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ABSTRACT

This paper describes a deep generative approach to joint chord and
key estimation for music signals. The limited amount of music signals
with complete annotations has been the major bottleneck in supervised
multi-task learning of a classification model. To overcome this limitation,
we integrate the supervised multi-task learning approach with the unsu-
pervised autoencoding approach in a mutually complementary manner.
Considering the typical process of music composition, we formulate
a hierarchical latent variable model that sequentially generates keys,
chords, and chroma vectors. The keys and chords are assumed to follow
a language model that represents their relationships and dynamics. In
the framework of amortized variational inference (AVI), we introduce
a classification model that jointly infers discrete chord and key labels
and a recognition model that infers continuous latent features. These
models are combined to form a variational autoencoder (VAE) and are
trained jointly in a (semi-)supervised manner, where the generative and
language models act as regularizers for the classification model. We
comprehensively investigate three different architectures for the chord
and key classification model, and three different architectures for the
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language model. Experimental results demonstrate that the VAE-based
multi-task learning improves chord estimation as well as key estimation.

Keywords: Automatic chord estimation, automatic key estimation, variational
autoencoder, multi-task learning

1 Introduction

Computational music signal analysis has been one of the most fundamental
research topics in the field of music information retrieval (MIR). It aims to
infer musical symbols behind music signals, i.e., reproduce the human ability
to understand music as a set of discrete concepts. Although human experts
are capable of music transcription, automating this process has been very
challenging between the acoustic and symbolic domains.

In music analysis based on deep learning, joint estimation of multiple kinds
of musical elements has not received much attention so far. According to
western musical theories, different musical elements that describe a piece of
music are semantically related. For example, chord labels are strongly affected
by the underlying key labels [22], and the chord and key transitions tend
to occur at (down)beat positions [28]. Most conventional methods, however,
take the discriminative approach based on supervised learning of an audio-
to-label transcription process [19, 20, 26], where the mutual dependency of
multiple musical elements and a label-to-audio generative process are not
taken into account. Statistical representation of the complicated relationships
between mutually-dependent musical elements through multi-task learning is
thus considered the key to further improvement [30].

The major bottleneck of DNN-based multi-task learning lies in the limited
amount of completely annotated music signals used for supervised training
of a multi-label classifier [30]. It is extremely time-consuming to make time-
synchronized multi-label annotations on music signals. This makes it hard to
draw the full potential of highly expressive deep neural networks (DNNs). A
multi-task classification model often underperforms independently- but fully-
trained single-task models. This calls for a principled approach to making
effective use of any music signals with no, partial, and complete annotations.

One solution is to take the autoencoding approach based on a cyclic archi-
tecture consisting of deep discriminative and generative models. Specifically,
a (DNN-based) discriminative model called the encoder is used for inferring
latent variables (musical elements) from observed variables (acoustic features).
A (DNN-based) generative model called the decoder is then used for recon-
structing the observed variables given the latent variables. The encoder and
the decoder can be trained jointly in an unsupervised manner, where the
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Figure 1: The VAE-based multi-task learning approach to joint key and chord estimation,
consisting of a multi-task classification model, a recognition model, a language model, and
a generative model. The solid arrows indicate data input. The dashed arrows indicate
stochastic relationships.

encoder is regularized by the decoder. This framework unifies the the audio-
to-label discriminative process and the label-to-audio generative process into
a comprehensive model of music understanding and enhances the coherence
between the multiple music labels estimated by the encoder and the acoustic
features fed into the encoder and predicted by the decoder. Wu et al. [34],
for example, proposed an automatic chord estimation method based on a
variational autoencoder (VAE) [18] that unifies the discriminative and genera-
tive models in the framework of amortized variational inference (AVI). This
method can significantly improve the performance of chord estimation without
increasing the amount of annotated training data.

In this paper, we integrate the VAE-based autoencoding with the multi-task
learning in a probabilistic framework to draw the full potential of joint chord
and key estimation with a limited amount of training data (Figure 1). More
specifically, we formulate a deep hierarchical latent variable model to represent
the generative process of chroma vectors (observed variables) from discrete
key and chord labels and continuous latent features, where the key and chord
labels are assumed to follow some language model. In the VAE framework, we
introduce a deep classification model that jointly infers chords and keys from
chroma vectors, and a deep recognition model that infers latent features from
the chroma vectors. All models are then trained jointly, where the generative
and language models act as regularizers for the classification model.

The main contribution of this paper is to establish a principled statis-
tical approach to joint chord and key estimation based on the VAE-based
framework with multi-task learning. This enables us to deal with completely-,
partially-, and non-annotated music recordings in a unified manner with a
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mixture of supervised, semi-supervised, and unsupervised learning objectives.
Another contribution of the paper is to comprehensively investigate parallel,
branching, and sequential architectures for the chord and key classification
model and autoregressive, Markov, and uniform architectures for the language
model.

2 Related Work

This section reviews related works on single- and multi-task music analysis
based on machine-learning strategies.

2.1 Generative Approach

Generative modeling is the traditional approach in chord and key estimation
tasks. For example, hidden Markov models (HMMSs) [31] have widely been
used for representing the relationships between a sequence of chords [5, 7, 23|
or keys [4] and that of audio features, where the latent states corresponding
to musical symbols make a transition at each time step. The sequence of
latent states is typically assumed to follow a first-order Markov model, i.e.,
the transition from a current state to a next state depends on the current
state only. In addition, the feature vectors are assumed to be conditionally
independent from each other. This simplification enables the optimal state
sequence to be analytically inferred from an observed feature sequence with
the Viterbi algorithm. On the other hand, the expression capability of the
HMM is severely limited by the unrealistic assumptions required for tractable
inference.

2.2 Discriminative Approach

DNNs have gained a lot of attention as powerful discriminative models for
estimating the posterior probabilities of chords [14, 21, 26, 36] and keys [20,
32] from audio features. In general, a DNN is trained in a supervised manner
using annotated music signals such that the posterior probabilities of the
annotations conditioned by the audio features are maximized. DNN-based
methods use lower-level audio representations as the input and outperform
the HMM-based generative methods [19] thanks to the excellent expression
capability of the deep architecture.

In chord estimation, a chord language model is often integrated with a
classification model to yield temporally-coherent chord labels in the inference
stage. The language model is typically implemented using an HMM or a
linear-chain conditional random field (CRF) [19, 36]. This is similar in form
to the DNN-HMM hybrid model for automatic speech recognition (ASR) [12].
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Recurrent neural networks (RNNs) have also been used for representing longer-
term dependencies of label sequences [21, 33]. The optimal label sequence
that maximizes the product of the posterior given by the classification model
and the likelihood given by the language model is estimated using the Viterbi
or beam-search algorithm. This approach has been successful in filtering out
over-frequent transitions that are not supposed to appear.

2.3 Autoencoding Approach

Deep generative and discriminative models have recently been integrated
for unsupervised or semi-supervised learning. In the field of ASR, some
studies have tried to jointly train a speech-to-text model with a text-to-speech
model to improve the performance of ASR by using both annotated and
non-annotated speech signals [13]. In the field of MIR, Choi and Cho [§]
proposed an unsupervised drum transcription method that trains a deep
transcription model such that a spectrogram generated from a transcription
result with a synthesizer using drum sound samples is made close to the
observed spectrogram.

The VAE has widely been used for integrating deep generative and dis-
criminative models. In chord estimation, Wu et al. [34] proposed a deep latent
variable model representing the generative process of observed chroma vectors
from latent chord labels following a Markov language model. A classification
model is then introduced for inferring chord labels from chroma vectors. The
generative, classification, and language models are unified to form a VAE
that can be trained in a semi-supervised manner. The main difference of
the training objective between the VAE and the basic autoencoder lies in
the existence of the regularization terms with respect to the priors of latent
variables. The Markov language model encourages the classification model to
output consistent chord labels.

2.4 Multi-Task Learning Approach

At the heart of multi-task music analysis is representing the semantic rela-
tionships between multiple musical elements. In earlier research, HMMs have
often been used for modeling the generative process of labels and features.
Lee and Slaney [23] simultaneously trained multiple HMMs corresponding
to different keys. Given a sequence of chroma features, the optimal chord
sequence and musical key can be jointly determined by inferring the optimal
sequences for all the HMMs and selecting one with the highest likelihood. In
this way, mutually dependent musical elements are hierarchically formulated
as the emission probabilities conditioned by the latent states of HMMs [25,
27, 29|. This approach can explicitly reflect our musical knowledge, e.g., that
a chord sequence depends on a key sequence [22], and that chord transitions
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are more likely to occur at beat positions. Papadopoulo and Peeters [28]
proposed a joint chord and downbeat estimation method that focuses on the
relationships between downbeats and chord boundaries.

As for the discriminative approach, the common multi-task learning method
to joint estimation of multiple musical elements is to train a DNN that has
branching outputs for predicting the label posteriors from music signals. Con-
sidering the mutual dependency of rhythmic musical elements, for example,
Bock et al. [3] attempted joint estimation of tempos and beats and demon-
strated the mutual benefit for beat tracking. They further proposed a joint
tempo, beat, and downbeat estimation method [2]. In chord estimation, Mcfee
and Bello [26] used a structured training technique that jointly estimates root
notes, bass notes, and chord tones as well as chord labels. Chen and Su [6]
proposed the harmony transformer for jointly estimating a chord sequence
with transition positions. Jiang et al. [16] used crowd-sourced data to train a
DNN-based multi-task classification model that jointly estimates keys, chords,
beats, and melody scales. At the MIREX2019 competition, the multi-task
classification method improved the key estimation accuracy.

Our earlier work [37] integrated the multi-task learning with the autoen-
coding framework for joint chord and key estimation. This method had room
for further improvement because the latent variables (chords, keys, and latent
features) were treated equally without explicitly considering their hierarchical
relationships. In addition, supervised, semi-supervised, and unsupervised con-
ditions had not been fully investigated, i.e., the method cannot make maximum
use of ground-truth annotations in a unified multi-task learning framework.
In contrast, the VAE-based framework proposed in this paper reflects a hier-
archy between keys, chords, and chroma vectors and can be trained with an
objective function based on a mixture of all the three conditions. In addition,
we investigate various architectures for implementing the classification and
language models.

3 Proposed Method

We explain the proposed method of joint chord and key estimation. In our
method, the classification and language models can be implemented in various
ways. As for the classification model, we could use a parallel model that
separately infers chord and key labels or a branching model that jointly
infers both labels. We could also use a sequential model that first predicts
the chord labels from chroma vectors and then the key labels from the chord
labels. To formulate the language model that favors consistent chord and key
labels, we use a deep autoregressive model implemented with an RNN or a
Markov language model instead of the basic uniform model.
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3.1 Generative Model

Let X = {x,})_; be a sequence of chroma vectors (observed variables) where
N is the number of frames and x,, € [0,1]” is a multi-band chroma vector
representing the pitch class activations of lower, middle, and higher pitch
ranges (D = 36). The chroma vectors were calculated from the harmonic-CQT
representation of music audio using a DNN-based chroma extractor [35] that
was reimplemented and trained on the slakh2100 [24] dataset. We introduce
three kinds of latent variables, namely a sequence of chord labels S = {s, }V_,,
a sequence of key labels H = {h,,}»_,, and a sequence of latent features
Z = {z,})_,, where s, € {0,1}%5 and h,, € {0,1}%# represent the chord and
key labels at frame n, respectively, and z, € R is complementary information
that represents how x,, is deviated from a basic chroma pattern specified
by the discrete variable s,, (L = 64 in this paper). Let sg, hg, and z¢ be
dummy symbols at frame 0 representing the beginning of a sequence. The
chord vocabulary consists of all possible combinations of 12 root notes with
six types of triad chords (abbreviated as maj, min, aug, dim, sus2, sus4), and
one non-chord label (K¢ = 73). The key vocabulary consists of major and
minor keys (Kg = 24).

Considering a typical process of music composition, we assume that the
observation X is generated by the following procedure (Figure 2):

1. A key progression H is stochastically determined under a prior distribu-
tion p(H).

2. Given H, a chord progression S is stochastically determined under a
conditional prior distribution p(S|H).

3. A latent feature sequence Z is generated under a prior distribution p(Z).

4. Given S and Z, a chroma vector sequence X is stochastically generated
under a conditional distribution p(X|S, Z).

The joint probability is thus decomposed as follows:
pg@(X,S,H, Z) :pg(X|S,Z)p¢(S,H)p(Z), (1)

where pg(X|S,Z) is a generative model of X conditioned by both S and Z,
pe(S,H) is a prior of S and H, i.e., a unified language model that jointly
represents S and H, and p(Z) is a prior of Z. We formulate py(X|S,Z) as
follows:

N D
po(X|S, Z) H H Bernoulli(z,,4|[w¢ (S, Z)]na), (2)

where wy(S,Z) € [0,1]VP is the output of a DNN with parameters § and [-];
and [-];; denotes the i-th element and the ij-th block, respectively.
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Figure 2: The hierarchical generative model of keys, chords, latent features, and chroma
vectors.
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Figure 3: The joint language model py (S, H) with a deep autoregressive architecture. <s>
is a special symbol representing the start of sentence.

3.2 Language Models

We implement the the language model pg (S, H) of the discrete variables S and
H with an autoregressive, Markov, or uniform model. In the autoregressive
model, py (S, H) is directly formulated without factorization. In the Markov or
uniform model, in contrast, a key language model p,(H) and a chord language
model p,(S|H) conditioned by H are separately formulated as follows:

(S, H) = py(S[H)py (H). (3)

8.2.1 Autoregressive Model

As shown in Figure 3, since the relationships between S and H are hard to
represent explicitly, we formulate p,(S,H) in an autoregressive manner as
follows:

N
ps(S,H) = [] Cat.(sn, hn|ws(s0:m—1,ho:n—1)), (4)

n=1

where i:j represents a set of indices (integers) from i to j, we(So:n—1,hon—1) €
[0,1)Ks+K# is the output of a DNN with parameters ¢ at frame n based
on the whole history (sg.n—1,ho.n—1). This model sequentially takes as input
(Sp—1,h,—1) at frame n—1 and predicts (s,, h,,) at frame n in an autoregressive
manner.
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3.2.2 Markov Model

As shown in Figure 4, we formulate a conditional Markov model for implement-
ing py(S|H) and p,(H) separately. Specifically, we assume that the current
chord label s,, depends on the previous chord label s,,_; and the current key
label h,, and that the key labels are uniformly distributed as follows:

N
pe(S|H) = H Categorical(s,|¢(h,,sp—1)), (5)
n=1
N
pe(H) = H Categorical(hn\ﬁlKH% (6)
n=1

where ¢(hy,,s,_1) € [0,1]%5 is the chord probabilities at frame n conditioned
by the previous chord s, _; and the current key h,,. The parameters ¢ are
pretrained using a dataset of key and chord sequences.

3.2.3  Uniform Model

The most basic approach is to assume both S and H to be uniformly distributed
as follows:

N
ps(SIH) = H Categorical(sﬂ%sl;(s), (7)
n=1
N
pe(H) = H Categorical(hn|%H1KH), (8)
n=1

where 1 is the all-one vector of size L. The joint likelihood of H and S is
thus constant.
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Figure 5: The joint chord and key classification models with parallel, branching, and
sequential architectures.

3.3 Classification and Recognition Models

Given chroma vectors X as observed data, we aim to infer the latent variables
S, H, and Z. In the framework of AVI, we introduce a variational distribution
q(S,H,Z|X) to approximate the true posterior p(S,H,Z|X). As shown in
Figure 5, we consider three implementations for the classification model of
chords S and keys H.

8.3.1 Parallel Model

Assuming the conditional independence of the latent variables S, H, and Z in
the posterior space, We decompose the variational posterior as follows:

QQ,B(S7HaZ|X) = Q(XS(S|X)Qah (H|X)Q5(Z|X)a (9)

where g, (S|X), ¢a, (H|X), and ¢g(Z|X) are given by

N

Ga. (81X) = [ Categorical(s,|[ma, (X)]n), (10)
"

Gon (HX) = [T Categorical (hy|[ma, (X)]n), (11)
N

g5(Z1X) = [ N (@l (X, [03(X)]n), (12)

n=1
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where 7, (X) € [0,1]VKs is the output of a DNN with parameters o,
Ta, (X) € [0, 1]V5H is that of a DNN with parameters o, and pg(X) € RNVE
and o3(X) € RY* are the outputs of a DNN with parameters £3.

3.3.2  Branching Model

To consider the mutual dependency between the chords S and the keys H, we
jointly infer S and H from X as follows

qa,ﬁ(svH7Z|X) = QQ(SaH‘X)qﬁ(Z‘X)v (13)
where ¢3(Z|X) is the same as Equation (12) and ¢, (S, H|X) is given by

N
7.(S, H|X) = H Categorical(s,, h,|[7(X)]n), (14)

n=1

where 7,(X) € [0,1]¥%s is the output of a DNN with parameters a.

3.83.8 Sequential Model

Based on the reasonable assumption that the keys H can be determined only
from the chords S in the symbolic domain without referring to the acoustic
data X, we formulate a sequential estimation process as follows:

qozﬁ(sa H, Z|X) = o, (S|X)QG¢h (H|S)Q5(Z|X)» (15)
where ¢, (S|X) and gg(Z|X) are the same as Equations (10) and (12), respec-
tively, and q,, (H|S) is given by

N
do, (H|S) = H Categorical(hy,|[mq, (S)]n), (16)

n=1

where ,, (S) € [0, 1]VE# is the output of a DNN with parameters ay,.

3.4 Unsupervised Training

Under an unsupervised condition that only chroma vectors X are given, we
jointly train the generative and classification models such that the log-evidence
log pg,¢(X) is maximized. We use the AVI technique that introduces a DNN-
based factorizable variational posterior go 5(Z, S, H|X) = ¢.(S, H|X)g¢s(Z|X)
with parameters « and S and maximizes a lower bound Lx(6,¢,«, ) of
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log py,»(X), which is given by

log pg,¢(X) = log ///pgyd,(X, Z,S,H)dZdSdH

4a.8(Z, S, H|X)
=1 X,Z,S,H)dZdSdH
0og /// QQ,@ Z S H|X)p0¢( s Ly 9, )

p9¢(XZSH)
«5(Z, S, H|X ZdSdH
> [[[ gestzs 00 B tos(2.5, HX) 1208

= Ey,(z1%)q. (s, Hx) [l0g po(X|Z, S)] + E, (s 1x) [log ps (S, H)]
+ Eq, (z1x)[log p(Z) — log q5(Z|X)] — Eq (s,1x) [10g 4. (S, H|X)]

I

Z (log po(X|Z;, S;) + log ps(S:, Hy))
i=1

— KL(qs(Z[X)|[p(Z)) + Entropy|qa (S, H|IX)],
d:ef EX(03¢7aaﬂ)7 (17)

where {Z;, S;, H;}/_, are a set of I samples drawn from gs(Z|X) and g, (S, H|X).
As in the standard VAE, we set I = 1. We found that (S;, H;) drawn with the
Gumbel-softmax trick [15] in a differentiable manner as in Wu et al. [34] tend

to significantly fluctuate around the maximum-a-posteriori (MAP) estimates
of H and S, denoted by S* and H":

~I

~
~

(8", H") = argmax g 11,40 (S, H|X), (18)

To stabilize the training process and encourage the convergence, we in-
stead use the one-hot vectors (S*, H") as (S, H;) while making Lx (0, ¢, a, )
differentiable with respect to each parameter using the following calculation
technique:

(s‘f;’ft7 hfloft) = softmax(log[ms(X)]n), (19)
(szmd7 hgard) = hardmax(log[7(X)]n), (20)

s1.n = 8507t 4 ghard _ detach(ssof?),
(21)
hy, = h7 4+ W _ detach(hi*'),

where s2°f* and hfff ! are the posterior probability vectors given by 7, at frame
n, P74 and " are the one-hot vectors that represent the MAP estimates
at frame n, and detach(x) denotes an operator that detaches a vector x from
the computation graph used for backpropagation. Although hardmax(x) is
a non-differentiable operator, Equation (21) can yield S; = {s;,})_, and
H; = {h; ,}}_, in a differentiable and deterministic manner.
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The maximization of Lx (0, ¢, a, ) is equivalent to the minimization of
the KL divergence from the variational posterior distribution g, 5(S,H, Z|X)
to the true posterior distribution py (S, H, Z|X) [18]. In Equation (17), the
entropy of the language model, Entropy[q, (S, H|X)], is computed according
to its architecture. In the autoregressive model given by Equation (4), the
entropy is approximately computed with Monte Carlo integration using only
the sample (S1, H;). In the Markov model given by Equations (5) and (6), the
entropy can be calculated analytically using a dynamic programming technique
[34] as follows:

v(hy) £ log pg (hy), (22)
£ Z Qa(hn71|X)(’)’(hn71) +10gp¢(hn|sn,1)), (23)

Ey.(s.1/%)[log pg (H an hy [X)y(hy). (24)

Similarly, the expectation term for p,(S|H) is given by

v(s1) = 1ogp¢(sl), (25)

£ Z Z qa(sn—17hn—1|x)

Sn—1h,_1

X (V(Snfl) + 10gp¢(sn‘sn71a hnfl))v (26)
Eq. (s.Hx)log pe(S/H)] Z% sn|X)y(sn)- (27)
SN

In the uniform model, the entropy is irrelevant to the maximization of
x (0, ¢, o, B). The regularization based on the uniform model thus corresponds
to the maximization of the entropy of the variational posterior g, (S, H|X).

3.5 Supervised Training

We define objective functions to be maximized with respect to the parameters
of the classification, recognition, and generative models under partly or fully
supervised conditions.

Under the partly supervised condition that S is available, we aim to maxi-
mize a variational lower bound of the log-likelihood log pg,»(X,S) given by

log pg,» (X, S) = log / po.s(X,Z,S, H)dZJH

p@,d)(xvzasaH)
> Z,H|X,S)log ————————dZdH
> [ (2 HIX.8) o 22T
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= Eq,zix)llog pe(X|Z,S)] + Eq, (z/x) [log p(Z) — log q3(Z|X)]
+Eq., ax)[log pe (S, H) — log ga,, (H|X)]

I
1
~ 7 > (logps(X|Z:, S) + log py (S, Hy))
i=1

— KL(gs(Z|X)||p(Z)) + Entropyqa, (H|X)]
dZEf £X,S(9’¢7a56)' (28)

When the sequential architecture is used, ¢,, (H|S) given by Equation (16) is
used instead of ¢,, (H|X). Similarly, when H is available, we aim to maximize
a variational lower bound of the log-likelihood log pg (X, H) given by

log po,o (X, H) = log/p9,¢(X,Z7S,H)dZdS
po,s(X,Z,S, H)
> | qa.5(Z,S|X,H) log ——————-=dZdS
J et s A 08 12 G
= Ey,(zx)logpe(X|Z,S)] + Eyy (z1x) [log p(Z) — log q5(Z|X)]

+ Eq,, (s1x)[log ps (S, H) — log ¢a, (S|X)]
I
1
~ 7 Z (log pe(X|Z;, S;) + log py(S;, H))
=1
— KL(gs(Z|X)|lp(Z)) + Entropy|ga. (S:[X)]

E Lxu(0,6,,5). (29)

Under the fully supervised condition that both S and H are available, we aim
to maximize a variational lower bound of the log-likelihood log pg (X, S, H)

given by

10gp9,¢(XaSaH) = log/p0,¢(XazvsvH)dZ
po,(X,Z,S, H)
> | q5(Z|X,S,H)log ———Z———->dZ
[ s s o SR ECS
=Eg,(zx)[log pe(X|Z, S)]
+ Ey, zix) [log p(Z) — log q3(Z|X)] + log py (S, H)

I
~ % > logpo(X|Zi, S) — KL(qs(Z|X)||p(Z)) + log ps (S, H)

i=1

= Lxsu(0, 6., B). (30)
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Since the chord and key classification models g, (H|X) ¢q.(S|X), and
4o (S, H|X), which are the main optimization targets, are not involved in the
lower bounds, the posterior probability terms are added as follows:

‘CIX,S(97 (,25, «, 6) = EX,S(oa ¢a «, ﬂ) + 1Og Qo (S|X)7 (31)
x.u(0, 9, 8) = Lx u(0, ¢, o, B) + log qa,, (H|X), (32)
/X7S,H(97 d)v «, B) = ['X,S,H(97 ¢1 o, 5) + 1Og (IOL(Sv H|X) (33)

As in Equation (28), qq, (H|X) is replaced with g4, (H|S) when the sequential
architecture is used. Given chroma vectors X with or without the ground-truth
chords S and keys H, the total objective function to be maximized is given by

‘C<9a Qba «, ﬂ) = ZLX(97¢7Q7B) + ZEI)QS(o? Qba «, 6)
X X,S

+ > Lyxul0,6,0,8)+ > Lxsuld é,0,8).  (34)
X,H

X,S,H

To stabilize the semi-supervised training, we use a curriculum learning
technique. First, the parameters are optimized using completely annotated
data such that the fourth term of Equation (34) is maximized. In this step,
the classification model ¢, (S, H|X) is trained solely in a supervised manner,
whereas the generative model pg(X|Z,S) and the recognition model ¢z(Z|X)
are jointly trained in an unsupervised manner as in the standard VAE. Then,
the parameters are further optimized such that the total objective function
L(0, ¢, , B) is maximized.

We use L(6, ¢, a, §) given by Equation (34) as an objective function regard-
less of the actual availability of key and/or chord annotations, as proposed
in Wu et al. [34]. Even under the fully supervised condition that both S and
H are given, we simulate the unsupervised and partly supervised conditions.
If one maximizes the fourth term of Equation (34) corresponding to the fully
supervised condition, the generative model py(X|Z,S) is optimized using the
ground-truth values of S. In contrast, we optimize py(X|Z, S) using the esti-
mated values of S sampled from the chord classification model ¢, (S|X) as
well as the ground-truth values of S. This technique improves the robustness
of py(X|Z, S).

3.6 Prediction

Given the chroma vectors X, the chords and keys are finally obtained with the
standard Viterbi decoding on the label posteriors in a post-processing step.
Considering the temporal continuity, the self-transition probabilities are set
to 0.9 for chords, as suggested in Wu et al. [34]. Since key labels make much
fewer transitions, we heuristically set the self-transition probabilities for keys
to 0.95.
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4 Evaluation

We report comparative experiments conducted for evaluating the effectiveness
of the proposed method.

4.1 Experimental Conditions

We explain the datasets, compared methods, network configurations, and
measures used for evaluation.

4.1.1 Datasets

We conducted five-fold cross-validation on 245 songs consisting of 213 songs
selected from the Isophonics dataset (220 songs) [11] and the 32 songs selected
from the Robbie Williams dataset (63 songs) [9] given time-aligned chord and
key annotations, where 38 songs have keys other than major and minor keys
(e.g., Mixolydian) and were not used for evaluation.

To investigate the generalization capability, we also used the McGill Bill-
board dataset [Burgoyne2011] for evaluation. Although 186 songs were
originally used for evaluation [20],* we could not collect the audio recordings
of 49 songs, i.e., the remaining 137 songs were used for evaluation in our
experiment.? More specifically, in each fold of the cross-validation, an ACE
method was trained on the training set (196 songs) and then evaluated on not
only the test set (49 songs) but also the test set of the McGill Billboard dataset
(137 songs). To compensate for the imbalance of key labels, we augmented the
training set by pitch-shifting the chroma vectors and the corresponding chord
and key labels between one and twelve semitones.

4.1.2  Methods

We tested all nine combinations of the three types of the classification model
qa (S, H|X):

e Parallel (PR): S and H are estimated independently from X with
Equations (10) and (11).

e Branching (BR): S and H are estimated simultaneously from X with
Equation (14).

e Sequential (SQ): S and H are estimated sequentially in this order from
X with Equation (15).

Thttp://www.cp.jku.at/people/korzeniowski/bb.zip
2http://sap.ist.i.kyoto-u.ac.jp/members/wu/apsipa2022.txt
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and the three types of language model py (S, H):

o Autoregressive (AR): S and H are jointly represented with a deep
autoregressive model given by Equation (4).

e Markov (MK): S is represented with a Markov model given by Equa-
tion (5) conditioned by uniformly distributed H given by Eq. (6).

e Uniform (UN): S and H are uniformly distributed with Equations (7)
and (8).

The classification model ¢, (S, H|X) was trained with or without the pro-
posed VAE-based regularization. In the non-regularized training, g, (S, H|X)
was optimized such that the fourth term of Equation (34) corresponding to the
standard supervised condition was maximized (denoted by PR, BR, or SQ).
In the regularized training, ¢, (S, H|X) was optimized such that Equation (34)
considering the unsupervised and fully and partly supervised conditions was
maximized, where the language model p,(S,H) and the generative model
po(X|Z,S) were used for evaluating ¢, (S, H|X) in terms of musical natural-
ness and reconstruction quality, respectively (denoted by {PR, BR, SQ}-{AR,
MK, UN}).

As baselines, we used popular DNN-based chord and key estimation
methods [19, 20] (denoted by MM-C and MM-K) based on convolutional
neural networks (CNNs) trained in a fully supervised manner. The pre-
trained models of the baseline methods were provided by the madmom library
[Bock2016madmom]|. The data used for training the baseline methods were
partly different from those used for training our methods, but did not overlap
with the test set of the Billboard dataset. The performance comparison of the
pre-trained baseline methods with the proposed methods could be considered
to be moderately fair.

4.1.3 Configurations

The chord and key classification model ¢, (S, H|X), the latent feature recogni-
tion model ¢g(Z|X), and the chroma vector generative model py(X|S, H, Z)
were each implemented with a three-layered bi-directional long short-term
memory (BLSTM) network [10] followed by layer normalization [1], where each
layer had 128 hidden units in each direction. The output was then transformed
into the desired shape using a fully-connected layer, and normalized with the
softmax function. The autoregressive language model was implemented with a
single-layer uni-directional LSTM network, where each layer had 32 hidden
units. The parameters 6, ¢, o, and 5 were optimized with Adam [17] with
an initial learning rate of 0.001. Each minibatch consisted of 32 sequences
randomly picked from training data, where each sequence consisted of 431
frames (20 seconds).
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4.1.4 Measures

We measured the frame-level matching rates between the estimated and ground-
truth chord and key labels for each piece. To evaluate the discriminative power
of the key classification model, we also measured the rates of typical three
types of key estimation errors [20] listed below:

e Parallel: The estimated and reference keys have the same tonic with
different types (e.g., C major and C minor).

e Relative: The estimated and reference keys consist of the same set of
pitch classes (e.g., C major and A minor).

e Fifth: The estimated key is a perfect-5th above the reference key.

In the cross-validation experiment, the overall chord and key matching
rates and the overall key error rates were given by averaging the piece-wise
rates over the 287 songs. In the cross-dataset experiment, the overall rates
were given by averaging the piece-wise rates over the 137 songs and the five
folds, where the piece-wise key matching rate was measured by comparing the
ground-truth global key with the most frequent key in the estimated keys.

4.2 FExzperimental Results

We discuss the results of the cross-validation and cross-dataset experiments
listed in Tables 1 and 2, respectively.

4.2.1 Non-reqularized Training

The top three rows in Table 1 show the performance of the non-regularized
classification models in the cross-validation experiment. In key estimation, the
BR method performed best, followed by the SQ and PR methods in this order.
The parallel and relative key errors were significantly reduced by more than
1 pts. This indicates the effectiveness of the multi-task learning strategy to
prevent the estimated keys from being incompatible with the estimated chords.
The SQ method underperformed the BR method in term of key accuracy, but
was more effective in reducing the parallel and relative key errors.

The results of the cross-dataset experiment (Table 2) also showed the
advantage of the multi-task architectures for key estimation. The SQ method
achieved significantly better key estimation than the PR and BR methods
and outperformed the baseline MM-K method. The SQ method reduced all
the three typical types of key errors, whereas the BR method failed to reduce
the relative key errors.

The advantage of the sequential architecture over the branching architecture
in key estimation appeared in the difference of the confusion matrices shown
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Table 1: Results of cross-validation experiment.

Accuracy %] Key estimation errors [%]
Method Chord Key Parallel Relative Fifth
PR 81.41 76.93 4.79 6.59 4.38
BR 81.14 81.75 3.04 4.98 4.86
SQ 81.51 78.53 2.48 4.71 4.69
PR-UN 81.95 80.43 4.83 5.36 3.78
PR-MK 82.55 79.17 5.08 6.17 3.24
PR-AR 81.66 80.69 3.93 5.04 4.27
BR-UN 82.28 80.77 3.69 6.13 3.80
BR-MK 82.72 81.29 3.52 5.25 4.37
BR-AR 82.01 81.79 3.29 4.30 5.31
SQ-UN 82.83 84.07 2.12 4.89 3.12
SQ-MK 82.79 82.68 2.01 5.55 3.17
SQ-AR 82.29 82.77 2.42 5.40 4.28

Table 2: Results of cross-dataset experiment.

Accuracy %] Key estimation errors |%]

Method Chord Key Parallel Relative Fifth
PR 73.43 72.84 3.80 6.71 5.70
BR 72.61 74.45 2.63 7.59 4.09
SQ 73.98 80.19 2.63 3.80 2.48
PR-UN 75.12 77.81 3.50 5.26 3.80
PR-MK 75.26 79.99 3.50 4.96 2.92
PR-AR 74.39 78.68 2.92 5.69 3.80
BR-UN 74.79 80.87 2.77 4.82 1.90
BR-MK 75.15 80.73 3.50 3.35 3.07
BR-AR 74.15 81.02 3.21 3.65 2.77
SQ-UN 75.37 80.87 3.07 4.09 2.48
SQ-MK 75.10 80.58 2.92 4.23 3.36
SQ-AR 74.54 80.87 3.65 3.65 2.92
MM-C[19] 7771 / / / /

MM-K|[20] / 79.56 5.11 5.11 1.46

in Figure 6. Most diagonal elements of the difference matrix were positive,
i.e., the BR method basically made more accurate predictions than the SQ
method. In particular, it was significantly less likely to misclassify minor keys
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Figure 6: Difference between the confusion matrices of key estimation by BR and SQ.
Numbers in the matrix represent the number of frames.

as their relative keys. This remarkably improved the accuracy of estimating
C minor and E minor keys. On the other hand, the SQ method tended to
misclassify major keys as their relative and parallel keys, and minor keys
as their parallel keys. These errors were the main factor that degraded the
accuracy of estimating G major and A minor keys. Besides the typical error
types, the BR method was less likely to misclassify major keys as other major
keys and minor keys as major keys, while it was more likely to misclassify
major and minor keys as other minor keys.

The PR, BR, and SQ methods attained almost the same accuracy of
chord estimation in the cross-validation and cross-dataset experiments, possibly
because chroma vectors were used as input in common. Whereas the BR
method was beneficial for key estimation thanks to the joint estimation strategy,
it had little benefit for chord estimation.

4.2.2  Regularized Training

The bottom nine rows of Table 1 show the performance of the regularization
methods in the cross-validation experiment. The PR-UN and BR-UN
methods outperformed the non-regularized PR and BR methods and the PR~
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Figure 7: The difference matrix computed from the key confusion matrices obtained by
SQ-UN and SQ.

MK and BR-MK methods. As for the sequential classification model, SQ-UN
performed best in chord estimation, even outperforming the other classification
models regularized by the Markov language model. For all classification models,
the autoregressive language model showed little performance gain over the
other models.

The key estimation accuracy of the sequential classification model was
significantly improved with the regularization mechanism (SQ-UN, SQ-MK,
or SQ-AR). As seen in chord estimation, the SQ-UN method with uniform
prior performed better for key estimation, and the SQ-MK method with the
Markov prior achieved a lower overall performance. More specifically, the
regularized classification model made fewer parallel key and fifth key errors,
but did not reduce the relative key errors.

In the cross-dataset experiment, the regularized classification models out-
performed their non-regularized counterparts. Among the regularized methods,
the BR-AR method performed best in key estimation and the SQ-UN
method performed best in chord estimation. Under the cross-dataset setting,
the overall key estimation accuracies of the multi-task architectures (BR-**
and SQ-**) were higher than the single-task architecture (PR-**) and the
different language models worked comparably as regularizers.

Comparing the key estimation accuracies of the SQ and SQ-UN methods,
we validated the regularization mechanism with the uniform priors. As shown
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Figure 8: The difference matrix computed from the key confusion matrices obtained by
BR-UN and BR.

in Figure 7, the accuracies for C and E minor keys were improved mainly
because these keys were less likely to be misclassified to their relative keys, i.e.,
D+# and G major keys. Similarly, the accuracies for C, D, and F# major keys
were improved because of a reduced number of fifth key errors. Besides the
relative and fifth key errors, the SQ-UN method reduced the errors where the
estimated keys were four degrees above the correct keys (e.g., D major to G
major), which also significantly contributed to the performance improvement.
The regularization, however, slightly increased parallel key errors. We found
that the SQ-UN method made more parallel key errors than the SQ method
for D, E, A, and B minor keys. The accuracy for A minor key was degraded
by the confusion with G or A major key.

As for the branching classification model, the regularization mechanism
made little improvement of key estimation regardless of the language model
used for regularization. As seen for the SQ-UN method, the BR-UN method
also tended to make parallel and relative key erorrs. As shown in Figure 8§,
the accuracies of D and E minor keys were significantly degraded because
these keys were often misclassified to their parallel keys, i.e., D and E major
keys. In addition, E and G major keys were tended to be misclassified to their
relative keys, i.e., C# and E minor keys. Although the BR-UN increased and
decreased the errors other than the three types, the influence of these errors
on the overall performance was comparatively small.
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Although the VAE methods also improved chord estimation accuracy, its
relationships with the choice of classification and language models differed
from those in key estimation. In Table 1, PR-MK achieved the highest chord
estimation accuracy, and BR-MK also performed the best in chord estimation
among the BR-** methods. In contrast, the methods that used the deep
autoregressive language model (¥*-AR) had comparatively lower chord esti-
mation accuracies. This difference indicates that for the chord estimation task,
the Markov language model is more beneficial for regularizing the classification
models than the autoregressive language model. In contrast to key estimation,
the proposed methods underperformed the baseline method MM-C in chord
estimation. A possible reason lies in the difference in the amount of training
data, since the MM-C method provided by the madmom library were trained
on a larger dataset. Even though the proposed methods were able to improve
chord estimation performance compared to the fully-supervised approach,the
performance is still affected by the amount of annotated data.

5 Conclusion

This paper described a DNN-based joint chord and key estimation method that
integrates multi-task learning [37] with VAE-based regularized training [34].
We formulated a hierarchical generative model of keys, chords, latent features,
and observed chroma vectors with a music language model acting as a prior
distribution of the chords and keys. Using the framework of AVI, we then
introduced a joint chord and key classification model and a recognition model
for inferring latent features. Even when the ground-truth chord and keys
are available, all these models are jointly trained such that the sum of the
four log-likelihoods corresponding to unsupervised, partly-supervised, and
fully-supervised conditions (neither chords nor keys are given, either chords or
key are given, both chords and keys are given).

We compared the parallel, branching, and sequential architectures for the
classification model and the autoregressive, Markov, and uniform architectures
for the language model, with the cross-validation and cross-dataset experi-
ments. We found that the VAE-based regularization and multi-task learning
methods improved the chord and key estimation accuracies in both experi-
ments, compared to the non-regularized, single-task methods. This reveals
the effectiveness of the proposed VAE-based regularized multi-task learning.
Although the VAE-based regularization improved the overall key estimation
accuracy, it tended to make more parallel and relative key errors because of
the limited capacity of chroma vectors. Since the autoregressive and Markov
language model formulations did not show obvious advantage over the naive
uniform formulation in the experiments, the effective use of language models
in the regularization mechanism remains an open problem. We also plan to
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extend the hierarchical generative model that regards chroma vectors as latent
features and formulate a three-layered VAE, which incorporates a raw audio
spectrogram as an observed variable on top of the proposed hierarchical VAE.
In this way, the chroma extractor can be trained jointly with the generative and
classification models, so that it could provide more suitable acoustic features
for chord and key classification.
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