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This paper presents an evaluation of parallel voice conversion (VC) with neural network (NN)-based statistical models for
spectral mapping and waveform generation. The NN-based architectures for spectral mapping include deep NN (DNN), deep
mixture density network (DMDN), and recurrent NN (RNN) models. WaveNet (WN) vocoder is employed as a high-quality
NN-based waveform generation. In VC, though, owing to the oversmoothed characteristics of estimated speech parameters,
quality degradation still occurs. To address this problem, we utilize post-conversion for the converted features based on direct
waveformmodifferential and global variance postfilter. To preserve the consistency with the post-conversion, we further propose
a spectrum differential loss for the spectral modeling. The experimental results demonstrate that: (1) the RNN-based spectral
modeling achieves higher accuracy with a faster convergence rate and better generalization compared to the DNN-/DMDN-
based models; (2) the RNN-based spectral modeling is also capable of producing less oversmoothed spectral trajectory; (3) the
use of proposed spectrum differential loss improves the performance in the same-gender conversions; and (4) the proposed
post-conversion on converted features for the WN vocoder in VC yields the best performance in both naturalness and speaker
similarity compared to the conventional use of WN vocoder.
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I . I NTRODUCT ION

Through a voice conversion (VC) [1] system, voice charac-
teristics of a source speaker can be transformed into those
of the desired target speaker while still preserving the lin-
guistic information. VC has been applied to various speech
applications, such as for generation of speech databaseswith
various voice characteristics [2, 3], singing voice conver-
sion (VC) [4, 5], the recovery of impaired speech signals
[6–8], expressive speech synthesis [9, 10], body-conducted
speech processing [11, 12], and speech modification with
articulatory control [13]. Furthermore, recent developments
of anti-spoofing countermeasure systems [14, 15] have also
employed VC systems for part of the spoofing data. There-
fore, considering the benefits of VC, it is certainly worth-
while conducting a thorough study of the development of a
high-quality VC system.
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To perform VC, in general, two high-level features of a
speech signal are used in the conversion, namely the voice-
timbre and prosody characteristics. To convert the voice-
timbre, one convenient way to do it is by transforming a
compact representation of the vocal tract spectrum, such as
mel-cepstrum features [16], through the use of a data-driven
statistical mapping. Although there are several data-driven
mapping for prosody transformation [17–19], in this work,
we focus on the use of data-driven mappings for the con-
version of spectral parameters. Finally, these transformed
speech features are used to generate the converted speech,
for example by using a vocoder-based waveform genera-
tion [20–22], or possibly by using a data-driven statistical
waveform generation [23, 24].

Indeed, in recent years, the development of data-driven
VC systems have been rapidly proceeding, such as VC with
a codebook-based method [2], with frequency-warping
methods [25, 26], with exemplar-based mappings [27, 28],
with statistical methods using Gaussian Mixture Model
(GMM)-based approaches [3, 22, 29], and with neural-
network (NN)-based models [30–35]. In this work, con-
sidering the potential of NN-based methods, we focus on
its use to perform the spectral conversion in VC, particu-
larly with recurrent neural network (RNN) [36, 37], which
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can capture the long-term context dependencies. Note that
different from recent works on the use of non-parallel
(unpaired) data, such as with restricted Boltzmannmachine
[33], variational autoencoder [34], or generative adversarial
network [35], in this work, we focus on the development of
NN-based VC with parallel data. This is because in many
cases it is still viable to collect a small amount of par-
allel data, i.e. where the source and target speakers utter
the same set of sentences. Furthermore, established RNN-
basedmodeling in parallel VC can be adapted for improving
non-parallel methods.

As has been mentioned, in VC, to generate a con-
verted speech waveform, a vocoder-based framework
can be deployed, such as the mixed-excitation-based
vocoders (STRAIGHT [21], WORLD [38]). Other high-
quality vocoders have also been developed, such as glottal-
excitation-based vocoders [39, 40] and sinusoidal vocoders
[41, 42]. A comparison of these vocoders on analy-
sis–synthesis cases has also beenmade [40, 43]. However, in
cases where the speech features are estimated from a statis-
tical model, such as from a text-to-speech (TTS) system, the
performance of these vocoders is highly degraded [40, 42].
The degradation in TTS, and possibly VC, applications are
caused by the non-ideal conditions of the speech features
estimated from a statistical model, such as oversmoothed
condition of the spectral trajectory, where its variance is
highly reduced due to the mean-based optimization [22].
To overcome this problem, in this work, we investigate the
use of the data-driven waveform generation method, which
offers more potential in compensatory capability than the
rule-based conventional vocoder.

Recently, a data-driven NN-based waveform generation
method, using a deep autoregressive (AR) convolutional
neural network (CNN) calledWaveNet (WN) [23] has been
proposed.WNmodels thewaveform samples based on their
previous samples using a stack of dilated CNNs to effi-
ciently increase the number of receptive fields. In [44–46],
auxiliary conditioning speech parameters, such as spectral
and excitation features, are used to develop a state-of-the-
art WN vocoder, which could generate meaningful speech
waveforms with natural quality. However, as in a conven-
tional vocoder, in VC [47], WN still suffers from quality
degradation due to the use of oversmoothed speech features,
which introduces mismatches to the natural speech features
used in training the model. To alleviate this problem, in this
work, we presume that postprocessing methods [5, 22, 48]
will bemore helpful in aWNvocoder, compared to the con-
ventional vocoder, thanks to its data-driven characteristic
for statistical compensation.

In this paper, to develop a better VC system, we employ
the use of NN architectures for both spectral conver-
sion modeling and waveform generation modeling. First,
we perform an investigation on the use of RNN-based
spectral conversion models compared to the conventional
deep neural network (DNN) and deep mixture density
network (DMDN) models [24] in a limited data condi-
tion. We show that our proposed RNN-based architecture
could yield better performance, and it naturally can capture

long-term context dependencies in training and mapping
stages. Furthermore, to improve the condition of the gen-
erated spectral trajectory, we also propose to use spectrum
differential loss for the RNN-basedmodel training, which is
based on a synthesis/postfilter approach using direct wave-
form modification with spectrum differential (DiffVC) [5]

Lastly, to improve the statistical waveformmodelingwith
a WN vocoder in VC, we propose several postprocessing
methods that alleviate the possible mismatches and over-
smoothness of the estimated speech features. These post-
processingmethods are based on global variance (GV) post-
filter [22] and the DiffVCmethod [5]. In the future, it would
be better to avoid the use of such postprocessing techniques
and directly address the feature mismatches by utilizing the
data-driven traits of a statistical waveform model. Indeed,
in both TTS [49] and VC [50], such a concept has been
applied, where text/linguistic features are used, which may
not be available in every practical situation. In this work,
as the first step toward the improvement of a more flexi-
ble text-independent VC system, we perform investigations
on the capability of statistical waveform modeling with
postprocessing techniques.

To recap, in this paper, our contributions are twofold:
to develop an RNN-based spectral conversion model that
is better than the conventional DNN architectures, and
to investigate the effects of several postprocessing meth-
ods for improving the use of WN vocoder in VC. In the
experimental evaluation, it has been demonstrated that:
(1) the proposed RNN-based spectral modeling architec-
ture achieved better performance than the conventional
DNN/DMDN architectures even with limited training data;
(2) the proposed spectrum differential loss in RNN-based
modeling further improves the naturalness of converted
speech in same-gender conversions; and (3) the proposed
post-conversion processing yields the best naturalness and
conversion accuracy of converted speech compared to the
conventional use of WN vocoder. Henceforth, the main
motivation of this work is to better understand the effective-
ness of using NN-based featuremodelings, such as for spec-
tral mapping, and waveform generation, i.e. neural vocoder,
through careful evaluations and investigations toward fur-
ther improvements of these core techniques.

The remainder of this paper is organized as follows. In
Section II, a brief overview of the proposed systems and
their correlation with the previous work are described. In
Section III, the proposed NN-based architectures for the
spectral mapping models are elaborated. In Section IV, the
WN vocoder used as the NN-based waveform model is
explained, as well as the proposedmethod for alleviating the
quality degradation in VC. In Section V, objective and sub-
jective experimental evaluations are presented. Finally, the
conclusion of this paper is given in Section VI.

I I . COMPAR ISON TO PREV IOUS
WORK

In this work, we describe our method for a VC system with
the use of NN-based statistical models for both spectral
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Fig. 1. Diagram of the overall flow and contribution of the proposed work. Bold denotes proposed methods and dashed boxes denote proposed experimental
comparisons. Arrow denotes a particular implementation detail of its parent module.

mapping and waveform generation. This idea was incorpo-
rated in our previous VC system [24], which participated
in the VCC 2018 [51]. The previous system [24], which
was ranked second in the challenge, used a DMDN-based
model [52] for the spectral mapping and a WN vocoder
to generate the converted speech. To alleviate the degrada-
tion problem in WN, a post-conversion processing based
on the DiffVC and GV (DiffGV) was used to obtain refined
auxiliary speech features for the WN vocoder. However,
there still exist several limitations on our previous work,
which include (1) the need of using a separate module in
the DMDN-based model to incorporate time-dependency
in spectral trajectory generation, i.e. maximum likelihood
parameter generation (MLPG) [22, 53]; (2) no empirical
observations that prove the DiffGV post-conversion pro-
cessing is better than either solelyDiffVC- orGV-based; and
(3) a possibility of better spectral modeling with spectrum
differential loss to preserve the consistency with DiffGV
method, which uses spectrum differential features in its
process.

To build on our previous work, first, we propose to
improve the spectralmappingmodeling, as illustrated in the
upper diagram of Fig. 1, as follows: (1) by using RNN-based
architecture, which can naturally capture long-term context
dependencies, and (2) by using spectrum differential loss in
parameter optimization to preserve the consistencywith the
DiffGV method, which may improve the condition of gen-
erated spectral trajectory. To clearly describe thesemethods,
we first elaborate on the DNN- and DMDN-based spectral
mapping models [24, 52]. We also describe the RNN-based
architectures for spectral mapping with long-short term
memory (LSTM) [36] or with a gated recurrent unit (GRU)
[37]. Finally, these spectral mapping models are objectively
evaluated in a limited training data condition, where it has
been demonstrated that the GRU-based spectral modeling
yields better performance than the others. Note that we
focus on comparing the LSTM- and GRU-based spectral

modeling in a basic VC task to confirm the effectiveness of
a more compact GRU architecture, which is more beneficial
for real-world applications.

Secondly, we propose to investigate the effect of several
post-conversion processing methods, i.e. with DiffVC-,
with GV-, or with DiffGV-based post-conversions, for the
WN vocoder in VC. We also compare these methods with
the conventional vocoder framework that uses DiffGV-
based post-processed speech features, as illustrated by the
lower diagram of Fig. 1. In the experimental evaluation,
it has been demonstrated that the DiffGV-based post-
conversion with WN vocoder yields superior performance
compared to the others. Further, coupled with the use of the
proposed spectrum differential loss in the spectral mapping
model, the proposed method yields higher performance in
the same-gender conversions.

I I I . SPECTRAL CONVERS ION
MODELS WITH NN-BASED
ARCH ITECTURES

This section describes the NN-based spectral mapping
models used for the VC framework in this paper. These
include the DNN and DMDN [52], which are optimized
according to the conditional probability density function
(PDF) of the target spectral features, given the input source
spectral features. Compare to the straightforward DNN
architecture, the DMDN has the advantage of being capable
of modeling a more complex distribution of the target fea-
tures, as well as to model not only their means but also their
variances. In the DNN andDMDN, a separateMLPGmod-
ule [22, 53] is used after the conversion network to generate
the estimated spectral trajectory. Finally, we also elaborate
on the RNN-based spectralmappingmodels, where, in con-
trast to the DNN/DMDN models, all components can be
optimized during training.
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Let xt = [xt(1), . . . , xt(d), . . . , xt(D)]� and
yt = [yt(1), . . . , yt(d), . . . , yt(D)]� be the D-dimensional
spectral feature vectors of the source speaker and target
speaker, respectively, at frame t. Their 2D spectral feature
vectors are, respectively, denoted as Xt = [x�

t ,�x�
t ]� and

Y t = [y�
t ,�y�

t ]
�, where �xt and �yt are the correspond-

ing delta features, which capture the rate of change of values
between successive feature frames.

A) Spectral conversion with DNN
In the DNN, given an input spectral feature vector Xt at
frame t, the conditional PDF of the target spectral feature
vector Y t is defined as

P(Y t|Xt ,λS) = N (Y t ; fλS(Xt),D), (1)

where N (·;μ,�) denotes a Gaussian distribution with a
mean vector μ and a covariance matrix �.D is the diagonal
covariance matrix of the target spectral features computed
using the training dataset beforehand. The set of parame-
ters of the network model is denoted as λS, and fλS(·) is the
feedforward function of the network.

In the training phase of the DNN network, to esti-
mate the updated model parameters λ̂S, backpropagation
is performed throughout the network to minimize the loss
function as follows:

λ̂S = arg min
λS

1
T

T∑
t=1

(
Y t − fλS(Xt)

)�D−1(Y t − fλS(Xt)
)
,

(2)
where � denotes the transpose operator and T denotes the
total number of time frames.

Then, using the trained DNN network model, a spectral
conversion function can be applied to generate the esti-
mated target spectral trajectory ŷ = [ŷ�

1 , ŷ�
2 , . . . , ŷ�

t , . . . ,
ŷ�
T ]

� by using the MLPG [22, 53] procedure as follows:

ŷ = (W�D−1W)−1W�D−1M, (3)

where M = [fλS(X1)
�, fλS(X2)

�, . . . , fλS(Xt)
�, . . . ,

fλS(XT)�]� is the sequence of network outputs, and D−1

denotes a sequence of inverted matrices of the diagonal
covariance D. The transformation matrix is denoted as W,
which is used to enhance a sequence of spectral feature vec-
tors with its delta feature contexts, i.e. the rate of change of
values between successive feature frames.

B) Spectral conversion with DMDN
For DMDN-based [52] spectral conversion, given an input
spectral feature vector Xt at frame t, the conditional PDF of
the target spectral feature vector Y t is defined as a mixture
of distributions as

P(Y t|Xt ,λ) =
M∑
m=1

αm,t,λN (Y t ;μm,t,λ,�m,t,λ), (4)

where the Gaussian distribution is denoted as N (·;μ,�)

with a mean vector μ and a covariance matrix �. The index

of the mixture component is denoted by m and the total
number of mixture components is M. The set of model
parameters is denoted as λ. The time-varying weight, mean
vector, and diagonal covariance matrix of the mth mixture
component are, respectively, denoted as αm,t,λ, μm,t,λ, and
�m,t,λ. These time-varying mixture parameters are taken
from the network output

fλ(Xt) = [α1,t,λ, . . . ,αM,t,λ,μ�
1,t,λ, . . . ,μ

�
M,t,λ,

diag(�1,t,λ)
�, . . . , diag(�M,t,λ)

�]�.

To estimate the updated model parameters λ̂ in the
training of a DMDN-based spectral conversion model,
backpropagation is performed according to the following
negative log-likelihood function:

λ̂ = arg min
λ

1
T

T∑
t=1

M∑
m=1

D log 2π

+ 1
2
log |�m,t,λ| − logαm,t,λ

− 1
2
(Y t − μm,t,λ)

��−1
m,tλ(Y t − μm,t,λ). (5)

Similar to the DNN, in the conversion phase, the estimated
target spectral trajectory ŷ is generated by using the MLPG
[22, 53] procedure as follows:

ŷ =
(
W��−1

m̂ W
)−1

W��−1
m̂ μm̂, (6)

where the transformation matrix used to append the spec-
tral feature vector sequence with its delta features is denoted
as W. The sequence of mixture-dependent time-varying
inverted diagonal covariance matrices is denoted as �−1

m̂
and that of the mean vectors is denoted as μm̂. The subop-
timum mixture component sequence, which is denoted as
m̂ = {m̂1, m̂2, . . . , m̂t , . . . , m̂T}, used to develop the respec-
tive sequences of time-varying mixture parameters is deter-
mined as

m̂ = argmaxm
T∏
t=1

αm,t,λN
(
Y t ;μm,t,λ,�m,t,λ

)
. (7)

Note that both (3) and (6) generate the estimated
D-dimensional target feature vector sequence ŷ, whereas the
input to the network is 2D input feature vector Xt at each
time t. This is because the network actually outputs 2D fea-
ture vector for DNN, i.e. fλS(Xt), orM sets of 2D mean vec-
tor μm,t,λ and diagonal covariance matrix diag(�m,t,λ) for
DMDN at each time t, where they were then processed by
the MLPG procedure to generate the spectral trajectory by
considering their temporal correlation. This kind of explicit
treatment can be alleviated by directly incorporating the
use of network architecture with temporal modeling capa-
bilities, such as RNN, which is described in the following
section.
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Fig. 2. Spectral mapping model with RNN-based architectures.

C) Spectral conversion with RNN
It is also important to note that a speech signal, and thus
its parametrization, is time-sequence data. Therefore, it
would be more reasonable to develop a spectral conver-
sion model that is capable of capturing the dependencies
within a sequence of spectral feature vectors, such as by
using the RNN architectures. Hence, we propose the use
of LSTM [36] and a GRU [37] as the basis RNN units
used to capture the long-term context dependencies on the
input spectral features. The flow of the RNN-based spec-
tral modeling is shown in Fig. 2. It can be observed that
additional convolutional input layers are also used to extract
better contextual input frames. Note that, different from
the previous DNN/DMDN architectures, in the proposed
RNN-based spectral conversion models, all of the compo-
nents, except for the normalization and denormalization
layers (which are kept fixed to make the network work with
the normalized values of the features), are optimized during
training.

1) LSTM-based spectral conversion model
Given an input spectral feature vector xt at frame t, the
estimated target spectral feature vector ŷt is estimated as

ŷt = Whyht + by, (8)

where Why and by, respectively, denote the weights and
biases of the output layer in Fig 2. The hidden state ht is
produced by the LSTM units [36] as follows:

it = σ(Wxi[x�
t , ŷ

�
t−1]

� + Whiht−1 + bi) (9)

f t = σ(Wxf [x�
t , ŷ

�
t−1]

� + Whf ht−1 + bf ) (10)

g t = tanh(Wxg[x�
t , ŷ

�
t−1]

� + Whght−1 + bg) (11)

ot = σ(Wxo[x�
t , ŷ

�
t−1]

� + Whoht−1 + bo) (12)

ct = f t � ct−1 + it � g t (13)

ht = ot � tanh(ct) (14)

where ŷ0 = 0. The cell state is denoted as ct . The input, for-
get, cell, and output gates are denoted as it , f t , g t , and ot ,
respectively. The trainable weights and biases are denoted
by the corresponding W and b, respectively. σ denotes a
sigmoid function and � denotes an element-wise product.

The network model parameters λ̂R are optimized
through backpropagation for the loss function, computed
by considering the distortions in the mel-cepstrum domain
[54], as follows:

λ̂R = arg min
λR

1
T

T∑
t=1

10
√

2
ln 10

D∑
d=1

|ŷt(d) − yt(d)|, (15)

where | · | denotes the absolute function. The dth dimen-
sion estimated spectral feature at time t is denoted as
ŷt(d), where the estimated spectral feature vector ŷt
can be written in terms of the feedforward function
in an RNN-based spectral mapping model as fλR(xt) =
[ŷt(1), ŷt(2), . . . , ŷt(d), . . . , ŷt(D)]�. Note that the input
source spectra xt is firstly fed into the input convolutional
layers before being fed into theRNNunits as shown inFig. 2.

2) GRU-based spectral conversion model
In addition to modeling the long-term context dependen-
cies, it is also worthwhile considering a more compact
model architecture, such as the GRU [37] units, which will
be more suitable for our purpose in using a small amount
of training data. A more compact network will also be
more suitable for real-time applications, which require low-
latency computation.

In the proposed GRU-based spectral conversion model,
given an input spectral feature vector xt at frame t, the
following functions are computed by the GRU units:

rt = σ(Wxr[xt , ŷ�
t−1]

� + Whrht−1 + br) (16)

zt = σ(Wxz[xt , ŷ�
t−1]

� + Whzht−1 + bz) (17)

nt = tanh(Wxn[xt , ŷ�
t−1]

� + rt � (Whnht−1) + bn) (18)

ht = (1 − zt) � nt + zt � ht−1, (19)

where ŷt is given by (8) and, similarly, ŷ0 = 0. The hidden
state of theGRU is denoted as ht . The reset, update, and new
gates are denoted as rt , zt , and nt , respectively. The corre-
spondingweights and biases are, respectively, denoted byW
and b. The sigmoid function is denoted by σ and � denotes
an element-wise product. As in the LSTM-based model, for
multiple layers of GRU units, the hidden state of the cur-
rent layer is used as the input for the succeeding layer. As
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Fig. 3. Flow of direct waveform modification with spectrum differential (DiffVC) [5] using MLSA synthesis filter [55] and GV postfilter [22].

can be observed, the modeling of long-term context depen-
dencies in GRU is achieved through fewer computation
steps, andmodel parameters, compared to the LSTM,which
might be better for limited data situations and real-time
computation.

I V . WAVEFORM GENERAT ION
MODELS WITH WN VOCODER

In this paper, in addition to the spectral conversion models,
we also employ an NN-based architecture for the waveform
generator (neural vocoder), i.e. the WN [23] model. As a
first step towards the generalization of the use of other neu-
ral vocoders in VC, we describe the use of WN vocoder
[44–46], where the WN model is conditioned using both
speech waveform samples and extracted speech parame-
ters. We address the quality degradation problem faced by
the WN vocoder in VC when it utilizes estimated speech
parameters [47] from a spectral conversion model, through
a post-conversion processing [24]. Finally, we propose a
modified loss function in the development of the spec-
tral conversion model to preserve the consistency with the
waveform generation procedure.

A) WN vocoder
WN [23] is a deep AR-CNN that is capable of modeling
speech waveform samples for their previous samples. To
efficiently increase the number of receptive fields of wave-
form samples,WNuses a stack of dilated CNNs using resid-
ual blocks,making it possible to produce human-like speech
sounds. Moreover, when it is conditioned with naturally
extracted speech features, such as spectral and excitation
parameters, a WN vocoder [44–46] is capable of produc-
ing meaningful speech waveforms with the natural quality
compared with the conventional vocoder framework.

Given a sequence of auxiliary feature vectors
h = [h�

1 , h�
2 , . . . , h�

t , . . . , h
�
T ]�, the likelihood function

of a sequence of the corresponding waveform samples
s = [s1, s2, . . . , st , . . . , sT]� is given by

P(s|h,λ) =
T∏
t=1

P(st|ht , st−p), (20)

where the conditional PDF of a waveform sample
P(st|ht , st−p) is modeled by the WN vocoder, and st−p
denotes the previous samples with p receptive fields. In
the training, the ground-truth previous samples are given,
i.e. teacher-forcing mode, whereas, in the synthesis phase,
the waveform is generated sample-by-sample. Note that
the modeling of the waveform samples in a WN vocoder
can be performed as a classification problem, where the
floating values of the 16-bit waveform will be discretized
into 256 categories using the μ-law algorithm. The inverse
μ-law algorithm is used in synthesis after sampling from the
output distribution.

B) Postconversion processing in VC
In VC, to use the WN vocoder, estimated speech features,
generated froma statisticalmappingmodel, such as the ones
described in Section III, are fed as auxiliary conditioning
features in equation (20) to generate the converted speech
waveform. However, in this case, the WN vocoder will face
a significant degradation [47], because of the mismatches
of speech features, such as the oversmoothed characteris-
tics of the estimated spectral features due to themean-based
optimization of a spectral conversion model. To improve
the quality of the converted speech waveform, these mis-
matches between the naturally extracted speech parame-
ters and the oversmoothed estimated speech parameters
have to be alleviated, e.g. with a post-conversion processing
method.

The ideal way to address the degradation problemofWN
vocoder in VC is by directly addressing the mismatches of
speech features in the development of aWNvocoder. In this
work, as a first step toward improving the use of the neural
vocoder in VC, we propose to overcome the quality degra-
dation by the use of post-conversion processing to alleviate
the feature mismatches, such as oversmoothing problem.
The proposed post-conversion processing is based on GV
[22] postfilter and DiffVC [5], which is illustrated in Fig. 3.
The GV postfilter is used to recover the variances of the
oversmoothed spectral features to make them closer to the
natural ones. The DiffVC method is used to further reduce
themismatches between the spectral and excitation features
by directly modifying the input speech waveform accord-
ing to the differences between the estimated target spectra
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Fig. 4. Waveform generation procedure for converted speech using WN vocoder through the use of post-conversion processed auxiliary speech features based on
the DiffVC method and the GV postfilter (DiffGV).

and the input spectra. Then, through the combination of
GV and DiffVC post-conversion processing (DiffGV), the
modified set of speech parameters [24] can be obtained for
use in the WN vocoder as shown in Fig. 4. Note that, as
shown in Fig. 3, for cross-gender conversions, e.g. male-
to-female speakers, an additional step of analysis–synthesis
is performed with also the transformed excitation features
because theDiffVC [5]method does notmodify the original
excitation when filtering to generate the modified wave-
form using the mel-log spectrum approximation (MLSA)
filter [55].

Finally, to preserve the consistency between the spectral
conversion model and the waveform generation procedure,
due to the use of spectrum differential method (DiffVC), we
propose the use of an alternative loss function for the RNN-
based architectures that considers the spectrum differences.
Given the estimated feature vector ŷt = fλR(xt) from (8),
instead of optimizing the parameters with respect to the
ground truth yt , the optimization is performed as follows:

λ̂R = arg min
λR

1
T

T∑
t=1

10
√

2
ln 10

D∑
d=1

|ŷt(d) − (yt(d) − xt(d))|,

(21)

where fλR(·) is the feedforward function using the RNN-
based spectral conversionmodel, as described in Section 3.3,
and | · | denotes the absolute function. Therefore, the con-
version model is optimized to directly generate the spec-
trum differential trajectory, i.e. the trajectory difference
between the target y and the source spectra x, which is used
to generate the set of post-conversion processed speech fea-
tures for generating the converted speech waveform with
the WN vocoder. As a further note, the constant coefficient
in (15) and (21) comes from the MCD formulation [54],
which is quite effective in our experimental conditions on
the RNN-based spectral modeling.

V . EXPER IMENTAL EVALUAT ION

A) Experimental conditions
In the experiments, we used the VCC 2018 dataset [51],
consisting of six female and six male speakers, as well as
additional data from the CMU Arctic dataset [56], where
we used the data of “bdl” (male) and “slt” (female) speakers
to develop a multispeaker WN vocoder [45]. On the other
hand, to develop the spectral conversion models, we used a
subset of the VCC 2018 data, comprising “SF1” and “SM1”
data as the source speakers, as well as “TF1” and “TM1” data

as the target speakers, where “F” means female and “M”
means male, giving a total of four conversion models for
each of the network architectures described in Section III.
The total numbers of utterances in the CMU Arctic dataset
and VCC 2018 dataset are 1132 and 81, respectively. The
training set from the CMU Arctic utterances consisted of
the first 992 utterances, whereas that from the VCC 2018
dataset consisted of the final 71 utterances. The remaining
sentences in both datasets were used as testing data. The
number of evaluation utterances provided in the VCC 2018
dataset is 35, which were used in the subjective evaluation.
The length of each audio sample in the training data was
roughly 3.5 s on average.

As the spectral features, we used the 34D mel-cepstrum
parameters, including the 0th power coefficient, extracted
from the spectral envelope of the WORLD spectrum
[38, 57]. The frequency warping parameter was set to 0.455
[58]. The spectral envelope of the speech spectrum was
computed frame by frame using CheapTrick [59, 60] and
then parameterized into the mel-cepstrum coefficients [58].
We used framewise F0 values as the excitation features
as well as the two-band aperiodicity features, which were,
respectively, extracted using Harvest [61] and D4C [62] in
the WORLD package. To perform the prosody conversion,
we carried out a linear transformation of the F0 values
using the statistics of the source and target speakers. For
the set of auxiliary speech parameters used in the WN
vocoder, we utilized continuous interpolated F0 values and
binary unvoiced/voiced (U/V) decisions, giving 39D aux-
iliary speech parameters, i.e. 1D U/V, 1D continuous F0,
2D code-aperiodicity, 0th power, and 34D mel-cepstrum.
The speech signal sampling rate was 22,050 kHz and the
frameshift was set to 5ms.

The WN architecture comprised a 1, 2, 4, . . . , 1024 dila-
tion sequence with four repetitions. The number of residual
channels was 128 and the number of skip channels was
256. Two convolution layers with ReLU activation were
used after the skip connections before the softmax out-
put layer. The trained multispeaker WN model was fine-
tuned for each target speaker, i.e. TF1 or TM1, using their
extracted speech parameters. The implementation of WN
was based on [63], where the noise-shaping method [64]
was also used. To train the WN model parameters, the
Adam algorithm [65] was employed. The weights of model
parameters were initialized using Xavier [66], while the
biases were zero-initialized. The learning rate was set to
0.0001. The hyperparameters for WN training, i.e. the
optimization algorithm, the initialization method, and the
learning rate, were set to the same as those for the training
of spectral conversion models.
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In the development of the spectral conversion models,
we used five hidden layers for the DNN model and four
hidden layers for the DMDN model with ReLU activa-
tion functions. The number of mixture components for the
DMDN was set to 16. For the RNN-based models, we used
one layer for both hidden LSTM/GRU units. Convolutional
input layers were used for all DNN-/DMDN-/RNN-based
spectral models, where they were designed to capture four
preceding and four succeeding frame input contexts with
dynamic dimensions. Specifically, two convolutional input
layers were used with a kernel size of 3 and a dilation size
of 1 and 3, respectively, for each layer. The number of out-
put dimensions for each layer was its kernel size multiplied
by the number of input dimensions, e.g. with 50D features,
the first input layer will have 150D output and the second
layer will have 450D output. Dropout [67] layers with 0.5
probability were used in the training of the RNN-based
models after the convolutional input layers and after the
hidden LSTM/GRU units. For the RNN-based methods,
we also trained additional models using the proposed loss
for the spectrum differential in (21). An additional normal-
ization layer before the input convolutional layers and a
de-normalization layer after the final output layer were used
and fixed according to the statistics obtained from the train-
ing data. The performance of all conversion models was
compared in the objective evaluation. In the subjective eval-
uation,we used theGRU-based conversionmodelwith both
the conventional loss in (15) and the proposed spectrumdif-
ferential loss in (21). The dynamic-time-warping procedure
was used to create time-warping functions for computing
the loss between the estimated target spectra and the ground
truth by only using the speech frames (non-silent frames).

B) Objective evaluation
To objectively evaluate the NN-based spectral mapping
models described in Section III, we computed the metrics
of MCD [22, 54] and LGD. These metrics were computed
between the converted mel-cepstrum parameters of the
source speaker and the extracted (natural) mel-cepstrum
parameters of the target speaker for all speaker pairs, i.e.
SF1–TF1, SF1–TM1, SM1–TF1, and SM1–TM1.

The MCD was computed using

MCD[dB] = 1
T

T∑
t=1

10
ln 10

√√√√2
D∑

d=2

(ŷt(d) − yt(d))2, (22)

where ŷt(d) is the dth dimension of the converted mel-
cepstrum and yt(d) is that of the target mel-cepstrum at
frame t. The starting dimension d is set to 2 for only mea-
suring themel-cepstrumparameters without the 0th power.
On the other hand, to compute the LGD, the following
function was used:

LGD = 1
D

D∑
d=2

√
(log σglobal(ŷ(d)) − log σglobal(y(d)))2,

(23)

where the GV [22] σglobal(·) is computed as

σglobal(y(d)) = 1
N

N∑
n=1

1
Tn

Tn∑
t=1

(yt(d) − yn(d))
2. (24)

The index of the nth training data is denoted by n, the total
number of training sentences is N, and the mean value of
the dth dimension target spectra of the nth utterance is
denoted as yn(d). The objective measurements of all the
spectral conversion models were computed. These mod-
els consisted of the DNN models, the DMDN models, the
LSTM-based models, the GRU-based models with conven-
tional loss, and the GRU-based models with the proposed
spectrum differential loss in (21) (GRUDiff).

The results for MCD measurements of the training and
testing data, averaged over all speaker-pair conversions, are
shown in Figs 5 and 6, respectively, during 500 training
epochs for DNN/DMDNmodels, and during 325 epochs for
LSTM/GRU/GRUDiffmodels. The lower number of epochs
for RNN-based models is due to their faster convergence
rate compared to the conventional DNN-/DMDN-based
models. It can be observed that the GRU-based spectral
models with conventional loss give better accuracy and gen-
eralization for unseen data, where it yields higher accuracy
than the other models within only 50–80 epochs. Similar
tendencies are also observed for the same- and cross-gender
conversions, as, respectively, shown in Figs 7 and 8. Note
that the lower accuracy for theGRUDiffmodels is due to the
optimization for generating the spectrum differential rather
than the target spectra. Although the MCD measurement
does not always correlate with perceptual output, they can
still be used as a basic metric for monitoring the conver-
gence and the basic performance of spectral mapping mod-
els. As a further side note, for the training time, one epoch
of the DNN/DMDN-based network takes about two times
faster than the LSTM-/GRU-based network. However, the
convergence of the LSTM-/GRU-based network takes only
about 50–80 epochs, whereas that of theDNN/DMDNtakes
nearly 500 epochs.

Hence, to accompany the pure accuracy results of MCD,
the LGD measurements were performed to evaluate the
oversmoothness (variance reduction) of spectral trajectory
due to the mean-based optimization in spectral modeling.
The results of the LGD measurements of the testing data
for same- and cross-gender conversions are given in Figs 9
and 10, respectively. These results demonstrate that the pro-
posed spectrumdifferential loss used for theGRUDiffmod-
elsmakes it possible for the resulting converted trajectory to
be less oversmoothed. Furthermore, all of the RNN-based
spectral models show a clear tendency of being capable of
producing better trajectory variance compared to theDNN-
/DMDN-basedmodels, such as the one used in our previous
work [24], i.e. DMDN-based model. Considering the capa-
bility of GRU and GRUDiff to produce superior objective
results, we used them both to generate converted spectra
in the subjective evaluation. As to the latter point, in this
work, we indeed focus on providing empirical evidence of
the performance of RNN-based architectures for the VC
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Fig. 5. Trend of mel-cepstral distortion (MCD) for the training set using the
DNN-, DMDN-, LSTM-, GRU-, and GRUDiff-based spectral conversion mod-
els during 500 training epochs for the DNN/DMDN models and 325 training
epochs for the LSTM/GRU/GRUDiff models.

Fig. 6. Trend of MCD for the testing set using the DNN-, DMDN-, LSTM-,
GRU-, and GRUDiff-based spectral conversion models during 500 train-
ing epochs for the DNN/DMDN models and 325 training epochs for the
LSTM/GRU/GRUDiff models.

Fig. 7. Trend of MCD for same-gender (SG) conversions on the testing set
using the DNN-, DMDN-, LSTM-, GRU-, and GRUDiff-based spectral con-
version models during 500 training epochs for the DNN/DMDN models and
325 training epochs for the LSTM/GRU/GRUDiff models.

Fig. 8. Trend of MCD for cross-gender (XG) conversions on the testing set
using the DNN-, DMDN-, LSTM-, GRU-, and GRUDiff-based spectral con-
version models during 500 training epochs for the DNN/DMDN models and
325 training epochs for the LSTM/GRU/GRUDiff models.

Fig. 9. Trend of log-GV distance (LGD) for SG conversions on the testing set
using the DNN-, DMDN-, LSTM-, GRU-, and GRUDiff-based spectral conver-
sion models during 500 training epochs for the DNN/DMDN models and 325
training epochs for the LSTM/GRU/GRUDiff models.

framework, which would be beneficial for the continuous
future development of real-world applications and integra-
tion of training development with other frameworks, such
as neural vocoder.

C) Subjective evaluation
In the subjective evaluation, we conducted MOS tests to
evaluate the naturalness of the converted speech waveforms
and speaker similarity tests to evaluate the accuracy of the
converted speech waveforms. In the MOS tests, a five-scale
score was used to assess the naturalness of speech utter-
ances, i.e. 1: completely unnatural, 2: mostly unnatural, 3:
equally natural and unnatural, 4: mostly natural, 5: com-
pletely natural. On the other hand, for the speaker similarity
tests, each listener was given a pair of stimuli, i.e. a natural
speech of the target speaker and a converted speech of the
source speaker, and asked to judge whether or not the two
speech utterances were produced by the same speaker. To
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Fig. 10. Trend of LGD for XG conversions on the testing set using the DNN-,
DMDN-, LSTM-, GRU-, and GRUDiff-based spectral conversion models dur-
ing 500 training epochs for the DNN/DMDN models and 325 training epochs
for the LSTM/GRU/GRUDiff models.

judge the similarity, each listener chose between two main
responses, i.e. “same” or “different”, where each had a con-
fidencemeasurement, i.e. “sure” or “not sure”, giving a total
of four options when judging the similarity. The number of
listeners was 10.

We compared the use of direct waveform modification
with the spectrum differential, i.e. DiffVC [5], using the
GV [22] postfilter (dG), which was made to nearly match-
ing the baseline system of VCC 2018 [68], and the use of
the WN vocoder to generate the converted speech wave-
forms. In the case of the WN-based waveform generation,
we also compared the use of several types of speech aux-
iliary features, namely, converted spectral features (WNc),
converted features with the GV postfilter (WNcG), post-
conversion processing based on DiffVC (WNd), and Dif-
fVC post-conversion processing with the GV postfilter
(WNdG), which was used for our VC system in VCC 2018
[24]. Furthermore, we also utilized two different spectral
mapping models, i.e. the GRU-based models with conven-
tional loss (GRU) and spectrum differential loss (GRUD-
iff). The total combinations of speaker pairs and spectral
mapping models/waveform generation methods were 40,
i.e. four speaker pairs and ten different models/methods.
In the naturalness evaluation, the number of distinct

utterances was three, whereas, in the speaker similarity
evaluation, it was two. In both evaluations, we also included
the original speech waveform of the four speakers, i.e.
either as a single stimulus of the original waveform in
naturalness test or a pair of stimuli of original waveforms
(from either source–target/target–target) in similarity test.
Therefore, each listener had to evaluate 132 audio samples in
the naturalness test and 92 audio samples in the similarity
test.

The results of the MOS tests are shown in Tables 1 and 2.
It can be observed the DiffVC with the GV method yields
relatively high naturalness scores for same-gender conver-
sions but not for cross-gender conversions owing to the
use of the conventional vocoder in the cross-gender con-
versions. On the other hand, for the WN-based waveform
generation, the use of post-conversion processing based on
DiffVC and the GV, i.e. WNdG, clearly enhances the natu-
ralness of the converted speech waveforms compared with
the other sets of auxiliary speech features. Furthermore, the
proposed spectrum differential loss improves the perfor-
mance for same-gender conversions, i.e. either F-to-F or
M-to-M.

Results for the speaker similarity tests are given in
Table 3. The results show that the use of the WN vocoder
with the DiffGV-based post-conversion processed auxil-
iary features (WNdG) yields superior accuracy to the other
methods, including the conventional DiffGV without the
WN vocoder (dG). The results for naturalness and accu-
racy in this paper exhibit a similar tendency to the results
of VCC 2018 [51], where the baseline method [68] yields
better naturalness, especially for same-gender conversions,
due to the avoidance of the conventional vocoder, and our
VC system with post-conversion processing for the WN
vocoder [24] gives better accuracy. Based on these results,
for the use of a WN vocoder in VC, it has been shown
that an additional processing procedure adjusted to reduce
the mismatches between estimated and natural speech fea-
tures is needed to improve the converted speech waveform.
For future work, it is worthwhile to directly address this
problem in the development of a neural vocoder, such
as WN, for VC, i.e. in a data-driven manner. All audio
samples used in the subjective evaluation are available at
http://bit.ly/2WjuJd1.

Table 1. Results of mean opinion score (MOS) test of DiffVC with the GV postfilter (dG) waveform generation method using either GRU or GRUDiff
spectral mapping models and of the original speech signals.

GRU GRUDiff Original

MOS dG dG SF1 SM1 TF1 TM1

All pairs 3.27 ± 0.22 3.28 ± 0.23 4.93 ± 0.09 5.00 ± 0.00 4.93 ± 0.07 4.87 ± 0.09
S-Gender 4.08 ± 0.24 4.33 ± 0.18 – – – –
SF1–TF1 4.10 ± 0.37 4.20 ± 0.25 – – – –
SM1–TM1 4.07 ± 0.31 4.47 ± 0.25 – – – –
X-Gender 2.45 ± 0.24 2.23 ± 0.21 – – – –
SF1–TM1 2.00 ± 0.33 1.80 ± 0.25 – – – –
SM1–TF1 2.90 ± 0.28 2.67 ± 0.27 – – – –

± denotes the 95 confidence interval. S-Gender and X-Gender denote same-gender and cross-gender conversions, respectively.

http://bit.ly/2WjuJd1
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Table 2. Results of MOS test of the WN-based generation methods using plain converted mel-cepstrum (c), using c with GV postfilter (cG), using
post-conversion based on DiffVC (d), and using d with GV postfilter (dG) from either GRU or GRUDiff spectral mappings.

GRU GRUDiff

MOS WNc WNcG WNd WNdG WNc WNcG WNd WNdG

All pairs [2.35 ± 0.16] [2.56 ± 0.17] [2.53 ± 0.18] 2.99 ± 0.18 [2.62 ± 0.19] [2.71 ± 0.19] [2.72 ± 0.19] 2.98 ± 0.18
S-Gender [2.47 ± 0.23] [2.70 ± 0.26] [2.77 ± 0.25] 3.25 ± 0.25 3.05 ± 0.26 3.18 ± 0.26 2.92 ± 0.29 3.30 ± 0.25
SF1–TF1 [2.43 ± 0.34] [2.70 ± 0.36] 2.93 ± 0.35 3.33 ± 0.37 [2.70 ± 0.26] [2.83 ± 0.28] 2.97 ± 0.40 3.37 ± 0.36
SM1–TM1 [2.50 ± 0.34] [2.70 ± 0.39] [2.60 ± 0.38] 3.17 ± 0.36 3.40 ± 0.42 3.53 ± 0.40 [2.87 ± 0.44] 3.23 ± 0.28
X-Gender [2.23 ± 0.23] 2.42 ± 0.23 [2.28 ± 0.24] 2.73 ± 0.25 [2.18 ± 0.22] [2.23 ± 0.23] 2.52 ± 0.23 2.65 ± 0.24
SF1–TM1 [2.20 ± 0.39] 2.73 ± 0.35 2.47 ± 0.35 2.60 ± 0.35 [2.20 ± 0.35] 2.30 ± 0.39 [2.23 ± 0.32] 2.43 ± 0.39
SM1–TF1 [2.27 ± 0.26] [2.10 ± 0.27] [2.10 ± 0.33] 2.87 ± 0.38 [2.17 ± 0.30] [2.17 ± 0.26] 2.80 ± 0.32 2.87 ± 0.29

S-Gender and X-Gender, respectively, denote same-gender and cross-gender conversions. ± denotes the 95 confidence interval of the sample mean.
Bold indicates the system(s) with the highest mean score in each conversion category. [·] Denotes a system with a statistically significant lower score than
the highest score in each conversion category. Statistical inferences were performed using the two-tailed Mann–Whitney test with α < 0.05.

Table 3. Results of speaker similarity test (scores were aggregations of “same – sure” and “same – not sure” decisions) of the converted speech
waveform using all waveform generation methods (dG, WNc, WNcG, WNd, and WNdG) with either GRU or GRUDiff spectral mappings.

GRU GRUDiff

Speaker similarity scores () dG WNc WNcG WNd WNdG dG WNc WNcG WNd WNdG

All pairs 66.25 57.50 [58.75] 65.00 71.25 [46.25] [57.50] [52.50] 61.25 63.75
S-Gender 82.50 60.00 [67.50] 70.00 67.50 52.50 62.50 [57.50] 60.00 67.50
SF1–TF1 95.00 60.00 [65.00] 80.00 70.00 55.00 [55.00] [45.00] 65.00 70.00
SM1–TM1 70.00 60.00 70.00 60.00 65.00 50.00 70.00 70.00 55.00 65.00
X-Gender [50.00] [55.00] [50.00] 60.00 75.00 [40.00] [52.50] [47.50] 62.50 60.00
SF1–TM1 [20.00] 40.00 35.00 40.00 60.00 20.00 45.00 35.00 50.00 40.00
SM1–TF1 80.00 70.00 [65.00] 80.00 90.00 [60.00] [60.00] [60.00] [75.00] 80.00

S-Gender and X-Gender, respectively, denotes same-gender and cross-gender conversions. Bold indicates the system(s) with the best similarity score
in each conversion category. [·] Denotes a system with a statistically significant lower score than the best score in each conversion category. Statistical
inferences were performed using the two-tailed Mann–Whitney test with α < 0.05.

V I . CONCLUS ION

In this paper, we have presented a study on the use of
NN-based statistical models for both spectral mapping and
waveform generation in a parallel VC system. Several archi-
tectures of NN-based spectral mapping models are pre-
sented, including DNN-, DMDN-, and RNN-based archi-
tectures, i.e. by using LSTM/GRU units. Then, we have
presented the use of WN vocoder as a state-of-the-art NN-
based waveform generator (neural vocoder) for VC. The
problem of quality degradation faced by the WN vocoder
in VC owing to the oversmoothed characteristics of the
estimated parameters is handled through post-conversion
processing based on the direct waveform modification
with spectrum differential (DiffVC) and the GV post-filter,
i.e. DiffGV. Furthermore, to preserve the consistency with
the DiffGV-based post-conversion method, we have pro-
posed amodified loss function thatminimizes the spectrum
differential loss for the spectralmodeling. The experimental
results have demonstrated that: (1) the RNN-based spec-
tral modeling, particularly the GRU-based model, achieves
higher spectral mapping accuracy with a faster convergence
rate and better generalization than the DNN-/DMDN-
based models; (2) the RNN-based spectral modeling is also
capable of generating less oversmoothed spectral trajec-
tory than the DNN-/DMDN-based models; (3) the use of

spectrum differential loss for the spectral modeling further
improves the performance in same-gender conversions; and
(4) the DiffGV-based post-conversion processing for the
converted auxiliary speech features used in theWNvocoder
achieves superior performance for both naturalness and
speaker conversion accuracy compared to those obtained
using conventional sets of converted auxiliary speech fea-
tures. Future work includes the use of a GRU-based model
for non-parallel VC and to directly address the mismatches
of speech features for VC with the neural vocoder in a
data-driven manner.
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