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3D skeletal movement-enhanced emotion
recognition networks
jiaqi shi,1,2 chaoran liu,3 carlos toshinori ishi2,3 and hiroshi ishiguro1,3

Automatic emotion recognition has become an important trend in the fields of human–computer natural interaction and
artificial intelligence. Although gesture is one of the most important components of nonverbal communication, which has a
considerable impact on emotion recognition, it is rarely considered in the study of emotion recognition. An important reason is
the lack of large open-source emotional databases containing skeletalmovement data. In this paper, we extract three-dimensional
skeleton information from videos and apply themethod to IEMOCAPdatabase to add a newmodality.We propose an attention-
based convolutional neural network which takes the extracted data as input to predict the speakers’ emotional state. We also
propose a graph attention-based fusion method that combines our model with the models using other modalities, to provide
complementary information in the emotion classification task and effectively fuse multimodal cues. The combined model uti-
lizes audio signals, text information, and skeletal data. The performance of the model significantly outperforms the bimodal
model and other fusion strategies, proving the effectiveness of the method.
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I . I NTRODUCT ION

With the rapid development of artificial intelligence tech-
nology and the widespread popularity of smart devices,
the study of human–computer natural interaction has been
widely concerned. Human–computer natural interaction
aims to provide effective and natural interaction between
humans and computers so that themachine can understand
the user’s intention and generate natural feedback based on
the user’s needs and behavior. As an important subject of
human–computer interaction, emotion recognition attracts
increasing attention due to its vital role andwide application
in intelligent interaction systems, mental health care, and so
on [1, 2]. For example, an interactive system with the ability
of emotion detection can decipher the emotional thinking
by analyzing the user’s emotional state and generate appro-
priate behaviors, which is conducive to providing users with
more efficient and comfortable services [3, 4].

Humans recognize emotions through a variety of dif-
ferent modalities during natural interaction, e.g. facial
expressions, voice tone, and body movement [5]. Through
the acquisition of information from different modalities,
humans can obtain multiple related but different aspects
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of emotional information, to judge the emotional state
more accurately. In the research of automatic emotion
recognition, it is also a common practice to improve the
performance of the system by fusing multimodal informa-
tion and leveraging the strengths of each modality [6–9].
Although these studies have used information from mul-
tiple modalities to achieve better prediction performance,
what is the best mechanism to effectively integrate mul-
timodal cues is still an unclear and promising research
topic.

Gesture is one of the most important forms of nonver-
bal communication, which plays an extremely important
role in the recognition of emotions [10]. Exploring the
relationship between gesture and emotion through affec-
tive computing is a very meaningful and challenging sub-
ject. Most of the existing body-tracking methods are based
on video data, which makes it extremely challenging and
usually amounted to single-frame analysis [11, 12]. On the
contrary, skeletal movement data are the most natural and
intuitive depiction of body movements, which can repre-
sent the interrelationships of body parts and joint move-
ments [13, 14]. However, the existing research in the field of
multimodal emotion recognitionmainly focuses on analyz-
ing features of text information, speech signals, and facial
expressions, and the role of gesture in emotion detection
is rarely considered. One of the important reasons gesture
modality is seldom considered is the lack of large open-
source emotional databases containing three-dimensional
(3D) skeletal movement data.
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There are some multimodal emotional databases con-
taining 3D skeleton data, such as emoFBVP database [15]
and Multimodal Database of Emotional Speech, Video and
Gestures [16]. Although they contain multiple modalities
including skeleton data representing bodymovements, they
all have some disadvantages, i.e. they have a relatively small
size, and there is no dialog and interaction between peo-
ple. IEMOCAP [17] is a database with over 10 000 samples,
which contains improvised behaviors and relatively natural
conversations in hypothetical interaction scenarios. How-
ever, only MOCAP (motion capture) data recorded by the
sensors on the head and hands of the participants, rather
than the skeleton data of the joints, are included in this
database, which ignores the movements of the spine, arms,
and shoulders that play a very important role in emotional
expression and prediction.

In this study, we add a new modality of skeletal data
for IEMOCAP database, and propose a skeletal movement
enhanced network to verify the effectiveness of this modal-
ity for emotion prediction. This paper mainly makes the
following contributions:

(1) We extract 3D skeletal movement data from raw video
based on pose estimation, and the method can be used
to expand existing databases by adding a new modal-
ity. The extracted data are a representation of body
movements, in the form of 3D joints positions sequence.

(2) We propose an attention-based convolutional network
for obtaining informative representations of the skeleton
data to identify emotional classes.

(3) We propose a multimodal network that fuses the 3D
skeletal movement data extracted by the proposed
model, with the audio and text features extracted by
existing methods. The performance of the model out-
performs the priormodel significantly, which proves the
effectiveness of the extracted modality.

The rest of the paper is organized as follows: Section
II introduces some related studies; Section III describes
the method of extracting skeleton data and our uni-modal
and multi-modal models; the experiment and results are
described in Section IV; we perform an ablation study and
make a further discussion about the gesture-based emotion
recognition model in Section V; and finally, we conclude
this paper with a brief summary and mention some future
research.

I I . RELATED STUD IES

A) Relationship between emotion and gesture
Many studies have shown that people can analyze emo-
tional information from nonverbal expressions, such as
facial expressions, and use the information to infer
others’ emotional states fairly accurately [18, 19]. Similarly,
as an important part of nonverbal expression, gesture also
has a significant relationship with emotion. Not only static
body posture can promote emotion perception [20, 21],

but also the dynamic characteristics of body movement,
e.g. amount, speed, force, fluency and size, can help to
accurately identify emotions [22].

B) Emotion recognition using body motion
information
Some body movement analyzing based emotion recogni-
tion methods have been proposed in recent years. These
methods can be categorized into hand-crafted features-
based methods and deep-learning methods using an end-
to-end manner. The first type of methods design some
hand-crafted features to capture the properties of body
movement, for example, kinematic-related features, spa-
tial extent-related features, and leaning-related features [23,
24]. Inspired by the great performance of end-to-end deep
learning in many tasks, some researchers also use end-to-
end deep-learning-based methods to analyze the emotional
features of joint motion [13, 25]. However, these studies are
limited by the relatively small amount of data and the lack
of interaction and dialog between people, so it is difficult
to study the real emotions expressed by body movement
in the scene of natural interaction. Our method effectively
alleviates the lack of data in the field of gesture emotion
recognition by extending the existing large emotional inter-
action database, which has a positive effect on boosting the
research in this field.

C) Multimodal fusion for emotion recognition
Many studies have fused various types of information from
multiple modalities to improve the performance of mul-
timodal emotion recognition. Fusion strategies in these
studies can be divided into three typical categories, namely
feature-level (early) fusion, decision-level (late) fusion, and
model-level fusion [26]. In feature-level fusion, the con-
catenation of features from different modalities is used
to construct a joint feature vector and is fed into a sin-
gle classifier. Decision-level fusion makes the prediction
of each modality separately and then combines the pre-
dictions of different modalities to obtain the multimodal
prediction. Model-level fusion is a compromise between
the two extremes and uses the concatenation of high-level
feature representations from various modalities. For neu-
ral networks, model-level fusion could be a concatenation
of different hidden layers from multiple modalities [27].
Feature-level fusion does not perform well if the input
features from different modalities differ in the temporal
characteristics, and the high-dimensional feature set may
easily suffer from the problem of data sparseness. There-
fore, most research focuses on the decision-level fusion
and the model-level fusion [28, 29]. The network proposed
in [30] encoded the information from audio and text and
directly concatenated the features of the two modalities to
predict the emotion class. In [31], the proposed tensor fusion
network was used to model both intra-modality and inter-
modality dynamics directly. In [32] and [33], it is shown that
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cross-modal attention can be used to learn interactive infor-
mation between audio and text modalities to improve the
emotion recognition performance. Siriwardhana et al. [34]
introduced an attention-based fusion mechanism that can
combine multimodal self-supervised learning features for
emotion recognition. However, relatively few studies have
investigated the fusion of information from body move-
ments and more effective fusion methods still need further
research. In our study, we fuse the information from body
movement with audio and text modalities and employ a
graph attention [35] based fusionmethod that considers the
high-level features from eachmodality as a node and assigns
each node in the graph different weights according to the
features of neighboring nodes, so that the model can not
only find the inter-modal and intra-modal relationships, but
also effectively utilize the advantages of each modality.

I I I . METHODOLOGY

This section describes the method of extracting gesture
modality from the video and the structure of the proposed
models. We extract skeleton data from the original video
files and perform data cleaning aimed at removing noise.
The preprocessed data are fed into our spatial attention-
based convolutional network to extract features related to
emotional expression. The features are concatenated with
representations of text and audio to form a multimodal
feature vector used for emotion prediction.

A) Skeletal data extraction
Considering that skeleton data can be directly used in emo-
tion prediction instead of processing image sequence, we
adopt a human pose estimation-based method to extract
human skeletal movement data from raw videos. The skele-
ton is essentially a coordinate representation of the joint
positions of the human body, which can be used to describe
body movements. The data require some preprocessing
operations in order to be fed into the emotion classification
model. The extracted data can be used not only for emo-
tion classification but also for the study of emotionalmotion
generation and action interaction.

A.1 Human pose estimation
Human pose estimation is used to reconstruct human joints
and limbs based on images, obtaining the coordinate rep-
resentation of each joint, and creating gestures by forming
connections between joints.We detect the two-dimensional
(2D) joint position from the image sequence of video, and
then project the joint position in 3D coordinates from the
2D pose data.

In this study, AlphaPose is used as a 2D pose detector.
AlphaPose [36–38] is an open-source pose estimation sys-
tem with extremely high accuracy. The AlphaPose detector
pretrained on the COCOdataset [39] is applied to detect the
2D keypoints of the same person across the frames of the
video. For 3D pose estimation, we used the pretrained tem-
poral convolution model proposed in [40], which is proved

to be effective at predicting 3D poses in videos. The model
takes 2D joint sequences as input, applies dilated temporal
convolution to obtain long-term information, and gener-
ates 3D pose estimation results. In this way, we obtained the
position data of the joints in the 3D coordinate system from
the original videos.

A.2 Preprocessing
Due to video quality and error of detection, there is high-
frequency noise in the detection results of 2D key points,
which leads to fluctuations in the estimated 3D joint posi-
tion data. In order to filter out the noise and get clean data,
a low-pass filter is applied to the 3D position result across
time for each joint. Here, we use the filter order of 8 and
normalized cut-off frequency of 0.1 as the parameters of the
low-pass filter. The low-pass filter significantly reduced the
influence of noise during the detection process.

Besides, the lower body of the actors in the IEMOCAP
dataset is invisible in the video. Therefore, the predicted
pose of the lower body is not reliable and only the data of
10 joints of the upper body is used in this study. As a result
of the different lengths of the video clips, the skeleton data
in each sample are a variable-length sequence, which can-
not be directly used as the input of convolutional network.
To unify the length of the sequence, zero padding is applied
to the data.

B) Spatial multi-head attention-based
convolutional network
The structure of our spatial multi-head attention-based
convolutional network (SMACN) is shown in Fig. 1. It takes
the time sequence of skeletal movement as input, extracts
emotion-related features through the convolutional layers
and the attention layer, and predicts the emotion class. The
convolutional layers are trained to detect emotional features
from sequence data. The attention mechanism reduces the
feature dimension by evaluating the effectiveness of each
feature vector and weighting it. The final feature vector is
used to predict the emotion class.

In recent years, convolutional neural networks (CNNs)
have achieved excellent performance in many tasks related
to digital image processing, e.g. target detection [41–43] and
human pose estimation [40, 44]. CNNs are capable of com-
pressing images with large amounts of data to a relatively
small dimension, without damaging most of the effective
features. Considering that to some extent, the skeleton data
can also be regarded as a special kind of image data, CNNs
are employed to extract the high-level features of skeletal
movement data in the spatial and temporal domains.

The sequence of skeleton data is fed into themodel as the
input of size T × V , where T represents the number of time
steps in the sequence and V denotes the number of joint
positions in the skeleton data. In our model, we use a 2D
convolutional layer and four convolutional units to extract
features from the data. Each convolutional unit contains a
2D convolutional layer and a 2Dmaxpooling layer. The out-
put size of the convolutional layers is T′ × V ′ × C, where T′
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Fig. 1. Architecture of the proposed SMACN.

and V ′ indicate the feature size of the temporal domain and
the spatial domain, respectively, and C is the channel size,
i.e. the number of feature maps.

In the spectrogram representation-based speech emo-
tion recognition task of [45] and [46], the attention pool-
ing method can reduce the number of network parame-
ters and make the model perceiving which parts of the
sequence are more emotion-relevant. Similarly, not all the
temporal–spatial regions of skeletal motion data contribute
equally to emotional states. Therefore, we use a multi-head
spatial attention layer on the output of our convolution
unit to enable the network to find more effective parts. The
multi-head attention mechanism not only allows the model
to find multiple features in different aspects, but also has a
low-computational cost.

The input size of the attention layer is T′ × V ′ × C. We
represent the vector composed of the elements at the same
position in the feature map of each channel as ai ∈ R

C,
whose amount is L = T′ × V ′:

A = {a1, ..., aL} . (1)

Then we apply a linear transformation to ai, and use
the nonlinear activation function tanh to calculate the new

representation of ai:

yi = tanh (Wai + b), (2)

where W ∈ R
F×C represents the weight of the linear trans-

formation, and the bias is b ∈ R
F . Then the learnablematrix

U ∈ R
H×F is multiplied by this vector to calculate the

importance weight vector Ei ∈ R
H :

Ei = Uyi, (3)

Ei = [
e1i , ..., e

H
i
]T . (4)

After this, the softmax function is applied for each head to
normalize the attention weights:

αhead
i = exp eheadi∑L

k=1 exp e
head
k

, (5)

All the weights on each attention head form a 2D spa-
tial attention map Mhead ∈ R

T′×V ′×1. We concatenate the
weighted sums of the input feature vectors with attention
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weight on each head as the emotional vector representation
vs ∈ R

R,R = H × L:

vs =
L∑
i=1

α1
i ai ⊕ · · · ⊕

L∑
i=1

αH
i ai, (6)

where ⊕ represents the concatenation operation. Finally,
the emotion vector is passed into the fully connected output
layer to obtain the prediction result.

In our experiment, the 2D convolutional layer has 128
channels for output. The four convolutional layers in the
convolutional units have 256 channels for output. Each con-
volutional layer is followed by a ReLU activation function.
We apply dropout with a rate of 0.5 to avoid overfitting in
the training process.

C) Skeletal movement-enhanced emotion
recognition network
In order to confirm the utility of emotion-related represen-
tations extracted from skeleton data, we construct Skele-
ton Movement-enhanced Emotion Recognition Network
(SMERN) for integratingmulti-modal information, includ-
ing text, audio, and skeleton information (see Fig. 2). For
text and audio data, Multimodal Dual Recurrent Encoder
(MDRE) [30] is used as the basic model. The MDREmodel
is composed of Audio Recurrent Encoder (ARE) and Text
Recurrent Encoder (TRE). It takesMFCC features, prosodic
features, and textual transcripts as input at the same time,
considering the relevance of sequential audio features, sta-
tistical audio features, and text information. ARE takes
MFCC features as input. The concatenation of the final hid-
den state of the audio encoder and the prosodic features
is passed into the fully connected layer to form the vec-
tor representation A. For text modality, the sequence of
word embedding vectors, that is formed by the transcrip-
tion script being passed into the embedding layer, is fed to
the text encoder. The final hidden state after a fully con-
nected layer is the vector representation T of the text. The
concatenation of vectors A and T contains both audio and
text information and is used for emotion prediction.

In our study, we propose a two-phase hierarchical net-
work to consider the features of audio, text, and ges-
ture at the same time. The uni-modal features are fed to
ARE, TRE, and the proposed CNN, respectively, to obtain
the uni-modal feature representations (200, 200, and 256
dimensions, respectively) in the first phase. In the second
phase, the feature representations are passed through three
fully connected layers respectively to reduce the dimensions
by half, and then concatenated to pass to the output layer for
final emotion prediction.

D) Skeletal movement-enhanced emotion
recognition network with graph attention
To make better use of the multimodal features and
fuse cross-modal information more effectively, we employ
a multi-head graph attention on the extracted features
(Fig. 3). We first apply a linear transformation to adjust

the dimensions of the uni-modal feature vector rep-
resentations from ARE, TRE, and the proposed CNN.
The graph attention module takes a set of feature vectors
v = {va, vt , vs}, vi ∈ R

Fin as input, where Fin is the number
of input features, regards each vector as a node and com-
putes the interactive information between modalities. In
the graph attention module, the attention coefficient αij is
formulated as:

αij = exp(LeakyReLU(aT[Wvi||Wvj]))∑
vk∈v exp(LeakyReLU(aT[Wvi||Wvk]))

, (7)

where W∈ R
Fout×Fin is a trainable weight matrix for linear

transformation and a ∈ R
2Fout is a learnable weight vector.

The weights of edges are calculated based on the features of
each pair of connected nodes and are normalized for each
node.

Then we calculate the weighted sum of all nodes and
average the output tensor across attention heads:

v′
i = σ

(
1
K

K∑
k=1

∑
vk∈v

αk
ijW

kvj + b
)
, (8)

where σ represents ELU activation function, K is the num-
ber of attention heads, and b ∈ R

Fout is the bias.
In our proposed Skeletal Movement enhanced Emotion

Recognition Network with Graph Attention (SMERN-
GA), the input of the graph attention module is three
128-dimensional vectors (audio, text, and gesture feature
vectors) and the output is three 64-dimensional feature vec-
tors. The number of the attention heads is set to 4. The
three output vectors are then passed into the output layer
to predict emotions.

I V . EXPER IMENTS AND RESULTS

A) Dataset description
We use the interactive emotional dyadic motion capture
database (IEMOCAP), which contains more than 10 h of
audio and video data from 10 actors. For simulating natu-
ral binary interaction between people, the dialogs between
a male and a female in scripted or hypothetical scenarios
are recorded in the database. The emotion label set includes
10 classes, i.e. neutral emotion, happiness, sadness, anger,
surprise, fear, disgust, frustration, excitement, and other.
The category of each sample is evaluated by 3–4 annota-
tors. We adopt four emotional labels of them, i.e. happy,
sad, angry, and neutral, and merge the excitement subset
into the happiness subset to keep it consistent with previous
research. In some videos of the database, the image of one
of two actors is missing, hence these samples are removed.
The final dataset includes a total of 5492 utterances (1606
happy, 1081 sad, 1102 angry, and 1703 neutral).

B) Feature extraction
Tomake a fair comparisonwith the previousmodel, our fea-
ture extraction follows the study of [30]. For speech data,
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Fig. 2. SMERN framework where audio, text, and gesture are used for emotion classification simultaneously.

Fig. 3. Illustration of the multimodal model with graph attention. GA represents the graph attention module.

OpenSMILE toolkit [47] is employed to extract MFCC fea-
tures and prosodic features. The MFCC features consist of
39 features, whose frame size is set to 25ms at a rate of 10ms
with the Hamming window. The prosodic features include
35 features, comprising the F0 fundamental frequency, the
voicing probability, and the loudness contours. For the tex-
tual transcript, we use a pretrained 300-dimensional GloVe
vector [48] to initialize each token.

C) Experiment setting
In our experiments, five-fold cross-validation is applied to
evaluate the performance of themodel. The samples of each
fold are divided into the training set, development set, and
test set, with a ratio of 8:0.5:1.5. This process is repeated for
five iterations, and then the prediction results are integrated
to calculate the final value. Crossentropy loss is employed as
the loss function for the outputs of all networks after passing
the softmax function. We trained the models with the size
of mini batch 128 and Adam as optimizer. The learning rate

was set to 0.001. All models were implemented by Pytorch
framework.

D) Results
Consistent with the basic model, the weighted average pre-
cision (WAP) is calculated as the indicator of the model
performance. Since WAP is rarely used in emotion recog-
nition tasks, we also list the unweighted and weighted aver-
age recall (UAR/WAR) of the models in our experiment.
Precision and recall are defined as:

Precision = tp
tp + fp

, (9)

Recall = tp
tp + fn

, (10)

where tp is the number of true-positive samples, fp is the
number of false-positive samples, and fn is the number of
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Table 1. Comparison for unimodal and multimodal

Model Modality WAP UAR WAR

Mocap$_$Model [49] M 51.1 – –
ARE [30] (reported) A 54.6 ± 0.9 – –
TRE [30] (reported) T 63.5 ± 1.8 – –
ARE [30] A 54.7 ± 0.9 59.7 57.1
TRE [30] T 63.9 ± 1.0 65.9 64.5
SMACN S 64.8 ± 0.6 65.6 65.9
MDRE [30] (reported) A + T 71.8 ± 1.9 – –
MDRE [30] A + T 71.8 ± 0.9 73.4 72.7
CMA [32] A + T + S 76.1 ± 0.4 77.2 76.9
Xu et al. [33] A + T + S 76.7 ± 0.4 77.6 77.2
SMERN A + T + S 76.6 ± 0.6 78.3 77.7
SMERN-GA A + T + S 77.9 ± 0.6 79.0 78.6

false negative. And the weighted score is calculated as:

weighted = 1∑
l∈L |ŷl|

∑
l∈L

|ŷl|φ(yl, ŷl), (11)

where L is the set of labels, ŷ is the true labels, y is the pre-
dicted labels, |ŷl| is the number of true labels that have the
label l, |yl| is the number of predicted labels that have the
label l, and φ is the function that computes the precision or
recall.

Table 1 shows the performance of themodels in the emo-
tion recognition task, which is shown in the form of the
mean and standard deviation for the results in the 10 exper-
iments. For [30], both the reported results in the paper and
the implemented results on our data are listed. In order to
verify the effectiveness of the extracted skeleton data, we
compare it with the MoCap data of the head, hands, and
face contained in the database which also represents body
movement of the actor. The MoCap-based emotion detec-
tion model in [49] is used as the baseline model of motion
data, which uses five 2D convolutional layers along with
ReLu activation function followed by a dense layer. Evalu-
ation results of uni-modal models that utilize audio signals
(A), textual transcription (T), skeletal movement (S), and
MoCap data (M) respectively, are listed in Table 1. From the
results, it can be seen that the proposed SMACN largely out-
performs the model based on MoCap, which indicates that
the collectedmotion data containmore informative features
related to emotion.

In this study, we also apply different types of neural
networks to the extracted skeleton data, to compare their
performance in gesture-based emotion recognition.We use
CNN, long short-term memory network (LSTM), and long
short-termmemory networkwith attention (LSTM+Att) to
analyze the skeleton sequence. For each of the models, the
following structures are tested: (1) LSTMs contain from 1 to
2 layers, and each layer has from 128 to 512 hidden states. (2)
LSTM with attention networks also include from 1 to 2 lay-
ers, and each layer contains from 128 to 512 hidden states.
The attention mechanism is applied to the output of the
last layer of LSTM and the weighted sum of the output of
each timestep is calculated. (3) CNNs and 3DCNNs con-
tain from 4 to 5 layers followed by maxpooling layers, each
layer includes from 64 to 512 channels. Table 2 shows the

Table 2. Performances of different models for skeleton movement-based
emotion recognition

Model Number of parameters UAR WAR

LSTM 3217.4k 54.0 52.7
LSTM+Att 1126.9k 54.8 53.9
CNN 940.8k 61.7 61.0
3DCNN 1350.4k 60.6 61.9
SMACN 1143.8k 65.6 65.9

best performance of each model for the extracted skeleton
data.

For LSTM, the network with two layers of 512 hidden
states achieves the best results. For LSTMwith attention, the
network containing one layer of 512 hidden states obtains
the best results. For CNN models, the best results are
obtained for the network of four convolutional layers with
64, 128, 256, and 512 channels respectively. For the 3DCNN
models, the best results are obtained for the network of four
convolutional layers with 256 channels. However, in fact, the
performance of each type of model does not change much
for different hyperparameters. In addition, SMACN signifi-
cantly outperforms other networks in this task, which shows
that our network structure, especially the spatial multi-head
attention mechanism, can effectively extract the emotional
features from skeleton sequences.

We also compared the performance of SMERN with
MDRE, which is used as the basic model of audio and text
feature extraction. As shown in Table 1, for the IEMOCAP
dataset, our model outperforms the best baseline model
(MDRE) that only uses audio and text information by the
WAP of 4.8, the unweighted average recall of 4.9, and
the weighted average recall of 5.0. All metrics pass the
Student’s t-test with p < 0.001. The results verify that the
performance of the model using gesture information is
much better than that of the model without using ges-
ture information. This demonstrates that the new modality
provides information that is not contained in the original
modalities, and the multimodal fusion with the extracted
gesture information containsmore plentiful related features
to enhance the ability of emotion analysis.

For trimodal (audio, text, and skeleton modalities) emo-
tion prediction, the cross-model attention (CMA) model
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[32] and attention-based alignment model [33] are com-
pared as baseline models. CMA contains two modules.
One of the CMA modules takes the hidden features from
the audio encoder as query vectors and takes the hidden
features from the text encoder as key and value vectors
and employs multi-head scaled dot product attention. The
other CMAmodule takes the hidden features from the text
encoder as query vectors and takes the hidden features from
the audio encoder as key and value vectors and employs
multi-head scaled dot product attention. And the statistics
pooling layer calculates the mean and standard deviation as
output feature representations. The model proposed by Xu
et al. calculates the attention weighted sum of the speech
hidden features based on the text hidden features and con-
catenates the weighted sum with the text hidden features.
The concatenated vectors are fed into amultimodal BiLSTM
for feature fusion. The outputs are applied an maxpooling
to get output feature representations. In our experiment, we
concatenate the output feature representations of the CMA
or the model proposed by Xu et al. with prosodic features
and the skeleton feature representations tomake prediction.
The result is shown in Table 1. Our multimodal model with
graph attention obtains better performance compared to the
model proposed by Xu et al., CMA, and SMERN models,
and there is significant difference between the SMERN-GT
with the SMERN model (WAP: p = 0.0048 < 0.01, UAR:
p = 0.0129 < 0.05, WAR: p = 0.0046 < 0.01). The results
show that the graph attention module can effectively find
the inter-modal relationship among skeleton, audio, and
text features and make better use of multimodal informa-
tion.

E) Multimodal analysis
Different modalities reflect distinct aspects of human emo-
tional expression and recognition. The different form and
amount of information of each modality may cause dis-
similar characteristics for emotion recognition. Figure 4
presents the confusionmatrices of eachmodel in our exper-
iment. As seen from Fig. 4(a), in gesture-based emotion
detection, the performance of neutral emotion is relatively
high among all classes, while in the false recognition sam-
ples of the other three categories, the ones that are mis-
classified as neutral emotion are the most. We speculate
that this may be because, in many utterances, the range
of actor’s movement is relatively small, even almost zero,
which is closer to the features of the neutral expression for
the model, thus these samples will be recognized as neu-
tral labels, even if the true labels of the samples are not
neutral. For audio information (Fig. 4(b)), samples of sad-
ness are well detected, but in addition to the confusion
between neutral and other emotions, anger is frequently
confused with happiness. Both of the emotions have high
arousal in the emotion space, which may lead to similar
acoustic features that cause the misrecognition. For the text
model (Fig. 4(c)), the difference between anger and hap-
piness is identified, while it is difficult to distinguish the
neutral category from other categories. The multimodal

Table 3. Comparison between noisy data and clean data

Data UAR WAR

Preprocessed 65.6 65.9
Unpreprocessed 61.9 62.8

model (Fig. 4(d)) reduces the defect of text and audio
model for recognizing neutral emotion to a certain extent by
synthesizing multi-modal information, and integrates the
strengths of uni-modal models, achieving a balanced and
high performance for each emotional category.

V . ABLAT ION STUDY AND D ISCUS -
S ION

A) Effect of data cleaning
In Section III-A), we applied the low-pass filter for the
detection results of estimated key points to get clean data.
In order to confirm the effectiveness of the data cleaning
strategy, we perform an ablation study for the use of the pre-
processing process. The unpreprocessed noisy data and the
preprocessed clean data are fed into two SMACNs and are
trained separately. The results are listed in Table 3.

The results show that the use of the low-pass filter can
effectively remove the noise information of the skeleton data
and improve the performance.

B) Cross-speaker emotion recognition
Some studies have achieved considerable performance
in emotion recognition based on electroencephalography
(EEG) and speech features across different subjects, indi-
cating generality and wide applicability of EEG and speech
emotional features for different people [50, 51].

However, a lot of studies have shown that there are indi-
vidual differences in the perception and expression of ges-
tures due to cultures, personal characteristics, etc. [52, 53].
For example, the thumb-up symbol might express different
meanings and emotions in different cultures [10]. It iswidely
regarded as a positive gesture and is used to express agree-
ment, consent, or interest, while itmay be considered insult-
ing in some cultures. In recent years, due to the increasing
frequency of cultural exchanges, there is a trend of global-
ization of gestures and the influence of cultural background
on the meaning of gestures gradually decreases [54]. How-
ever, although people are in the same cultural background,
they also differ in the frequency of using gestures, the pur-
poses of producing gestures, the generated gesture spaces,
and so on [55].

IEMOCAP dataset contains audio and video data from
10 speakers. In Section IV, the data of different speakers
were not explicitly separated when we divided the samples
into training set, development set, and test set. To evaluate
the performance of the skeleton modality on cross-speaker
emotion recognition, we redivide the dataset such that there
is no speaker sharing between the training set and the test
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Fig. 4. Confusion matrices of each model in our experiment: (a) gesture, (b) audio, (c) text, and (d) multimodal.

Table 4. Comparison of division methods of the dataset

Division method Ratio UAR WAR

Division without considering speakers 8:0.5:1.5 65.6 65.9
No speaker sharing 8:0.5:1.5 33.1 39.3

set. We compare the performance on the re-divided dataset
against the performance of the previously divided dataset in
Table 4.

The result shows that the obtained recognition perfor-
mance in a cross-speaker manner is far lower than the
performance on the previously divided data. It indicates that
gestures have variation across individuals, e.g. different ges-
ture spaces, whichmakes it difficult for the model to extract
effective generic emotional features from skeleton data in an
end-to-end manner, and for skeleton it may be necessary to
learn the approximate gestural distribution of the individual
for achieving an accurate emotion prediction.

C) Intra-speaker emotion recognition with
pretrained model
Although the above experiment shows that the skele-
ton modality does not perform well across speakers, it is
still an interesting topic whether the emotion recognition
model pretrained on other speakers’ data can be helpful in

predicting the emotions of a new speaker. To do this, we
divide the dataset into two parts with eight speakers and two
speakers, respectively. We train an SMACN using the data
of the former part and then divide the latter part with dif-
ferent ratios. The proportion of data of the latter part used
for training ranges from 2 to 50. The training data are fed
into the pretrained model to fine-tune and the rest of the
data is used for validating and testing. The performance of
the model changes with the proportion of training data as
shown in Fig. 5. The performance of the model increases
rapidly as the proportion of training data increases and
tends to be stable after 40.

In order to verify the effect of the pretrained model, we
also compare it with the unpretrained model that is only
trained on the subset with two speakers. The ratio of data
used for training is set to be the same. As shown in Fig. 5,
the performance of the pretrained model significantly out-
performs the unpretrained model when the proportion of
training data is low. The gap gradually narrows as the ratio
increases. The result shows that the pretraining on other
speakers’ data brings a significant improvement on the pre-
diction performance especially when the size of training
data is small, and the pretrained model can better extract
emotional gestural features and infer the individual charac-
teristics of gesture when the available data of the speaker is
not enough.
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Fig. 5. Performance of the model changes with the proportion of training data using and not using pretrained model.

V I . CONCLUS IONS

In this study, we applied a method to the IEMOCAP
database for extracting skeleton data from videos. We pro-
posed a multi-head attention-based convolutional network
for gesture emotion recognition and a graph attention-
based multimodal emotion recognition network for inte-
grating information from speech signals, text data, and body
movements. Our experimental results indicated that skele-
tal movement can serve as an effective source of emotional
information and the multimodal network can effectively
fuse the information from multiple modalities. In future
research, we plan to further explore more effective methods
to make better use of the skeleton data and fuse multimodal
information.
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