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ORIGINAL PAPER

End-to-end recognition of streaming Japanese
speech using CTC and local attention

JIAHAO CHEN,1 RYOTA NISHIMURA' AND NORIHIDE KITAOKA?”

Many end-to-end, large vocabulary, continuous speech recognition systems are now able to achieve better speech recognition
performance than conventional systems. Most of these approaches are based on bidirectional networks and sequence-to-sequence
modeling however, so automatic speech recognition (ASR) systems using such techniques need to wait for an entire segment of
voice input to be entered before they can begin processing the data, resulting in a lengthy time-lag, which can be a serious
drawback in some applications. An obvious solution to this problem is to develop a speech recognition algorithm capable of
processing streaming data. Therefore, in this paper we explore the possibility of a streaming, online, ASR system for Japanese
using a model based on unidirectional LSTMs trained using connectionist temporal classification (CTC) criteria, with local
attention. Such an approach has not been well investigated for use with Japanese, as most Japanese-language ASR systems
employ bidirectional networks. The best result for our proposed system during experimental evaluation was a character error

rate of 9.87%.

Keywords: CTC, Local attention, Speech recognition, Streaming recognition

Received 8 July 2020; Revised 25 October 2020

I. INTRODUCTION

Opver the last several years, deep neural networks have been
used to achieve state-of-the-art performance in large scale,
automatic speech recognition (ASR) tasks. Various types of
deep neural networks have been used in ASR systems, such
as convolutional neural networks (CNNs) [1, 2] and recur-
rent neural networks (RNNs) [3]. These networks have also
been used as feature extractors in hybrid systems [4] and in
end-to-end (E2E) systems [5].

Achieving alignment between system input and output
is a major concern in ASR systems. Since the number of
input audio frames is much larger than the number of sym-
bols in the output transcript, a large amount of human labor
is needed to manually label the audio frames. In order to
solve this problem, several neural network-based models
have been proposed over the past few years. The three meth-
ods which are most widely used are: connectionist temporal
classification (CTC) [6], RNN-transducer (RNN-T) [7], and
attention-based encoder-decoder architectures [8, 9].

RNN-T-based models are generally used to decode
streaming data. The output of the previous time frame is
recursively input into the model to reduce the effect of
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the conditional independency of CTC-based models. How-
ever, RNN-T models cannot look ahead to consider future
outputs.

Attention-based encoder-decoder systems have achieved
good results in various fields such as neural machine trans-
lation [10], sentence summarization [11], and image classi-
fication [12]. When using this method, there is no need to
label the training data frame by frame, making the train-
ing process much more efficient. The attention mechanism
approach also provides more effective language modeling
than other types of neural networks. Google’s BERT model,
for example, [13] uses only attention blocks [14] to perform
natural language processing (NLP) tasks.

Attention mechanism-based architectures such as Trans-
former use methods similar to local attention, however such
methods only use short chunks of data at a time thus they
cannot make use of context from the distant past like sys-
tems based on long short-time memorys (LSTMs). These
methods also require large computational resources when
running however, so systems using them must be operated
on a cloud server. Furthermore, some speech recognition
tasks require short waiting times or real-time capability, so
attention mechanism-based architectures are generally not
used in such applications.

Exact hard monotonic attention [15] and monotonic
chunkwise attention [16] have been proposed for align-
ing input and output sequences and reducing compu-
tational cost. A similar method was proposed in [17],
in which the authors constructed a self-attention-based
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encoder-decoder model to generate streaming recognition
results. Unlike CTC-based models, which can use a consid-
erable amount of past context, this method only uses short
chunks of data at a time.

In [18], a CTC-based classifier was used to control the
activation of the attention-based classifier in order to main-
tain monotonic frame synchronization, but the proposed
system does not support streaming speech recognition.

Unlike translation or other NLP tasks, the attention dis-
tributions in speech recognition tasks are almost mono-
tonic, therefore some attention mechanism ASR approaches
are based on monotonic alignment [15], which is the same
assumption that ASR systems using CTC and RNN-T are
based on.

Because both CTC and RNN-T make use of mono-
tonic alignment, both approaches are capable of performing
streaming step prediction, which can function as a language
model, helping the ASR system achieve better results. But
these models are more complex than CTC models, which
have a simpler structure compared to other methods and
produce a strict left-to-right alignment of the audio frames
and transcript symbols. Moreover, CTC is a more acoustic-
based model than the other methods, thus it is possible to
integrate it with language models in a more theoretically
sound manner. CTC is also often used as a sub-technique
for attention-based models [19], although the overall sys-
tem does not have streaming capability. CTC has rarely
been evaluated as a primary method for decoding streaming
Japanese speech, as research in Japan is mainly focused on
improving recognition accuracy rather than on developing
the capability to process streaming data.

In this study, we evaluate how such a CTC-based model
performs with streaming Japanese speech data. In order to
improve recognition performance, we introduce local atten-
tion [20] into our model, which is sometimes also referred
to as local monotonic attention [21], or time restricted atten-
tion [22]. This technique generally seems to be helpful for
improving the performance of CTC-based systems. How-
ever, in applications where there is a high rate of output,
too much repeated and blank output is produced, making it
more difficult to train the attention mechanism. Thus, local
attention is more effective for reducing word error rate in
situations where the output frames are processed at lower
rates. To our knowledge, our study is the first to propose
downsampling speech frames in order to speed up recog-
nition while maintaining recognition accuracy, and to also
investigate the tradeoff between recognition efficiency and
accuracy.

The rest of this paper is organized as follows: In
Section II, we explain CTC and additive attention, the
two primary techniques our end-to end speech recognition
model is based on, as well as the use of down-sampling
to increase efficiency. We then introduce local attention in
Section III, and provide further details about the imple-
mentation of our proposed method. The procedure for our
experimental evaluation is explained in Section IV, and
the results of our experiments are discussed in Section V.
Finally, we conclude this paper in Section VI.

Il. E2E SPEECH RECOGNITION

Most E2E neural networks, such as the CNNs used for image
classification, or the RNNs used for text generation, require
corresponding input data and ground truth labels, which
means all of the data need to be labeled manually at a high
cost, and this manual labeling process is even more difficult
for speech recognition tasks. Therefore, well-tuned GMM-
HMM-based models are generally used to label the data
frame by frame. But thanks to advances in neural network
development in recent years, it has also become possible to
directly train models using weakly labeled data.

In the following sub-sections, we will discuss some of the
key concepts on which our proposed model for automatic
recognition of streaming Japanese speech is based.

A) CTC

A CTC-based network contains basically two parts: an
encoder and a CTC loss criterion. The encoder can be any
type of network, but is usually an RNN. The CTC compo-
nent aligns prediction and transcription during the training
process.

Since the encoder functions at the frame level, the out-
put sequence will always have the same length as the input
sequence, but the output of the encoder is always longer
than the actual symbol sequence.

In order to solve this problem, CTC-based methods
include a blank symbol in the label set and allow the out-
put to include the blank symbol, as well as allowing symbol
repetitions. Readable output is only obtained after post-
processing.

The encoder generates a possibility prediction distribu-
tion lattice p(y|x). If we denote the possibility path as 77, and
the input as x, this encoding process can be represented as

follows:
T

p(rlx) = [ [ pGrilxo), (1)
t=1
where T is the duration of input x.

Because of the CTC’s assumption of conditional inde-
pendence, prediction is only based on the current acoustic
input, so in order to improve the accuracy of the recogni-
tion results, an external language model is usually needed.
In other words, a CTC is an almost purely acoustic model,
allowing us to integrate it with language models in a theo-
retically sound manner.'

As can be seen in Fig. 1, the direct output of a CTC net-
work contains many repetitions of symbols and blank labels,
so in order to obtain the final readable transcription, we
merge repeated symbols and drop the blank labels [23].

B) Additive attention mechanism

In the encoder—-decoder model, the encoder first encodes
the input sequence into a fixed-length vector, which the

'The integration of acoustic and language models is outside the scope
of this study, but is one of our projects for future research.
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Fig. 1. How a CTC collapses data.

decoder then uses to generate outputs. But compressing all
of the information into a fixed-length vector is obviously not
ideal for sequential data.

By using an attention mechanism, we can use all of the
historic outputs of the encoder instead of only using the last
output. This allows us to focus on changes in the encoded
vector sequence over time. Thus can be considered as a kind
of memory mechanism that can be used to store all of the
output history for later use. It also produces a soft align-
ment between the input and output steps, which can be
represented as follows:

U
P()’|x) = l_[p(yubjuufla Cu)’ (2)

u=1

where U is the current decoding step and ¢, is the con-
text vector at decoding step u, which is calculated as the
sum of all of the hidden outputs h; multiplied by attention
weight a:

T
Cy = Za”’th" (3)
t=1

o, = Attend(h, s,_,), (4)

where s,_, indicates the decoder state in the previous time
step. Thus, the Attend function here is actually trying to
decide how important each hidden output is to the current
decoding step:

ey = Score(s,_, hy), t=1,...,T, (5)
exp(e,,r)
= ot ()
Zt’:l exp(eu,t’)
ey = vl tanh(Us,_, + Wh; + b). ()

The score of each input step is then computed using a
simple feed forward network and the parameters of the scor-
ing function (v, U, W, and b), which are learned during the
training process.

C) Downsampling

In order to increase the speed of training and testing, var-
ious methods can be used to reduce the number of input
steps. In conventional speech recognition methods, this is
done by stacking several frames together, and by maintain-
ing some overlap in order to prevent cut-offs in the middle
of words.

But since we are using a neural network, maxpooling can
be used to do this instead. Thus, in our proposed method

we have replaced frame stacking with maxpooling [24], and
have applied it to some of the CNN layers, with each layer
followed by a different width of maxpooling in order to
obtain different downsampling rates.

1. DETAILS OF OUR APPROACH

CTC-based methods can use weakly labeled data and have
simpler structures than other neural network models, but
since CTC is based on an assumption of conditional inde-
pendence, these methods may not be able to achieve the
same level of accuracy as encoder-decoder models, which
are based on an assumption of conditional dependence. The
use of an attention mechanism in encoder-decoder mod-
els has been proven to enhance recognition performance
significantly.

Visualizations of attention distributions are almost
monotonic in appearance, which leads us to believe that it
might not be necessary to perform full attention. Using local
attention instead may improve performance while allow-
ing us to retain the ability to perform streaming processing.
Therefore, unlike encoder-decoder models, we only use
local attention in our CTC-based approach, as shown in
Fig. 2.

Our model assumes that the current output depends
on several nearby encoding outputs, so the local attention
mechanism allows our model to use contextual informa-
tion from short periods of time in the past and future.
Indeed, the final outputs after performing attention and
layer normalization are not used, and thus direct condi-
tional dependence among the outputs is not realized, but
some dependence among the outputs can be expressed.
In other words, our model is a combination of an LSTM,
which captures a long period of prior history, and a contex-
tual information chunk, described in [17], which captures
information during the short period around the target time
frame. This can be expressed as follows:

T
p(rlx) = [ [ pGrilxe e, (8)

t=1

where contextual information c; is calculated at each decod-
ing step from a small local region of hidden outputs:

w
= Z aywhy, (9)
w=—W
o, = Attend(hi—w.+w> Si—1)» (10)

where o; = {o; —w . .. 241w}, s; and where W indicates the
size of the attention window. Thus, total length of the local
region will be 2 x W + 1. This gives us the benefit of using
an attention mechanism while still allowing the system to
retain its ability to process streaming data. During stream-
ing speech recognition, the post processing module, which
receives the outputs of the CTC model eliminates the blank
and repeated symbols to generate the final output incre-
mentally, without waiting for the end of the input sequence.
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Fig. 2. Overview of the proposed model.

We also added a skip connection [25] to the local attention
mechanism, and concatenated the encoder vector to context
vector ¢;.

IvV. EXPERIMENTAL SETUP

A) Data set

The data we used to train the proposed model in this study
and evaluate its performance came from the Corpus of
Spontaneous Japanese (CSJ), a dataset which contains 661
hours of audio data in total. The dataset is divided into two
categories: Academic Presentation Speech (APS) and Sim-
ulated Public Speaking (SPS). APS contains live recordings
of research presentations from various academic societies,
including science, engineering, humanities, and social sci-
ence. This data set has a bias in terms of age and gender,
since most of speakers are male postgraduate students. SPS
contains talks on everyday topics given by a wide range of
speakers, and is balanced by age and gender as much as
possible.

All of the audio data were recorded at a sampling rate
of 16 kHz. We preprocessed the data to extract 40 dimen-
sions of log filter bank features with a hop size of 10 ms and
window size of 25 ms. We also extended the data by adding
delta and delta-delta features, and the data were normalized
to have a mean of o and a variance of 1.

In order to reduce the number of input frames, we used
maxpooling layers as explained in Section II-2.3. The down-
sampling rate depends on what language is being used
as well as on whether word or character level data are
being processed. Our system uses Japanese, and outputs the
results at character level (i.e. Hiragana, Katakana, and Kanji
characters), with a vocabulary size of 3260.

B) Model configuration

Our models consisted of unidirectional LSTMs with five
layers, each layer of which contained 512 units, and the

Table 1. Configuration of hyperparameters for model training

Dropout rate 0.5
Gradient clipping 5
Optimizer Adadelta
LR 1.0
Adadelta p 0.95
Adadelta eps 1x1078
Adadelta eps decay 0.01
Maximum epoch 15
Batchsize 50

Table 2. Configuration of feature extraction CNN

Output

Maxpooling stride = 2

Convolution in = 128, out = 128, kernel size = 3
Convolution in = 64, out = 128, kernel size = 3
Maxpooling stride = 2 or 3

Convolution in = 64, out=64, kernel size = 3
Convolution in = 1, out = 64, kernel size = 3
Input

models were trained using the CSJ dataset. Our base-
line model was based on the model provided in the
ESPnet-toolkit [19], which is an integration of CTC and
encoder—decoder models, however we only used the CTC
component. We also added an original beam search com-
ponent, with a beam size of 20, and extended the baseline
model using local attention. Details of the configurations of
the hyperparameters used for model training are shown in
Table 1.

We also used a VGG-like CNN [26] for feature extrac-
tion, the configuration details of which are shown in Table 2.
The extracted features were then fed into the CTC.

Sub-sampling using max pooling resulted in 40 ms of
latency for 1/4 subsampling and 60 ms of latency for 1/6 sub-
sampling, because the frame shift was 10 ms. Lookahead was
six frames in both cases. When the center frame was the
target frame, an attention window size of 13 was used, and
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Table 3. Model configurations, with their associated latencies and CERs

Model no. CNN Attn. Attn. window Sub-sampling Latency (ms) CER CER CER Avg.
unit size rate evali eval2 eval3 CER

1 1/4 40 14.30% 11.00% 12.50% 12.60%
2 1/6 60 15.30% 12.10% 13.60% 13.67%
3 v 13 1/4 240 12.10% 9.00% 10.00% 10.37%
4 v 13 1/6 360 11.90% 9.00% 10.30% 10.40%
5 v 1/4 40 11.90% 8.60% 9.60% 10.03%
6 v 1/6 60 14.10% 10.70% 12.00% 12.27%
7 v v 13 1/4 240 11.60% 8.70% 9.30% 9.87%

8 v v 13 1/6 360 12.10% 8.80% 9.90% 10.27%
9 v v 7% 1/6 360 11.90% 9.00% 9.80% 10.23%

2 The width of the attention window was halved and only look-ahead was performed.

when the last frame was the target frame, an attention win-
dow size of 7 was used. Thus, the total latencies were 240 ms
(=40 ms x 6 frames) and 360 ms (=60 ms X 6 frames) for
1/4 sub-sampling and 1/6 sub-sampling, respectively, with
local attention.

V. RESULTS

We performed our experiments while varying the conditions
as follows: with and without the CNN feature extractor, with
and without local attention, and setting the sub-sampling
rate to 1/4 or 1/6. Our experimental results are shown in
Table 3.

A) CNN feature extractor

First, we compared the results with and without the CNN-
based feature extractor (without the local attention mecha-
nism). The first and second rows in Table 3 show the results
without the CNN feature extractor, while the fifth and sixth
rows show the results with the CNN feature extractor. With-
out the CNN, we obtained a CER of 12.60% on average at a
sub-sampling rate of 1/4. When we change the sub-sampling
rate to 1/6, performance was degraded by 1.97%. Here, sub-
sampling was done by decimating the time sequence in the
first and second layers of the LSTMs. When using the CNN,
we obtained a CER of 10.03% at a sub-sampling rate of 1/4,
which is much better than under the ‘without CNN’ con-
dition. However, when using a sub-sampling rate of 1/6,
we obtained a significantly degraded CER which was 2.24%
higher.

Overall, we observed that the smaller the sub-sampling
rate, the poorer the recognition performance.

B) Local attention

Next, we included the local attention mechanism which was
introduced in Section III, which consisted of a network of
200 units, with one head and a window width of 13 (i.e. W =
7 in equation (10)). Results with local attention are shown
in the third, fourth, seventh, and eighth rows of Table 3. The
third and fourth rows are the results without the CNN, while
the seventh and eighth rows are the results with the CNN.

When using local attention without the CNN (third and
fourth rows), the CERs fell to 10.37 and 10.40%, respectively,
significant absolute reductions of 2.23 and 3.27%. We noted
that there was no significant difference in performance
when sub-sampling rates of 1/4 or 1/6 were used.

When using local attention with the CNN (seventh and
eighth rows), we obtained a CER of 9.87% at a sub-sampling
rate of 1/4, which was the best result achieved during these
experiments. The improvement in performance when using
local attention was 0.16%. At a sub-sampling rate of 1/6, we
obtained a CER of 10.27%, which was a significant improve-
ment of 2.00 percentage points compared to when local
attention was not used. When comparing the use of 1/4
and 1/6 sub-sampling rates (the seventh and eighth rows
of Table 3, respectively), the difference in performance was
only 0.4%, demonstrating that the use of local attention
lessened the gap in performance between the two sub-
sampling rates. Use of high sub-sampling rates results in
loss of information, thus recognition performance tends to
be degraded. However, sub-sampling can reduce the num-
ber of blank symbols and symbol repetitions, allowing the
window of the local attention mechanism to capture the
informative sequences of the CNN outputs. Thus, the local
use of attention can improve recognition performance espe-
cially at high sub-sampling rates. We have not tested our
model with other languages, so we cannot say with a high
degree of certainty that our model is especially suitable for
Japanese. However, we believe one of the reasons for our
model’s superior performance is due to the phenomenon
of mora isochronism in spoken Japanese. Japanese morae
all have duration of approximately 200 ms (although dura-
tion can vary widely among speakers), and our use of local
attention allows the model to capture each mora within its
short acoustic context, allowing to achieve effective acoustic
modeling.

C) Shortening the attention window

Figure 3 shows an image of the attention weight distri-
butions for our model during our experiments, in which
the lighter colors represent larger attention weights, reveal-
ing that the large attention weights are concentrated in the
“future” inputs. This is because the LSTM layers accumulate
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information from “past” inputs and thus the attention
mechanism does not need to attend the past inputs.

Based on this observation, we tried halving the attention
window. This shorter window attends only current “near
future” inputs, resulting in the window size shrinking to 7
from the original 13. The ninth row of Table 3 shows that we
obtained a CER of 10.23% when using this smaller attention
window, which is comparable to the accuracy rate achieved
when using a longer window (as shown in the eighth row of
the table).

VI. CONCLUSIONS
In this study, we proposed a method of extending a CTC-
based model by using local attention to improve accuracy
when performing streaming, E2E speech recognition of
Japanese. We compared various model settings, specifically,
with and without CNN-based feature extraction, at 1/4 and
1/6 subsampling rates, and with and without the use of
local attention. Our proposed local attention mechanism
was very robust to changes in the use of feature extrac-
tion and the in subsampling rate. The best performance
was achieved when using the CNN-based feature extrac-
tor, the local attention mechanism and a subsampling rate
of 1/4, which resulted in a CER of 9.87%, with the CER
increasing to 10.27% when a subsampling rate of 1/6 was
used. Halving the window size of the attention mechanism,
i.e. using only “near future” information, did not degrade
speech recognition performance. We were actually able to
develop a real-time speech recognizer for Japanese using
our proposed model.

Our future study includes integration of our model by
using multiple, separately trained language models, to make
it easy to adapt the recognizer to other recognition tasks.
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