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ABSTRACT

This paper proposes a novel method to improve the accuracy of
the American Sign Language fingerspelling recognition. Video
sequences from the training set of the “ChicagoFSWild” dataset
are first utilized for training a deep neural network of weakly
supervised learning to generate frame labels from a sequence label
automatically. The network of weakly supervised learning contains
the AlexNet and the LSTM. This trained network generates a
collection of frame-labeled images from the training video sequences
that have Levenshtein distance between the predicted sequence
and the sequence label equal to zero. The negative and positive
pairs of all fingerspelling gestures are randomly formed from the
collected image set. These pairs are adopted to train the Siamese
network of the ResNet-50 and the projection function to produce
efficient feature representations. The trained Resnet-50 and the
projection function are concatenated with the bidirectional LSTM,
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a fully connected layer, and a softmax layer to form a deep neural
network for the American Sign Language fingerspelling recognition.
With the training video sequences, video frames corresponding to
the video sequences that have Levenshtein distance between the
predicted sequence and the sequence label equal to zero are added
to the collected image set. The updated collected image set is used
to train the Siamese network. The training process, from training
the Siamese network to the update of the collected image set, is
iterated until the image recognition performance is not further
enhanced. The experimental results from the “ChicagoFSWild”
dataset show that the proposed method surpasses the existing
works in terms of the character error rate.

Keywords: Fingerspelling recognition, weakly supervised learning, iterative
training, deep learning, Siamese network.

1 Introduction

Sign language recognition is a challenging problem in video processing because
sign language video content consists of fine details of complex hand postures and
movements. Fingerspelling is a subtype of sign language that uses letters from
the writing system to spell proper nouns and new emergent vocabularies that do
not yet have corresponding signs. Although fingerspelling recognition is a subset
of sign language recognition, it involves finer details of finger postures with
fast movements and a high degree of similarity among fingerspelling motions.

Due to the difficulties of precise fingerspelling recognition, several automatic
fingerspelling recognition methods [2, 5, 6, 21–24, 31, 32] have been proposed
on environment-controlled datasets. An early, large, and most-common finger-
spelling dataset for fingerspelling recognition is the American Sign Language
(ASL) Fingerspelling dataset, with over 64,000 hand-area fingerspelling images
and their depth images collected by Microsoft Kinect [21]. The dataset was uti-
lized together with a multi-class random forest in [21] to classify fingerspelling
gestures. Since then, the ASL Fingerspelling dataset has become a widely
used dataset to evaluate proposed fingerspelling recognition systems in [5, 6,
23, 24, 31, 32]. After the emergence of deep learning applications in image and
video recognition, a convolutional neural network (CNN) [7, 14, 17, 20, 29] has
been widely adopted to solve the fingerspelling recognition problem [2, 22, 28].
In [2], a shallow CNN was utilized for ASL fingerspelling recognition. Inputs
of this CNN are YUV color components and depth information of an image.
However, the recognition performance was not significantly improved from the
traditional methods. A deeper CNN based on the Inception-ResNet [3, 4, 13]
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was adopted to recognize hand gestures in [22]. With a more powerful neural
network, the recognition performance from [22] surpasses previous techniques.
However, the algorithm was limited to only hand-cropped fingerspelling images.
The research work in [28] proposed the fingerspelling recognition architecture,
which deployed the depth-aware attention between color components and depth
to automatically focus on the key fingers and hand regions. Its recognition
results outperformed previous works. However, the proposed algorithm was
limited to still images and might not be applicable to real-time applications.

Fingerspelling recognition in video sequences has received attention recently.
The research work in [15] utilized the Histograms of Oriented Gradients
(HOG) to derive handcraft features of each video frame. However, it needs
training video sequences with frame-level labels, which may not be available.
In [18, 25], the autoencoder and the attention module were deployed to
automatically generate frame labeling from sequence labeling in order to
achieve better fingerspelling recognition accuracy. However, these methods
were restricted to controlled and set up environments. They might not perform
well under naturally taken video sequences. Recently, the video data set called
“ChicagoFSWild” dataset [27] has collected naturally taken ASL fingerspelling
video sequences from the Internet. The environments of video sequences in this
dataset are dynamic and reflect actual use cases. Figure 1 shows video frame
examples from this dataset. Based on the “ChicagoFSWild” dataset, the work
in [27] deployed the Faster R-CNN object detector [9] to detect hand areas.
Then, it utilized the AlexNet [1] together with the LSTM and Connectionist
Temporal Classification (CTC) [10] to obtain a recognized letter sequence. The
improved version of [27] was proposed in [26] by a new hand cropping algorithm
and a spatial attention module to better crop hand areas in a video frame.
This new hand cropping algorithm was deployed to improve fingerspelling
recognition performance by incorporating hand skeletal information and hand
cropped frames in [19]. Furthermore, The transformer encoder replaced the
LSTM in [8] to better extract temporal correlation between video frames.
This modification enhanced the recognition performance from the previous
methods [26, 27]. However, the recognition performance of these methods in
terms of the Character Error Rate (CER) was still not satisfied. Moreover,
the architectures of these previous works required the whole video sequence
as an input to learn both spatial and temporal simultaneously. As a result,
these architectures consumed significant computational resources during the
training process.

This paper proposes a novel method to improve the accuracy of the ASL fin-
gerspelling recognition. Video sequences from the training set of the “ChicagoF-
SWild” dataset are first utilized for training a deep neural network of weakly
supervised learning to generate frame labels from a sequence label automati-
cally. The network of weakly supervised learning contains the AlexNet and the
LSTM. This trained network generates a collection of frame-labeled images
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Figure 1: Video frame examples from the “ChicagoFSWild” dataset.

from the training video sequences that have Levenshtein distance between
the predicted sequence and the sequence label equal to zero. The negative
and positive pairs of all fingerspelling gestures are randomly formed from the
collected image set. These pairs are adopted to train the Siamese network of
the ResNet-50 and the projection function to produce efficient feature represen-
tations. The trained Resnet-50 and the projection function are concatenated
with the bidirectional LSTM, a fully connected layer, and a softmax layer to
form a deep neural network for the ASL fingerspelling recognition. With the
training video sequences, video frames corresponding to the video sequences
that have Levenshtein distance between the predicted sequence and the se-
quence label equal to zero are added to the collected image set. The updated
collected image set is used to train the Siamese network. The training process,
from training the Siamese network to the update of the collected image set,
is iterated until the image recognition performance is not further enhanced.
The experimental results from the “ChicagoFSWild” dataset show that the
proposed method surpasses the existing works in terms of the character error
rate. The contributions of this paper can be summarized as follows.

1. We propose using weakly supervised learning to automatically generate
a frame-label image dataset for training a deep neural network of the
ASL fingerspelling recognition.

2. We propose a training method of a very deep neural network based on the
Siamese network-based feature embedding that can avoid using significant
computational resources during the training process and provide efficient
feature representations.

3. We introduce an iterative method in constructing a deep neural network
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for the ASL fingerspelling recognition by updating an image set used to
train the Siamese network.

This paper is organized as follows. Section 2 describes the architectural
overview of our proposed ASL fingerspelling recognition system. Section 3
presents the method of automatic frame labeling based on weakly-supervised
learning. Section 4 explains a new training method for a deep neural network
that relied on Siamese network-based feature embedding. Section 5 describes
the iterative construction of the ASL fingerspelling recognition model. Ex-
perimental results are presented in Section 6. The concluding remarks are in
Section 7.

2 Architectural Description

This section provides the architectural description of the proposed ASL fin-
gerspelling recognition method. The objective of our technique is to derive a
character sequence U from an ASL fingerspelling video sequence X. Figure 2
illustrates the deep learning architecture of the recognition system. To train our
recognition system, a training video sequence X from a training set together
with its sequence label Q is utilized. We should notice no specified boundaries
among fingerspelling gestures in a training video sequence, which poses a
significant challenge in recognizing multiple gestures. The “ChicagoFSWild”
dataset is utilized in both the training and testing process since all video
sequences in the dataset are naturally taken under dynamic environments and
reflect real use cases.

Let us consider the top portion of Figure 2. Video sequences are prepro-
cessed with the iterative attention module. The iterative attention module
will automatically crop image areas with hand movement. Since training video
sequences are labeled at a sequence level, we feed cropped video frames to-
gether with a sequence label to the trained weakly supervised learning network
as shown in the middle portion of Figure 2. We should emphasize that the
weakly supervised learning module is trained previously before deployment
with the training set of the “ChicagoFSWild” dataset. The weakly supervised
learning will output video frames with their labels. The weakly supervised
learning employs the CTC [10] to align a sequence label to video frames. Video
frames corresponding to video sequences with one-hundred percent recognition
accuracy are included in a frame label dataset Θ. The recognition accuracy
is measured using the Levenshtein distance [30] converted to the Character
Error Rate (CER).

Our ASL fingerspelling recognition consists of the ResNet-50, the projection
function, and bidirectional LSTM. Training such a deep neural network requires
significant computational resources. As a result, we train a deep neural network
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Figure 2: The overview of the proposed method’s training process.

using an alternative method based on the Siamese network architecture. Let
us consider the bottom portion of Figure 2. Based on Θ, we randomly form
positive and negative pairs of all image gestures. These image pairs are fed to
train the Siamese network. The Siamese network contains the ResNet-50 and
the projection function. Both of them extract spatial features that existed
in video frames. The loss function of the Siamese network is a combination
of cosine embedding and cross-entropy loss functions. It is designed to give
good feature vector representation resulting in better gesture classification.
After training, we form a recognition network. It consists of the ResNet-
50 and the projection function concatenated with a bidirectional LSTM, a
fully connected layer, and a softmax layer. We need to train a bidirectional
LSTM, a fully connected layer, and a softmax layer with video sequences in
a training set. This can be done by fixing weights of the ResNet-50 and the
projection function. Then, only weights of the bidirectional LSTM and a
fully connected layer are updated. Finally, we have all trained components
in a recognition network. Training video sequences from the training set are
fed to our recognition network. Video frames corresponding to the perfect
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Table 1: Summary of notations.

X : the training video sequence
Q : the ground-truth character sequence of the training video sequence

X
U : the predicted character sequence of the training video sequence X
∆ : the training set of the “ChicagoFSWild” dataset
Θ : the frame label dataset
π : the predicted sequence of frame labels of the training video sequence

X
π∗ : the most probable predicted sequence of frame labels of the training

video sequence X
αt : the most probable fingerspelling gesture corresponding to frame xt

B : the many-to-one mapping function that map π to U
V : the set of fingerspelling gestures
V ′ : the set of fingerspelling gestures include “blank” label

recognition are included in Θ. The Siamese network is iteratively trained
until the recognition performance is not further improved. Table 1 lists the
notations that we will use in this paper.

3 Automatic Frame Labeling with Weakly Supervised Learning

In this section, we deploy a neural network architecture from Shi et al. [26],
as illustrated in Figure 3, to automatically label video frames within the
original sequence-labeled fingerspelling video data set ∆. The AlexNet with
attention model [26] is used to extract spatial features of each video frame.
Define X = {xt}Tt=1 be an input sequence from frame one to frame T , where
xt is the tth frame in the sequence. Let function FAlexNet(·) be a function to
extract spatial feature st of frame t with AlexNet, the spatial feature st can
be expressed as

st = FAlexNet(xt). (1)

st is further fed to an attention cell. An output of the attention cell is
an attention map expressed as βt. βt provides essential location informa-
tion in the spatial feature map employed for fingerspelling recognition. The
computation of βt(i, j), which is the attention value at position (i, j), can be
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expressed as

vt = W · tanh(st), (2)

βt(i, j) =
exp(vt(i, j))∑

∀m,n exp(vt(i, j))
, (3)

where W is a weight matrix. Moreover, in high movement video data, the
optical flow-based attention of frame t, Mt, can be included to improve the
knowledge of essential regions. The spatial feature with attention at frame t
can be computed as

at =
st ⊗ βt ⊗Mt∑

∀p,q βt(p, q)Mt(p, q)
, (4)

where ⊗ is an element-wise multiplication, and βt(p, q) and Mt(p, q) are the
values of βt and Mt at position (p, q).

Figure 3: The architecture of the weakly supervised learning network for automatically
frame labeling.

To exploit the temporal correlation between spatial features from video
frames, a Long-Short Term Memory (LSTM) network [12] is used. Let yt be a
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probability vector of all possible fingerspelling gestures at frame t. It can be
reckoned via

et =
∑
i,j

at(i, j), (5)

ht, ct = FLSTM(ht−1, ct−1, et), (6)
yt = SM(W · ht + b), (7)

where at(i, j) is an attention map value of frame t at position (i, j). ht and
ct are hidden and cell states of the LSTM network of frame t. FLSTM(·) is
a function derived from the LSTM network to extract temporal information.
SM(·) is a softmax classifier. W and b are the weight and bias of the Softmax
classifier. As we previously described, only sequence-label information is
available from the video data set ∆. As a result, the CTC [10] is deployed
to produce a frame label for each video frame. The CTC will label a video
frame as a “blank” when it can not classify a gesture of the video frame. In
general, the recognized gestures correspond to transition video frames between
consecutive meaningful gestures.

Next, let us formulate a framework of the automatic frame labeling task. Let
P{Q | X} be the conditional probability of sequence label Q = {q1, q2, . . . , qL}
given an input sequence X and L is the length of a sequence label. Then,

P{π |X} =
T∏

t=1

P{πt |X} =
T∏

t=1

yt,πt
, (8)

P{Q |X} =
∑

∀π∈B−1(q)

P{π |X}, (9)

where π is a predicted frame-label sequence of a sequence X, πt is a frame
label of the ith frame in the sequence, which πt ∈ V ∪ “blank”. V is a set of
fingerspelling gestures, consists of characters “A”-“Z” and symbols “@”, “&”,
“.” as well as punctuate. B is a many-to-one mapping which simply removes
all “blank” label and repeated labels from the frame-labeled sequence π. For
example, B(_cc_aat_t_) = B(c_aa_t) = cat, where “_” represents the
“blank” label. B−1(q) is the inverse mapping function of B, where B−1(q) =
{π | B(π) = q}.

We adopt the CTC loss function to train the neural network as [10]

LCTC = − log(P{Q |X}). (10)

Given a sequence X, the most probable predicted sequence of frame labels
can be determined from

π∗ = argmax
∀π

P{π |X}, (11)
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from π∗, the most probable fingerspelling gesture corresponding to frame xt

and the predicted character sequence can be computed via

αt = arg max
∀π∗∈V′

P{π∗
t |X}, (12)

U = B(π∗), (13)

where V ′ = V ∪ “blank.” αt and U are the most probable fingerspelling gesture
corresponding to frame xt and the predicted character sequence, respectively.
The procedure of the automatic frame labeling with weakly supervised learning
can be summarized in Algorithm 1.

Algorithm 1 The algorithm description of the automatic frame-labeled
generation.

Train the weakly supervised learning network based on Equation 10
for X, Q ∈ ∆ do

Run inference on X with the trained weakly supervised learning network
in Equation 13 to obtain the predicted character sequence U

Compute the Levenshtein distance between U and Q
if The Levenshtein distance is equal to zero then

for xt ∈ X do
Solve Equation 12 to obtain αt

if αt ! = “blank” then
Θ ← (xt, αt)

end if
end for

end if
end for
return Θ

4 Training Deep CNN with Siamese Network-Based Feature
Embedding

Training a deep CNN to recognize fingerspelling gestures might consume gi-
gantic computational resources. We need to incorporate many video frames
as inputs of the CNN to obtain both spatial and temporal features. If com-
putational resources are not available, utilizing a deep CNN to yield correct
recognized gestures may be prohibited. As a result, we propose an alternative
training technique that relies on Siamese-Network-based feature embedding
requiring much less training resources. The ResNet-50 networks [11, 16] are
used in a Siamese network. The Siamese network aims to construct feature
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vectors representing different gestures. Ideally, if two images are labeled as
the same fingerspelling gesture, these two images’ feature vectors extracted
from the Siamese network should be close. In contrast, feature vectors from
different fingerspelling gestures should have significant distances. We randomly
form positive and negative pairs of all gestures based on Θ constructed in
the previous section. Images of each positive pair have the same frame label,
whereas each negative pair has different frame labels. These pairs are used
to train the Siamese network to improve the extracted spatial feature. The
structure of the Siamese network is shown in Figure 4.

Let I1 and I2 be two input images feeding to the Siamese network. FResnet(·)
is a function derived from the Siamese network, which extracts image features.
Suppose that f1 and f2 are features obtained from the ResNet-50. In other
words,

f1 = flat(FResnet(I1)), (14)
f2 = flat(FResnet(I2)), (15)

where flat(·) is a flatten function changing two-dimensional signals to one-
dimensional signals. For example, in this paper, our image has dimensions
244× 244. The output from the ResNet-50 and the flatten function will have
dimensions 2048. We project this one-dimensional vector to a vector with less
dimension via

v1 = proj(f1), (16)
v2 = proj(f2), (17)

where proj : Rr → Rd is a projection function from a vector with dimension r
to a vector with dimensional d. In this paper, we set r = 2048 and d = 1024.

Next, we formulate the loss function used to train the Siamese network.
First, we adopt two loss functions. The first loss function is the cosine
embedding loss function [11]. The objective of this cost function is to force a
pair of feature vectors obtained from the Siamese network to be close if this
image pair comes from the same gesture. The cosine embedding loss function
can be expressed as

LE(v1) =

{
1− v1·v2

||v1||||v2|| , y = 1,

max(0, v1·v2
||v1||||v2|| ), y = −1,

(18)

where y = 1 and y = −1 represent the positive and negative pairs of finger-
spelling gesture images, respectively. The second loss function is introduced to
measure the recognition accuracy. We first classify a reference gesture image
I1 with a softmax classifier, which yeilds

γ′
1(I1) = SM(Wr · v1 + br), (19)
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Figure 4: The architecture of the Siamese network for feature embedding.

where Wr and br are a weight matrix and a bias vector of the softmax classifier,
respectively. Suppose that γ(I1) is a one-hot vector representing gesture class
image I1 belongs. We have 26 classes for fingerspelling gestures representing
the letter “A” to the letter “Z.” Hence, γ′

1(I1) and γ1(I1) will have dimensions of
26× 1. The cross-entropy loss function is deployed as the second loss function,
which is

LCE(v1) = −
26∑
i=1

γ(i) log(γ′(i)), (20)

where γ(i) and γ′(i) are the ith components of γ and γ′, respectively. We
combine two loss functions to obtain the final loss function as

LV (v1) = LE(v1) + LCE(v1). (21)

The Siamese network will be trained with the combined loss function to obtain
improved image features and enhance recognition accuracy.

5 Fingerspelling Recognition with Iterative Model Construction

To enhance the performance of our proposed fingerspelling recognition method,
for each training session of the Siamese network, the iteratively trained ResNet-
50 and the projection function are deployed to recognize fingerspelling gestures.
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Figure 5: Iterative model construction.

Let us consider the process of the iterative training in Figure 5. From training
video sequences in ∆, we apply the ResNet-50 and the projection function to
extract the spatial features of video frames. Suppose that video sequence X
from a training dataset is fed to train our recognition model. We can obtain
feature vector v′t of frame xt within X via

f ′
t = flat(F ′

Resnet(xt)), (22)
v′t = proj′(f ′

t), (23)

where F ′
Resnet(·) and proj′(·) are the trained Resnet-50 network and the trained

projection function from the Siamese network, and f ′
t is a spatial feature of

frame t. Then, temporal features are extracted from these spatial features
among video frames using the bidirectional LSTM and are fed to a fully
connected layer and a softmax layer, which can be expressed as

−→
ht ,
−→ct = FLSTM(

−−→
ht−1,

−−→ct−1, v
′
t), (24)

←−
ht ,
←−ct = FLSTM(

←−−
ht+1,

←−−ct+1, v
′
t), (25)

yt = SM(W × CONCAT (
−→
ht ,
←−
ht) + b), (26)

where
−→
ht and −→ct as well as

←−
ht and←−ct are the hidden and cell states of the LSTM

corresponding to frame t in the forward and backward directions, respectively.
W and b are the weight and a bias of the Softmax classifier. We train the
bidirectional LSTM with CTC loss function as shown in Equation 10. Since we
fully know sequence labels of video sequences from ∆, the frame labels obtained
from a softmax layer can be verified. For example, suppose a sequence label of
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a video sequence is “BOX” and the frame labels obtained from our recognition
model are “B,B,O,X,X,X.” In that case, we can declare that the recognition
rate is 100 percent accurate. In this work, we adopt the Levenshtein distance
[30] to measure the difference between the sequence label and the recognition
results. If the Levenshtien distance between these two strings are equal to
zero, we include all video frames within a video sequence together with their
frame labels to Θ except video frames corresponding to “blank.” Then, the
Siamese network is trained with a new set of Θ. The model construction will
be iterated until the training recognition results are not improved any more.
The algorithm description of the iterative model construction can be expressed
in Algorithm 2.

Algorithm 2 The algorithm description of the iterative model construction.
for i ← 1 to Iteration do

Train the Siamese network with Θ based on Equation 21 to obtain
F ′
Resnet(·) and proj′(·)

Extract spatial feature of each frame in ∆ via Equation 23
Train the spatial features with bidirectional LSTM via Equation 10
for X, Q ∈ ∆ do

Run inference on X with the trained network in Equation 13 to
obtain the predicted character sequence U

Compute the Levenshtein distance between U and Q
if the Levenshtein distance is equal to zero then

for xt ∈ X do
Solve Equation 12 to obtain αt

if αt != “blank” and xt /∈ Θ then
Θ ← (xt, αt)

end if
end for

end if
end for

end for

Finally, the iteratively trained ResNet-50 and the projection function are
deployed in our fingerspelling recognition system, as shown in Figure 6. As
illustrated in Figure 6, the test video sequence is fed to the iterative attention
model. The iterative attention model will automatically zoom in and focus on
the image areas corresponding to hand gestures. The Resnet-50, the projection
function, and the bidirectional LSTM are used to extract spatial and temporal
features as described above. The initial output obtained from the softmax
classification is a frame-level recognition result of a video sequence, which can
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Figure 6: The deployment of the proposed ASL fingerspelling recognition system.

be expressed as
π∗ = argmax

∀π
P{π |X}, (27)

where π∗ is the most probable frame-level recognition result. The sequence of
frame-level recognition is then mapped to the sequence-level recognition using
the many-to-one mapping B, which can be written as

U = B(π∗). (28)

We should notice that in practice the mapping B actually deletes the recog-
nized letter corresponding to “blank” and the repetitions of recognized letters
within π∗.

6 Experimental Results

6.1 Dataset and Data Preprocessing

To assess the proposed ASL fingerspelling recognition system in challenging
environments, we adopt a video dataset called “ChicagoFSWild” [27]. Video
sequences in this dataset are not in controlled environments. They are most
naturally taken from either good set-up cameras or mobile devices. Video
sequences in the ChicagoFSWild are divided to be three sets: a training set
(5455 sequences from 87 signers); a development set (868 sequences from 37
signers); and a test set (981 sequences from 36 signers). Each video set has no
overlapping signers. Each video sequence is labeled at a sequence level. In our
settings, ∆ is the same as the training set of ChicagoFSWild. Θ is an image
dataset firstly constructed from weakly supervised learning. Then, it is used
for training the Siamese network and is updated during the iterative model
construction. Our paper’s development and test sets are the same as those of
the ChicagoFSWild.
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Figure 7: The comparison of the alignment result between Bidirectional LSTM and LSTM
learned by CTC.

Each image is fed to the iterative attention module [26] to crop hand
regions automatically. The attention module is trained with 30 epochs before
deployment for three iterations. The zoom factors of the first, the second, and
the third iterations are 0.72, 0.72, and 0.81, respectively. Figure 8 shows the
hand cropping results obtained from the iterative attention module.

Figure 8: Hand cropping using iterative attention method.

We utilize the Levenshtien distance [30] to measure the difference between
the actual sequence label and the recognition result. The Levensthtien distance
can be converted to the character error rate (CER) via

CER =
i+ s+ d

n
, (29)
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where i, s, and d are the minimal number of character insertions, substitutions,
and deletions that transform the actual sequence label to the recognition result.
n is the total number of characters in the sequence label.

6.2 Automatic Frame Labeling with Weakly Supervised Learning

This section assesses the performance of weakly supervised learning in auto-
matic frame labeling. We investigate the uses of different deep neural network
architectures in the weakly supervised learning architecture. We train the
weakly supervised learning network for 40 epochs with the training set (∆)
and batch size one. The learning rate for the first 30 epochs is equal to
0.01, whereas the learning rate for the last ten epochs is equal to 0.001. The
stochastic gradient descent is employed to be the optimizer. The AlexNet
with attention module and the ResNet-18 are investigated for spatial feature
extraction. In this study, both CNN architectures are used together with
LSTM for temporal feature extraction. Table 2 shows a number of video
frames in Θ obtained from the weakly supervised learning. We found that the
AlexNet with attention module can provide more images in Θ and a better
recognition (less CER) than the ResNet-18. The attention module plays a
crucial role in improving the recognition result of the AlexNet even though
the AlexNet’s architecture is less complex than the ResNet-18.

Table 2: The recognition performance when different CNN architectures are employed.

Amount of
CNN architecture data in Θ 1− CER (Percent)

AlexNet with the attention module 31,228 45.4
ResNet-18 17,123 38.2

Table 3: The recognition performance when different LSTM architectures are employed.

LSTM Type Amount of data in Θ 1− CER (Percent)

Standard LSTM 31,228 45.4
Bidirectional LSTM 28,739 46.9

Next, we study the effects of different Recurrent Neural Networks in
the weakly supervised learning architecture. The one-directional and two-
directional LSTMs are examined. The AlextNet with the attention module
is used in this study. Table 3 concludes the experimental results. We found
that the bidirectional LSTM provides better final fingerspelling recognition
than the standard LSTM, giving fewer images in Θ. The reason behind



18 Wuttipong Kumwilaisak et al.

Figure 9: The recognition results in the frame level produced by the weakly supervised
learning network compared with the results from a non-native sign language user.

this phenomenon may be based on the fact that the one-directional LSTM
provides longer alignment between a sequence label and video frames than the
bidirectional LSTM, as illustrated in Figure 7.

Figures 9 and 10 show the recognition results in a frame-level produced
by the weakly supervised learning network compared with the results from
humans who are not native sign language users, and the examples of images
in Θ obtained from the weakly supervised learning network, respectively. The
frame-level recognition results produced from the weakly supervised learning
network are reasonably accurate and low noise, indicating that they can be
utilized to represent frame-level labeling in the frame-label dataset Θ.

6.3 Siamese-based Feature Embedding

In this section, we investigate the performance of the proposed training method
with Siamese-based feature embedding for the ASL fingerspelling recognition
system. The Siamese network is trained for 15 epochs with the gradient descent
optimizer. The batch size is 16. The learning rate for the first ten epochs is set
to 0.01, whereas the learning rate of the last five epochs has a value of 0.001.
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Figure 10: Examples of the selected frames in a frame-label dataset (Θ).

Figure 11: The feature vector projection in two dimensions with different loss functions: (a)
cosine embedding; (b) cross-entropy; and (c) combined loss function.

Figure 11 shows the t-SNE plot of features obtained from the Siamese network
with different loss functions. We can observe that the proposed combined loss
function (cosine embedding and cross-entropy) can provide superior distinct
features among different gestures to only cosine embedding or cross-entropy
loss functions.

We examine the training performance of derived features when deploying
them with different LSTM architectures. The LSTM architectures contain
512 nodes. We train the LSTM for ten epochs. The learning rate of the first
seven epochs is set to 0.01, whereas the last three epochs possess a learning
rate with a value of 0.001. Table 4 shows the recognition accuracy in terms of
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Table 4: Training ASL fingerspelling recognition performance (1-CER) in percent when
deploying the feature representation with different LSTM architectures.

A number of layers

LSTM architecture 1 2 3

LSTM 50.3 51.2 43.0
Bidirectional LSTM 51.6 50.2 50.7

Figure 12: The increasing number of images in the training set of the Siamese network with
iterations.

1− CER. The bidirectional LSTM with one layer gives the best recognition
result. Based on this verification, we adopt the one-layer bidirectional LSTM
to our ASL fingerspelling recognition architecture.

6.4 Iterative Model Construction and Recognition

This section investigates the improved ASL fingerspelling recognition per-
formance when employing iterative model construction. Figure 12 shows an
increasing number of images in Θ in each iteration. The training of the Siamese
network benefits from the increasing number of images. The development
and test sets are used to evaluate our proposed ASL fingerspelling recognition
method. Figure 13 illustrates the recognition accuracy in terms of 1−CER for
each iteration of iterative model construction when applying the recognition
model to the development set. From iterations one to three, recognition perfor-
mance is improved. However, after the third iteration, the recognition model
becomes overfitting. As a result, the recognition accuracy worsens. Therefore,
we early stop training our model with the iterative model construction at the
third iteration.
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Figure 13: The ASL fingerspelling recognition accuracy with iterations.

Table 5: The ablation test results.

Method 1− CER (Percent)

Weakly supervised learning 45.4
Siamese-based feature embedding 51.6
Iterative model construction 53.0

Table 6: Fingerspelling recognition performance of the development set.

Method 1− CER (Percent)

Shi et al. [27] 42.8
Shi et al. [26] 46.8
Gajurel et al. [8] 46.9
The proposed method 53.0

Table 5 shows the ablation study on different components of our recognition
architecture over the development set. The Siamese-based feature embedding
can improve the recognition accuracy by around four percent from the weakly
supervised learning. In addition, the iterative model construction can provide
a two percent improvement of the recognition accuracy over that of the
Siamese-based feature embedding. Tables 6 and 7 compare the recognition
accuracy between the proposed method and the existing recognition techniques.
All results are based on the ChicagoFSWild data set. It is apparent to see
that our method can consistently surpass the existing techniques in both the
development and the test sets.
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Table 7: Fingerspelling recognition performance of the test set.

Method 1− CER (Percent)

Shi et al. [27] 41.9
Shi et al. [26] 45.1
Parelli et al. [19] 47.9
Gajurel et al. [8] 48.3
The proposed method 49.6

7 Conclusion

This paper presented a new training strategy for ASL fingerspelling recognition.
The weakly supervised learning was first used to automatically generate an
image dataset from the training video sequences. The images within the image
dataset were utilized for training the Siamese network-based feature embedding
to produce efficient feature representations. The trained ResNet-50 and the
projection function obtained from the Siamese network are retrained with video
sequences from the training set. However, only weights of the bidirectional
LSTM and a fully connected layer are updated. Training video sequences are
fed to a fully trained recognition network. Video frames corresponding to the
video sequences that have Levenshtein distance between the predicted sequence
and the sequence label equal to zero are added to the image dataset that will
be deployed to train the Siamese network. The training of the Siamese network
will be performed iteratively until the recognition performance is not further
improved. The performance of the proposed deep neural network can achieve
recognition accuracy of around 50 percent under naturally taken fingerspelling
video sequences.
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