional pair (LB, cB)/(LA, cA). (2) A set of dis-
criminators Di at different levels of resolution that distin-
guish generated samples from real ones. Instead of mapping
I to a single scalar which signifies “real” or “fake”, we adopt
PatchGAN [9] which uses a fully convnet that outputs a
matrix where each elementMi,j represents the probability of
overlapping patch ij to be real. If we trace back to the origi-
nal image, each output has a 70 × 70 receptive field. (3) Our
loss function takes into account identity preservation and
texture consistency between different domains. In the fol-
lowing sections, we elaborate on each module individually
and then combine them together to construct PortraitGAN.
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A) Base model
To begin with, we consider manipulation of emotions in the
same domain, i.e. IA and IB are of same texture and style,
but with different face shapes denoted by facial landmarks
LA and LB. Under this scenario, it is sufficient to incor-
porate only forward cycle and conditional modality vector
is not needed. The adversarial loss conditioned on facial
landmarks follows equation 2.

LGAN(G,D) = EIB[log(D(IB)]
+ E(IA ,LB)[log(1 − D(G(IA,LB)))] (2)

A face verification loss is desired to preserve identity
between IB and ÎB = G(IA,LB). However, in our experi-
ments, we find �1 loss to be enough and it is better than �2
loss as it alleviates blurry output and acts as an additional
regularization [14].

Lid(G) = E(IA ,LB ,IB)||IB − G(IA,LB)||1 (3)

The overall loss is a combination of adversarial loss and
�1 loss, weighted by λ.

Lbase = LGAN(G,D)+ λLid(G) (4)

B) Multi-level adversarial supervision
Manipulation at a landmark level requires high-resolution
synthesis, which is challenging [44], because it is harder to
optimize.

Here we use two strategies for improving generation
quality and training stability. First our conditional facial
landmark acts as an additional constraint for generation.
Second, we adopt a multi-level feature matching loss [8, 45]
to explicitly require G to match statistics of real data that D
finds most discriminative at feature level as follows.

LFM(G,Dk) = E(IA ,IB)

T∑
i=1

1
Ni

‖Di
k(IB)− Di

k(G(IA,LB))‖1
(5)

Fig. 3. Multi-level adversarial supervision.

we denote the ith-layer feature extractor of discriminatorDk
as Di

k, where T is the total number of layers and Ni denotes
the number of elements in each layer.

Third, we provide fine-grained guidance by propagating
multi-level features for adversarial supervision (Fig. 3). Cas-
caded upsampling layers in G are connected with auxiliary
convolutional branches to provide images at different scales
(ÎB1, ÎB2, ÎB3 . . . ÎBm), wherem is the number of upsampling
blocks. These images are fed into discriminators at different
scales Dk. Applying it to equation 4 we get,

Lmulti =
∑
k

[LGAN (G,Dk)+ βLFM(G,Dk)] + γLid(G)

(6)

Compared to [28], our proposed discriminators respon-
sible for different levels are optimized as a whole rather
than individually for each level. The increased discrimina-
tive ability fromDk in turn provides further guidance when
training G (equation 6).

C) Texture consistency
When translating between different modalities in high-
resolution, texture differences become easy to observe.
Inspired by [8], we let ψk

I,L be the vectorized kth extracted

Fig. 2. Overview of training pipeline: In the forward cycle, original image IA is first translated to ÎB given target emotion LB andmodality C and then mapped back
to ÎA given condition pair (LA,C′) encoding the original image. The backward cycle follows similar manner starting from IB but with opposite condition encodings
using the same generator G. Identity preservation and modality constraints are explicitly modeled in our loss design.
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feature map of image I from neural network ψ at layer L.
GI,L ∈ Rκ×κ is defined as,

GI,L(k, l) =< ψk
I,L,ψ

l
I,L >=

∑
i

ψk
I,L(i) · ψ l

I,L(i) (7)

where κ is the number of featuremaps at layer L andψk
I,L(i)

is ith element in the feature vector. Equation 7 also known
as Gram matrix can be seen as a measure of the correlation
between feature maps k and l, which only depends on the
number of feature maps, not the size of I . For image IA and
IB, the texture loss at layer L is,

LL
texture(ÎB, IB) = ||GÎB ,L − GIB ,L||2 (8)

where ÎB = G(IA,LB). We obtain obvious improvement
in quality of texture in cross-modality generation and we
use pretrained VGG19 for texture feature extraction in our
experiments with its parameters frozen during optimiza-
tion.

D) Bidirectional portrait manipulation
To transfer to a target domain X , an additional one-hot
encoding vector c ∈ Rn is conditioned as input. Specifically,
each element is first replicated spatially into size H × W
and then concatenated with image and landmark along the
channel axis. The only change to previous equations is that
instead of taking (IA,LB) as input, the generator G now
takes (IA,LB, c), where c indicates the domain where IB
belongs to.

To encourage bijection between mappings in different
modality manifold and to prevent mode collapse, we adopt
cycle-consistency structure similar to [15], which consists
of a forward and a backward cycle, for both generating
directions.

Lcyc(G) = E(IA ,LB ,c,c′)[||G(G(IA,LB, c),LA, c′)− IA||]1
+ E(IB ,LA ,c,c′)[||G(G(IB,LA, c′),LB, c)− IB||]1

(9)

where c and c′ encodes modality for IB and IA respec-
tively. Note that only one set of generator/discriminator is

used for bidirectional manipulation. Our final optimization
objective for PortraitGAN is as follows,

LPortraitGAN = LmultiA→B + LmultiB→A

+ α ∗ Lcyc + η ∗ Ltexture (10)

where α,η controls the weight for cycle-consistency loss and
texture loss respectively.

I V . EXPER IMENTAL EVALUAT ION

Our goal in this section is to test our model’s capability
in (1) continuous shape editing; (2) simultaneous modal-
ity transfer. We also created testbed for comparing our
model against two closely related SOTA methods [15, 26],
though they do not support either continuous shape editing
and multi-modality transfer directly. The aim is to provide
quantitative and qualitative analysis in terms of perceptual
quality. Additionally, we also conducted ablation studies for
our components.

Implementation details
Each training step takes as input a tuple of four images (IA,
IB, LA, LB) randomly chosen from possible modalities of
the same identity. Attribute conditional vector, represented
as a one-hot vector, is replicated spatially before channel-
wise concatenation with corresponding image and facial
landmarks. Our generator uses 4 stride-2 convolution lay-
ers, followed by nine residual blocks and 4 stride-2 trans-
pose convolutions while auxiliary branch uses one-channel
convolution for fusion of channels. We use two three-layer
PatchGAN [9] discriminators for multi-level adversarial
supervision and Least Square loss [46] for stable training.
Layer conv1_1-conv5_1 of VGG19 [47] are used for comput-
ing texture loss. We set α, β , γ , η as 2, 10, 5, 10 to ensure
that loss components are at the same scale. There are four
styles used in our experiment, for training a unified deep
model for shape and modality manipulation. The training
time for PortraitGAN takes around 50 h on a single Nvidia
1080 GPU.

Fig. 4. Interactive manipulation without constraints. Column 1st–2nd: Original image and auto-detected facial landmarks; 3rd: generated image from 1st-2nd; 4th:
manipulated target landmark; 5th: inverse modality generation from 3rd–4th; 6th: photo to style generation with landmarks of 5th.
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Fig. 5. Given leftmost and rightmost face, we first interpolate the middle one (e.g. the 4th one), then we can interpolate 2nd (with 1st and 4th) and 5th (with 4th
and 7th). Lastly, we interpolate 3rd (with 2nd and 4th) and 6th (with 5th and 7th).

Dataset
We collected and combined the following three emotion
dataset for experiments and performed a 7/3 split based on
identity for training and testing. (1) The Radboud Faces
Database [48] contains 4,824 images with 67 participants,
each performing eight canonical emotional expressions:
anger, disgust, fear, happiness, sadness, surprise, contempt,
and neutral. (2) iCV Multi-Emotion Facial Expression
Dataset [49] is designed for micro-emotion recognition,
which includes 31,250 facial expressions from 125 subjects
performing 50 different emotions. (3) We also collected
20 videos of high-resolution from Youtube (abbreviated
as HRY Dataset) containing 10 people giving speech or
talk. For the above dataset, we use dlib [50] for facial
landmark extraction and [10] for generating portraits of
multiple styles. Extracted landmarks and stylized images
correspond to groundtruth LB and IB respectively for
equation 5.

Comparison protocol
CycleGAN [15] is considered state-of-the-art in image
translation and is closely related to our work in terms
of consistency-loss design. StarGAN [26] is also related
because it supports multiple attribute transfer using a sin-
gle generator. However, direct comparison is not possible
since none of the two approaches support continuous shape
edits. Therefore, to comparewithCycleGAN,we use the fol-
lowing pipeline: Given image pair IA,IB, which are from
domain A and B, CycleGAN translates IA to ÎB, which
has content from IA and modality from IB. This can be
achieved with our approach with landmark LA unchanged.
To compare with StarGAN, we train StarGAN on discrete
canonical expressions and compare it with our approach
which is conditioned on facial landmarks.

A) Portrait manipulation
Our model is sensitive for edits in eyebrows, eyes, and
mouth but less so for nose. The reason is because there is
little change in nose shape in our collected database. Never-
theless, ourmodel is able to handle continuous edits because

Fig. 6. Failure cases: The reason could be that facial landmarks do not capture
well enough details of micro-emotions.

of abundant variations of expressions in data. For example,
in Fig. 4 of the paper, the 1st-row achieves face-slimming as
a result of pulling landmarks for left (right) cheeks inward,
even though there is no slim-face groundtruth as train-
ing data. Similarly, the 2nd-row of Fig. 4 shows the mouth
fully-closed bymerging landmarks for upper and down lips.
These two results were obtained with a web tool we devel-
oped for interactive portrait manipulation1, where users
can manipulate facial landmarks manually and evaluate the
model directly.

Another example for continuous edits is face interpola-
tion. Our model is capable of generating new facial expres-
sions unseen for a certain person. For example, given two
canonical expressions (e.g. surprise and smile), we can
interpolate2 a neutral expression in between through inter-
polating their facial landmarks. The granularity of face edits
depends on the gap between two facial landmarks. Here
we show a more challenging case, where we interpolate
five intermediate transitions given only two real faces. In
this case, the quality of the 3rd face is dependent on pre-
vious generations (i.e. after the 2nd and 4th fake faces are
generated). In Fig. 5, our model can gradually transition
a surprise emotion to a smile emotion, beyond canonical
emotions.

Compared to discrete conditional labels, facial landmark
gives full freedom for continuous shape editing. As can
be seen, our model integrates two functions into a single

1The tool will be released at: https://github.com/davidsonic/Flexible-
Portrait-Manipulation.

2Please refer to supplementary material for more details.

https://github.com/davidsonic/Flexible-Portrait-Manipulation
https://github.com/davidsonic/Flexible-Portrait-Manipulation
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Fig. 7. Left: original image; Right: generated image.

Fig. 8. Left: original image; Right: generated image.

model: shape edits (when modality is fixed) and style trans-
fer (when landmark is fixed). Not only that, our model
supports bidirectional transfer using a single generator, i.e.
from natural domain to stylistic domain (1st column to
3rd column or from 5th to 6th) or from stylistic domain
to natural domain (3rd column to 5th column). The user
can manipulate in any domain and can generate edited
shapes in another domain immediately. For example, the

1st row successfully performed simultaneous face-slimming
and stylistic transfer.

However, there does exist some failure cases, which gen-
erally happen in iCV dataset. In Fig. 6, we tried to manip-
ulate landmark in order to change the original expression
(1st column) into groundtruth (4th column) but failed.
The closest generated result we can get is shown in the
3rd column. As can be seen, the generated picture fails to
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Fig. 9. Left: original image; Right: generated image.

Fig. 10. Left: original image; Right: generated image.

mimic the intricate expression displayed in groundtruth.
Given that iCV is a micro-emotion dataset, our guess is
that 68 landmark is not sufficient for capturing subtle
expressions.

An overview of manipulation results are shown in Fig. 1.
Some interesting generations were observed. For example,
our model seems to be capable of learning some common
knowledge, i.e. teeth is hallucinated when mouth is open

(1st row, 4th-6th column), after we manipulate the land-
marks along the edge of mouth. It is also surprising that
our model can preserve obscure details such as earrings
(5th row, 4th–6th column). We also notice some artifacts
during translation (3rd–4th row, 8th column). The reason
is due to the challenge in handling emotion changes and
multi-modal transfer with a single model. Having said that,
our framework shows promising results in trying to address
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Fig. 11. Left: original image; Right: generated image.

Fig. 12. Left: original image; Right: generated image.

both simultaneously. For high-resolution (512x512) synthe-
sis, please refer to Figs. 7, 8, 9, 10, 11, 12, 13, 14. As can
be seen, our model is able to manipulate expression and
style based on landmark prior of the target emotion with
photo-realistic effect.We refer readers to the supplementary
material for more qualitative results. We will also release
a website showcasing more results in original resolution
(512*512) on Github3.

3https://github.com/davidsonic/Flexible-Portrait-Manipulation.git.

Ablation study
Each component is crucial for the proper performance
of the system, which we demonstrate through qualitative
figures and quantitative numbers in Table 1. Firstmulti-level
adversarial loss is essential for high-resolution generation.
As can be seen in Fig. 15, face generated with this design
exhibits more fine-grained details and thus more realistic.
In Table 1, SSIM drops 1.6 without this loss. Second, tex-
ture loss is crucial for pattern similarity during modality
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Fig. 13. Left: original image; Right: generated image.

Fig. 14. Left: original image; Right: generated image.

transformation. As shown in Fig. 16, PortraitGAN gener-
ates more consistent textures compared to StarGAN and
CycleGAN. In Table 1, SSIM drops 3.6 if without. Last but
not least, Lcyc and Lid help preserve identity.

B) Perceptual quality

Quantitative analysis
We incorporated 1000 images (500 stylized and 500 natural)
to conduct quantitative analysis. For generative adversarial

network, two widely used metric for image quality is MSE
and SSIM, between the generated image and groundtruth.
ForMSE, the lowermeansmore fidelity to groundtruth, and
for SSIM the higher the better. Table 1 shows quantitative
results betweenCycleGAN, StarGAN, and our approach. As
can be seen, our method achieves the best MSE and SSIM
score while maintaining relatively fast speed.

Subjective user study
As pointed out in [14], traditional metrics should be taken
with care when evaluating GAN, therefore we adopt the
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Fig. 15. Effect of multi-level adversarial supervision. Left/Right: wo/w multi-
-level adversarial supervision. Please also refer to the supplementary material
for the high-resolution (512 × 512) version.

same evaluation protocol as in [14, 15, 26, 27] for human sub-
jective study generated images. We collect responses from
10 users (5 experts, 5 non-experts) based on their prefer-
ences about images displayed at each group in terms of
perceptual realism and identity preservation. Each group
consists of one photo input and three randomly shuffled
manipulated images generated by CycleGAN [15], StarGAN
[26], and our approach. We conducted two rounds of user
study where the 1st round has a time limit of 5 s while 2nd
round is unlimited. There are in total 100 images and each
user is asked to rank three methods on each image twice.

Table 1. Quantitative evaluation for generated image. Our model is
slightly slower than StarGAN but achieves the best MSE and SSIM.

Method MSE↓ SSIM↑ inference time(s)↓
CycleGAN 0.028 0.473 0.365
StarGAN 0.029 0.483 0.263
Ours wo/ Lmulti + Ltexture 0.028 0.472 0.271
Ours wo/ Lmulti 0.011 0.639 0.277
Ours wo/ Ltexture 0.013 0.619 0.285
Ours 0.011 0.655 0.290

Our model gets the best score among three methods as
shown in Table 2.

V . CONCLUS IONS

We present a flexible portrait manipulation framework that
integrates continuous shape edits andmodality transfer into
a single adversarial framework. To overcome the technical
challenges, we proposed to condition on facial landmark

Fig. 16. Comparison with StarGAN and CycleGAN. Images generated by our model exhibit closer texture proximity to groundtruth, due to adoption of texture
consistency loss.
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Table 2. Subjective ranking for different models based on perceptual
quality. Our model is close to CycleGAN but is much better than

StarGAN.

Method () 1st round 2nd round Average

StarGAN 31.2 32.3 31.75
CycleGAN 33.0 33.5 33.25
Ours 35.8 34.2 35.0

as input and designed a multi-level adversarial supervi-
sion structure for high-resolution synthesis. Beyond photo
quality, our loss function also takes into account iden-
tity and texture into consideration, verified by our abla-
tion studies. Experimental results show the promise of our
framework in generating photo-realistic and supporting
flexible manipulations. For future work, we would like to
improve on the stability of training.
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