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ABSTRACT

The nonuniform distribution of points in a point cloud and their
abundant attribute information (such as colour, reflectance, and
normal) result in the generation of massive data, making point
cloud compression (PCC) essential for related applications. The
hierarchical structure of the level of detail (LOD) in a point cloud
and the corresponding predictions are commonly used in PCC,
whereas the current method of LOD generation is neither content
adaptive nor optimized. Targeting lossless PCC, an LOD prediction
error model is proposed in this work, based on which the prediction
error is minimized to obtain the optimal coding performance. As
a result, the process of generating LOD is optimized, where the
smallest number of LOD levels that yields the minimum attribute
bitrate can be found. The proposed method is evaluated on various
standard datasets under common test conditions. Experimental
results show that the proposed method achieves optimal coding per-
formance in a content-adaptive way while significantly reducing the
time required for encoding and decoding, i.e., ∼15.2% and ∼17.3%
time savings on average for distance-based LOD, and ∼5.4% and
∼5.1% time savings for Morton-based LOD, respectively.
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1 Introduction

In recent years, the rapid development of 3D acquisition technologies has
boosted the applications of point clouds, which have been widely employed in
virtual reality, automatic driving, digital cities, etc. [23]. However, the large
amount of data contained in a point cloud poses storage and transmission
challenges. Therefore, point cloud compression (PCC) has attracted signifi-
cant attention in both research and industry. How to explore the potential
correlations among unstructured points remains challenging.

In current PCC approaches, such as the geometry-based point cloud com-
pression (G-PCC) standard developed by the Moving Pictures Experts Group
(MPEG), the geometry and attribute of a point cloud are separately com-
pressed, the encoding is a sequential operation, which first processes geometry
and then the attribute [13, 14, 21]. The attribute is predicted and encoded
with the help of the reconstructed geometry information.

With regard to attribute compression, prediction and transform coding
have been proposed to improve the accuracy of attribute reconstruction. For
example, Gu et al. [17] proposed a graph-based 3D Point Cloud (3DPC)
colour prediction method and treat the graph construction as the sparse
optimization problem, where point cloud geometry information is used to
guide the generation of sparse representation basis [18]. Zhang et al. [30]
developed a graph transform (GT) method for encoding the attribute blocks
of a point cloud. This approach requires that the point cloud be captured
or arranged on regular grids, and the nearest neighbour points are used
for predictive coding, followed by a discrete cosine transform (DCT) of the
prediction error. In [5], a point cloud was sampled into a unified grid, and then
the mesh was divided into blocks to directly apply a graph transform, followed
by 3D block prediction. Cohen et al. [4] proposed a GT-based attribute
compression approach that extends the k -nearest neighbours (KNN) method
to generate increasingly efficient graphs, and this technique has a certain effect
on reducing the number of isolated subgraphs. Shao et al. [26] proposed
a method based on the k-d tree structure to make the dimensions of each
subgraph consistent, thus avoiding the existence of isolated subgraphs. Hou
[19] proposed to increase the regularity of 3DPC by reordering the geometry
of 3DPC. De Queiroz and Chou [9] proposed a colour compression method for
point clouds based on the hierarchical transform and arithmetic coding. The
hierarchical transform is a levelled sub-band transform (similar to the adaptive
change of the Haar wavelet) and has been applied to G-PCC. Another essential
hierarchical solution in the field of PCC is level of detail (LOD).
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In this paper, by establishing a mathematical prediction error model for
LOD levels (LODs), an optimized solution approach for determining the
number of LODs in a point cloud is proposed, and this leads to content-
adaptive LOD generation for a given point cloud. The proposed work is well
adapted to the different contents of various point clouds and achieves optimal
performance while reducing the induced encoding and decoding complexity by
avoiding unnecessary LODs.

The rest of this paper is organized as follows: Section 2 presents the
related works. Section 3 describes the LOD in G-PCC. Section 4 analyses the
relationship between the prediction error and attribute bitrate of a model and
describes the proposed method for estimating the optimal number of LODs
by establishing a mathematical prediction error model. Section 5 provides
experimental results and analysis. The conclusion is drawn in Section 6,
followed by references.

2 Related Works

LOD, which was first proposed by Clark in 1976 [3], has been commonly used
in real-time 3D technologies in computer graphics. A discussion on various
algorithms, problems, and solutions in the field of LOD can be found in [22,
24], focusing on meshes and rendering.

An LOD structure actually stores a set of copies of the original model at
different resolutions, all of which have strong spatial correlations, as shown in
Figure 1. Figure 1(a) is the original point cloud, and the remaining subfigures
from left to right are the sampled point clouds showing different detail levels
or resolutions (i.e., different LODs), where the sampling distance increases
from Figure 1(b) to (d).

As a common solution for spatial division, LOD is widely employed to
improve coding performance. It is noted that LOD not only contributes
to attribute compression but also provides potential scalability. In G-PCC,
an LOD generation method based on distance is used for the dense point
clouds, and the coded nearest neighbour points are used for prediction [2,
25]. Kathariya et al. [20] proposed an LOD generation scheme based on a
binary tree, this approach is useful for sparse point clouds, such as those
acquired by light detection and ranging (LiDAR). In [8], by comparing the
LOD generation methods of random sampling and grid sampling, an extended
method for generating LOD by constraining the samples to regular discrete
grids was proposed to optimize the coverage of the volume represented by
each sample. Fan et al. [12] proposed an LOD generation method based on
clustering, and this technique has both general topological applicability and
good rate-distortion performance at low bitrates.
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Figure 1: Different LODs for point cloud longdress_vox10. (a) Original point cloud; (b) the
second LOD; (c) the third LOD; (d) the sixth LOD.

Generally, the influencing factors of an LOD generation algorithm include
the number of LODs (denoted as N_LOD), the initial sampling distance, and
the scaling factor used to derive the sampling distance for the LODs [11].
The existing LOD generation schemes have a common problem in that the
above parameters are not adaptive to point clouds with different contents.
The key factor of these methods is the number of LODs. Taking G-PCC as
an example, how to set N_LOD remains an open question. In common test
conditions (CTC), a large N_LOD is used for all point clouds [6]. It is, however,
intuitive that different N_LOD should be applied for point clouds with different
characteristics. If N_LOD is not properly selected, it is very likely that the
resulting coding performance will not be optimized. On the other hand, if
N_LOD is set too large, which may result in optimal coding performance,
unnecessary LODs will be generated, increasing the time complexity without
contributing to the coding performance.

Targeting the above problem, we propose a method for estimating the opti-
mal N_LOD by minimizing the prediction error, which results in a minimized
attribute bitrate for the lossless compression of a given point cloud. It is noted
that the analysis in this paper is carried out based on the LOD generation
strategy in G-PCC. Similarly, the proposed method can be extended to other
LOD generation schemes in a straightforward way.

3 LOD in G-PCC

The LOD generation process is generally carried out in the following way. A
point cloud is reorganized into a set of refinement levels {Al}(l=1,...,N−1) and
a detail level LN according to a set of distances {dl}(l=1,...,N−1) specified by
the user. Note that the distances should satisfy dl < dl+1 [13, 14].
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Figure 2: Level of detail generation process.

The process of LOD generation is carried out in an iterative way, as
illustrated in Figure 2. Generally, the original point cloud can be regarded
as L1. By applying the initial sampling distance, the detail level L2 and
refinement level A1 are obtained. Then, L3 and A2 are generated by sampling
L2. As a result, after two sampling cycles, the point cloud is decomposed into
refinement levels A1 and A2 and a detail level L3, based on which the point
cloud is reorganized into {L3, A2, A1}.

The LOD could reduce the correlations among the points in the point cloud
and helps remove redundancy by prediction through the decomposition of
the point cloud into several levels. At the same time, the hierarchical nature
of LOD makes it naturally suitable for the spatially scalable coding of the
point clouds, in which the stored copies vary from coarse to fine and can be
transmitted or decoded according to the different needs of users.

As shown in Figure 2, after reorganizing the point cloud into LODs, the
points are actually reordered in the LOD order. To describe the LOD-based
coding process more clearly, we represent it as a pyramid structure in Figure 3,

Figure 3: LOD pyramid structure.
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where the points in the point cloud are sorted from top to bottom according
to the LOD pyramid. By accumulating the detail levels and the corresponding
refinement levels, the resulting LOD structure with different levels of detail
can be applied to efficiently code point clouds while enabling spatial scalability.
For example, Li+1 is the i + 1th detail level, and the combination of Li+1 and
Ai results in a denser detail level Li.

Similar to predictive video coding, a point cloud uses prediction to remove
the correlations among the points and applies a specific predictive method
to exploit the corresponding redundancy. Predictive coding refers to the use
of one or several coded samples, the prediction of the current sample value
according to a prediction model or method, and the coding of the difference
between the real value and the predicted value of a given sample to effectively
improve the coding performance of the associated method [28].

In PCC, the common prediction method is to find several nearest coded
points according to their Euclidean distances and to use the weighted average of
their reconstructed values as the predicted value of the current point. G-PCC
takes the same approach by finding the k nearest coded points. Because the
computation of Euclidean distances introduces a large amount of complexity,
Wei et al. [29] proposed a KNN search method that finds the reference points
more quickly and more accurately by using the Morton code.

Due to the LOD structure, compared with the general prediction method,
the prediction approach based on LOD has a different range of available
reference points at each level. Regardless of whether a given point is at a
detail level or refinement level, the prediction is carried out in the same way,
where the difference lies in the available reference points. That is, after LOD
generation, coding is carried out in LOD order, i.e., the points in the topmost
detail level are coded first, followed by those in sequential refinement levels.
When coding the points in the topmost detail level, only the coded points in
this level are available for prediction, while the points in a refinement level
can refer to the coded points in the previous detail level as well as those in
the current refinement level.

Figure 4 illustrates the prediction process conducted with LOD by using
the points in Figure 2 as an example. Specifically, the points in L3 are coded
first (the red points), followed by those in A2 (the green points), and finally
those in A1 (the blue points). The points in L3 can only use the coded points
in this level as reference points, while the points in A2 and A1 have more
candidates, i.e., the points in the previously coded LODs and the coded points
in the current refinement level. For P3 and P6 in a refinement level, the
reference points can be selected from a wider range and in an omnidirectional
way. However, the prediction of P4 can only refer to the coded points in L3,
and the prediction process is limited to the order determined by the coding
order, i.e., with directionality. Apparently, the prediction of P3 and P6 tends
to be more accurate than that of P4.
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Figure 4: Reference points for prediction in several LODs.

To facilitate the discussion in this manuscript, according to the different
types of levels where the points to be predicted are located, prediction refers
to prediction at the topmost detail level and prediction at the refinement level.

In the coding process, the reference points can only be selected from the
coded points, so the impact brought by LOD is twofold. Taking the first step
in the LOD generation process as an example, when the point cloud is sampled
once, the detail level L2 and the refinement level A1 are obtained. The points
in L2 are coded first, but the process suffers from certain directionality when
selecting reference points while limited by the coding order. The distance
between adjacent points in L2 is larger than the original distance (due to
the increased LOD); this generally weakens the correlations between points
and causes performance loss. Meanwhile, the available reference points for
the prediction of the points in A1 are located in various spatial directions
(since all the points in L2 would have already been coded and available for
reference), which generally improves the accuracy of prediction and results in
a performance gain. When the gain is greater than the loss, the LOD may
improve the coding performance.

Afterward, L2 can be further sampled to reduce the loss and obtain a
new refinement level A2 and a new detail level L3; this is done in a similar
manner as above. The entire LOD generation is performed iteratively, where
LN and AN−1 are obtained after the N -1th sampling cycle. Suppose that
at this time, the overall performance gain in AN−1 is less than or equal to
the overall performance loss in LN ; further LOD generation will not result in
further gains to the coding performance, so the decomposition process can be
stopped. Therefore, the overall performance of LOD generation is a trade-off.

It is seen from the above discussion that given a point cloud, different LOD
structures lead to different prediction errors, as well as different coding effi-
ciencies. It is noted that the performance gain and loss brought by LOD reach
a balance when a certain number of LODs is applied. The distance between
adjacent points in the remaining part (i.e., the detail level) is very large, so the
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correlation is very weak. Therefore, with further LOD generation, the impact
is very limited, and at the same time, the number of remaining points is very
small (declining in an exponential way with further LOD generation), which
makes the impact of these points negligible. Hence, the coding performance
remains almost the same as that when the number of LODs is optimal. The
contributions of more LODs become rather slim or even cause performance loss
in some cases. Additionally, unnecessary LODs increase the time complexity.
It is therefore not appropriate to apply a large number of LODs.

In addition, since the distributions and characteristics of different point
clouds are different, different numbers of LODs should be applied. How to
generate the proper number of LODs for a specific point cloud is therefore
essential for optimizing the coding performance of PCC.

4 Content-adaptive LOD with Optimization

To determine the optimal number of LODs for a point cloud, it is necessary to
model the attribute bitrate of each level (including the refinement level and
the detail level). However, LODs are not coded separately but together. It is
cumbersome to obtain the corresponding independent bitrate of each level, so
the prediction error is used instead.

4.1 The Relationship between the Prediction Error and Bitrate

In this subsection, we analyse the distribution of the prediction error of the
model to determine the relationship between the error and the corresponding
attribute bitrate, which will be verified through experiments. Since distance-
based LOD is useful for dense point clouds, a few point clouds from G-PCC test
class A are selected as the dataset for verifying the theoretical analysis. These
point clouds are from the Static Objects and Scenes database [6, 7] and are
named redandblack_vox10_1550, soldier_vox10_0690, frog_00067_vox12
and facade_00015_vox14. It is noted that as a common sense-based process,
distance-based LOD is not suitable for sparse point clouds, such as those
acquired by LiDAR. The reason lies in the fact that for sparse point clouds,
the distances among points are generally very large and the correlations are
very low. How to optimize the LOD generation for sparse point clouds remains
an open question.

To investigate the distribution of the prediction error, experiments are
carried out with N_LOD set to a certain value (i.e., 10 in this work), and
the abovementioned point clouds are compressed using G-PCC for lossless
compression. The other parameters are configured following the configuration
scripts [6, 16].
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Figure 5: Distributions of the prediction error e.

The prediction error denoted as e is defined as follows,

e = ai − âi,

where ai is the original attribute value of point i, and âi is the corresponding
predicted attribute value. Statistics on the prediction errors of all points of the
point cloud are collected to obtain its probability density function p(e), where
the results obtained for the point clouds in the analysis dataset are shown in
Figure 5.

It can be observed from Figure 5 that the prediction errors follow the
Laplacian distribution. The probability density function of the Laplacian
distribution is

p(e) =
1

2λ
exp(−|e|

λ
), (1)

where λ is the parameter of the distribution. The goodness of fit is measured
by the coefficient of determination, i.e., R-squared. It is a statistical measure in
regression models that determines the proportion of variance in the dependent
variable that can be explained by the independent variables. In other words,
R-squared shows how well the data fit the regression model. The maximum
value of R-squared is 1. The closer the value of R-squared is to 1, the better
the fit is; conversely, the smaller the value of R-squared, the worse the fit
is. It is obvious that the distribution of prediction error fits the Laplacian
distribution well.

Since the mean absolute error (MAE) metric is able to avoid the problem
in which the errors offset each other, it is used to measure prediction error
in this work. According to Equation (1), the entropy H (e) is obtained as
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follows,

H(e) =
Ee

λ
+ log(2λ), (2)

where Ee is the MAE of the prediction error and λ is the distribution parameter
of the prediction error.

Regarding LOD generation, different settings of the number of LODs will
lead to different prediction errors, in which Ee and λ are different. On the
basis of the maximum entropy principle, the prediction error satisfies Ee =
λ, and H (e) is maximal when the distribution is a Laplacian distribution.
Accordingly, Equation (2) can be rewritten as,

MAX{H(e)} = 1 + log(2Ee). (3)

It is observed from Equation (3) that Ee and H (e) increase monotonically.
It is therefore reasonable to convert the problem of the minimization of the
entropy or bitrate to the minimization of Ee.

With N_LOD set to different values (i.e., from 1 to 5), the point clouds in
the analysis dataset are lossless compressed. The prediction errors and the
corresponding attribute bitrates are plotted in Figure 6, which shows the re-
lationship between Ee and the attribute bitrate. It is concluded that the
minimization of Ee is feasible for minimizing the attribute bitrate and is
consistent with the above theoretical and empirical analysis. The curves of
the actual data may not be strictly logarithmic since the maximum entropy is
an ideal hypothesis, whereas the overall trend is consistent.

Figure 6: The relationship between Ee and the attribute bitrate.

In this paper, we propose a method for minimizing the MAE of the
prediction error to minimize the attribute bitrate for lossless compression, and
an LOD prediction error model is built to obtain the optimal value of N_LOD.
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4.2 LOD Prediction Error Model

A point cloud is reorganized into a series of LODs {A1, A2, · · · , AN−1, LN}
when N_LOD equals N . The MAE of the overall prediction error of the point
cloud is denoted as Etotal, which is the weighted sum of the MAE of all levels,

Etotal =

N−1∑
i=1

s1,iEAi + s2,NELN
, (4)

where the MAE of {Ai}(i=1,··· ,N−1) is denoted as {EAi
}(i=1,··· ,N−1) and that

of LN is denoted as ELN
, s1,i is the ratio of the number of points in Ai to the

total number of points in the point cloud, and s2,N is the ratio of the number
of points in LN to the total number of points in the point cloud. Specially,
when N equals 1, Etotal = EL1

. That is, L1 is the point cloud itself.
During LOD generation, let ri be the ratio of the number of points in Ai

(denoted as Num(Ai)) to the number of points in detail level Li (denoted as
Num(Li)), where this ratio is represented as ri = Num(Ai)/Num(Li).

For the refinement level Ai, we have

s1,i =


r1, if i = 1
i−1∏
k=1

(1− rk)ri, if i ≥ 2
. (5)

For the detail level Li, we have

s2,i =


1, if i = 1
i−1∏
k=1

(1− rk), if i ≥ 2
. (6)

Equation (4) is then rewritten as follows,

Etotal = r1EA1 +

N−1∑
i=2

(

i−1∏
j=1

(1− rj)riEAi) +

N−1∏
k=1

(1− rk)ELN
. (7)

When the points are dense, they can be regarded as uniformly distributed
in a small region. In the following analysis, it is assumed that the points are
uniformly distributed. The ratio ri is related to the scaling factor used for
the derivation of the sampling distance for LOD generation. For a given set
of points in space, in short, the sampling process extracts a point every a
few points to obtain a new set. Thus, the minimum sampling period involves
sampling once every other point, and the corresponding minimum sampling
distance is the minimum distance between the current point and other points
except the nearest adjacent points of the current point. Therefore, denoting
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Figure 7: Minimum sampling distance: (a) one-dimensional, (b) two-dimensional, and (c)
three-dimensional.

the minimum distance between the adjacent points as dist, the minimum
sampling distance is generally 2dist for the one-dimensional case and

√
2dist

for the two-dimensional and three-dimensional cases, as shown in Figure 7.
During LOD generation, multiple sampling processes are carried out. A

series of sampling distances are obtained by iteratively multiplying the initial
sampling distance by the scaling factor. The greater the scaling factor is,
the larger the subsequent sampling distance will be, and thus the sparser
the sampling output will be, resulting in a decrease in prediction accuracy.
Therefore, the minimum sampling distance should be used in each sampling
process; that is, the minimum scaling factor should be selected every time [1].
Furthermore, for the sake of implementation simplicity and hardware usability,
the scaling factor should be 2, that is, the minimum integer value that is larger
than

√
2.

As in G-PCC, the scaling factor for the derivation of the sampling distance
for LOD generation is set to 2 in this work [14]. In Figure 8, all points on the
left is Li, the distance between the adjacent points is the sampling distance of
the lower detail level Li−1, which is denoted as disti−1, and the upper detail

Figure 8: LOD generation through sampling (p = 7/8).
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Figure 9: Points in a small region of the surface in the point cloud.

Figure 10: LOD generation through sampling (2D) (p = 3/4).

level Li+1 is obtained by sampling Li by disti = 2disti−1, appearing as the
set of yellow points; the remaining blue points belong to Ai. On the right of
the figure, Li+1 includes all points, which is then sampled by disti+1 = 2disti
to obtain Li+2, shown as the set of red points; the remaining green points
belong to Ai+1. When i is larger than 1, the ratio ri of the adjacent LODs is
a constant and denoted as p (with p=7/8). When i equals 1, the ratio r1 is
only related to the initial sampling distance (denoted as D0 below).

In practice, all points are located on the surface of the object. The points
within a small region can be regarded as a plane, as shown in Figure 9. In
this instance, p equals 3/4, as shown in Figure 10.

Before LOD generation in G-PCC, it is necessary to set the initial sampling
distance D0 for each point cloud, and r1 is obtained from D0. Then, r1 is
considered a known quantity. By substituting ri = p (i > 1) into Equation
(7), Etotal is expressed as a function of N_LOD (i.e., N),

Etotal(N) = r1EA1
+

N−1∑
i=2

p(1−r1)(1−p)i−2EAi
+(1−r1)(1−p)N−2ELN

. (8)

The MAE of the prediction error at each level and r1 are obtained from
experiments are substituted into Equation (8) to obtain the estimated Etotal,
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Figure 11: Comparison of Etotal obtained with different values of p and the actual E∗
total of

redandblack_vox10_1550.

with p set to 7/8 and 3/4 under different values of N_LOD. Etotal obtained
using Equation (8) is compared with the actual MAE of the overall prediction
error (denoted as E∗

total) obtained when the point cloud is decomposed using
different N_LOD. The results of the point cloud redandblack_vox10_1550
are shown in Figure 11, and similar curves can be observed for other point
clouds. When p is 3/4, Etotal is more in line with the actual situation, which
is consistent with the analysis above. Therefore, the value of p should be 3/4
for dense point clouds, and we model the prediction error using Equation (8)
with p = 3/4.

4.3 The Optimized N_LOD

To derive the optimal value of N_LOD, its relationship with the prediction
error is needed. The spatial correlation in the point cloud is related to the
distances between pairs of adjacent points, and generally speaking, the smaller
the distance is, the stronger the correlation is [27], which is removed by
prediction. On one hand, for PCC without LOD, the prediction error is related
to the distances between adjacent points. On the other hand, for LOD-based
PCC, the prediction error is related to the sampling distance of each detail
level. Therefore, the prediction error and the corresponding sampling distance
are modelled in this subsection.

In Figure 12, (a) shows the relationship between the prediction error of
the topmost detail level and the distance between adjacent points, and (b)
shows the relationship between the prediction errors of the refinement level
and the corresponding sampling distance. All the data are obtained from the
experiment in Section 4.1. The triangle and circle markers are the actual
values, and the lines are curves that are fitted according to these markers. With
increasing distance, Ee also increases, but the slopes of the curves decrease. It
is noted that the conclusion holds for all point clouds in the analysis dataset
and is not limited to those shown in Figure 12.

In LOD-based predictive coding, according to the different types of LODs
where the points to be predicted are located, each prediction is referred to as a



Content-Adaptive Level of Detail for Lossless Point Cloud Compression 15

Figure 12: The relationship between the prediction error and distance: (a) the topmost
detail level; (b) the refinement level.

prediction at the topmost detail level and a prediction at the refinement level.
These two situations are analysed. First, for the prediction at the topmost
detail level, assuming that the j-th detail level Lj is the topmost detail level, let
ELj = f(d1,j)(j=1,2,. . . . . . ,N), where d1,j is the distance between the adjacent
points in Lj and ELj

is the MAE of the prediction error of Lj . Then, for
prediction at the refinement level, let EAi

= g(d2,i)(i=1,2,. . . . . . ,N), where d2,i
is the sampling distance of the i-th refinement level Ai and EAi

is the MAE of
the prediction error of Ai. Finally, Equation (8) is further rewritten as follows,

Etotal(N) = r1g(d2,1) +

N−1∑
i=2

p(1− r1)(1− p)i−2g(d2,i)

+ (1− r1)(1− p)N−2f(d1,N ),

(9)

where d2,1 is the initial sampling distance D0, d2,i is the sampling distance
of Ai and Li+1 (d2,i = 2i−1D0), and d1,N is the distance between adjacent
points in LN , with d1,N = d2,N−1.

After establishing the prediction error model, the functions f(d1,j) and
g(d2,i) are fitted, as shown in Figure 12. They are expressed as the power
functions f(d1,j) = a1d

b1
1,j and g(d2,i) = a2d

b2
2,i. Then, we can obtain Equation

(10).

Etotal(N) = r1a2D
b2
0 + a1(1− r1)(1− p)N−2(2N−2D0)

b1

+
(p(1− r1)a2D

b2
0 )((1− p)2b2 − ((1− p)2b1)N−1)

(1− p)(1− (1− p)2b2)
. (10)

From the perspective of spatial correlation, the distance between adjacent
points in each detail level becomes larger along with the generation of LODs,
resulting in a decrease in the corresponding spatial correlation. As a result,
the performance loss increases, gradually mitigating the performance gain of
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Figure 13: The relationship between E∗
total and N_LOD.

the corresponding refinement level, and eventually becomes almost equal to or
even slightly larger than the gain.

At the same time, the number of remaining points (i.e., in the new detail
level) is very small, declining in an exponential manner with further LOD
generation, and the gap between the performance gain and loss is very limited,
which makes the impact of these points negligible. Therefore, in the later
stages of LOD generation, the coding performance remains almost unchanged.
E∗

total obtained from the experiment in Section 4.1 is shown in Figure 13, and
the curves illustrate the described trend well.

It can be seen that E∗
total is generally a convex function of N_LOD. With

LOD generation, the coding performances are all improved in Figure 13.
However, there could also be other possibilities (highly unlikely to occur) in

which the coding performance remains unchanged or even becomes worse after
LOD generation. Especially for the latter, the trend of coding performance is
opposite to the general situation, that is, E∗

total gradually increases with the
increase in the number of LODs.

It is therefore necessary to see whether the derivative of the prediction
error in Equation (10) is always approximately 0 to judge whether the coding
performance changes after LOD generation. The partial derivative of Etotal(N)
with respect to N (i.e., ∂Etotal(N)/∂N) is shown as follows,

∂Etotal(N)

∂N
= − 1

1− p

(1− r1)a2D
b2
0

1− (1− p)2b2
((1− p)2b2)N−1 ln((1− p)2b2)

+ a1D
b1
0 (1− r1)((1− p)2b1)N−2 ln((1− p)2b1). (11)

If ∂Etotal(N)/∂N is 0, the LOD-based coding will not change the performance,
and the optimal N_LOD should be 1. If not 0, the concavity or convex-
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ity of Etotal(N) should be judged by calculating the second derivative (i.e.,
∂2Etotal(N)/∂N2). It is convex when the second derivative is greater than 0
and concave when it is less than 0.

For a concave Etotal(N), the minimum value of Etotal is yielded when
N_LOD = 1, i.e., the point cloud is best compressed without LOD generation;
thus, the optimal N_LOD is 1.

For a convex Etotal(N), when the point cloud is decomposed into a certain
number of LODs, the bitrate reaches its minimum. Continuing LOD decom-
position beyond this point is not helpful for coding but increases the time
complexity of the process. By calculating ∂Etotal(N)/∂N = 0, the value of N
corresponding to the minimum value of Etotal(N) can be obtained (denoted
as Nop).

Let
C1 =

1

1− p

a2
1− (1− p)2b2

ln((1− p)2b2)

and
C2 =

a1
(1− p)2b1

ln((1− p)2b1),

then, Nop is obatined as follows

Nop =
1

b1 − b2
log2(

C1

C2
)− log2 D0 + 1. (12)

In general, voxelization is performed before point clouds are processed,
where voxelization includes the process of position quantization, duplicate
point removal, and attributes assignment to the remaining points. The voxels
are unit cubes. Specifically, the locations of all the points within a voxel
are quantized to the voxel centre, so the minimum distance between a pair
of points is 1. D0, as the sampling distance, must be greater than 1; then,
log2D0 is greater than 0. According to Equation (12), Nop increases when D0

decreases in a logarithmic way. The greater D0 is, the smaller Nop is. When
D0 doubles, Nop decreases by a value of one. The above discussion shows how
to determine Nop given D0. D0 also has an impact on the coding performance
of PCC. How to jointly determine the most proper value of D0 based on Nop

is one of our future work ideas.
In this paper, D0 and p are given as known quantities; the fitting parameters

a1, b1, a2 and b2 are obtained by fitting the prediction error according to
different point clouds; and then Nop can be calculated by Equation (12).
That is, when N_LOD is Nop, Etotal(Nop) is the minimum, and the coding
performance is optimized.

It is worth noting that the above model is based on the sampling distance
of the LOD. However, a later version of G-PCC adopts a new LOD generation
algorithm, which is based on the shift of Morton code (denoted as Morton-
based LOD) compared to the traditional method (denoted as distance-based
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Figure 14: The distance of the corresponding vertices with different shift bits of Morton
code.

LOD), where the Morton code is obtained by interleaving the binary values of
the three-dimensional coordinates of each point [13]. Morton-based LOD is a
fast implementation of distance-based LOD with an approximated result in
LOD generation. Essentially, the idea is the same. Therefore, the model is
also suitable for Morton-based LOD.

In the process of Morton-based LOD using the model for optimization,
how to estimate the initial sampling distance (denoted as D′

0) is the key.
Considering that Morton-based LOD is an approximate implementation based
on the method of distance, the maximum distance between the vertices of the
cube is approximately regarded as the sampling distance of LOD.

According to the Morton-based LOD, the initial right shift bits are denoted
as S0, then the right shift bits on each coordinate are S0/3, which is equivalent
to enlarging each coordinate by 2S0/3 times. After the shift operation, a cube is
obtained. The maximum distance between the vertices is the diagonal distance,
that is, the side length of the cube multiplied by

√
3, so the approximate initial

sampling distance is D′
0 = 2(S0−3)/3

√
3. For example, Figure 14 shows the

sampling distance when the initial right shift bits are 3 and 6 respectively, in
which the distance between P1 and P2 corresponds to the right shift 3 bits,
and the distance between P1 and P3 corresponds to the right shift 6 bits.
After the initial sampling distance is calculated, the optimal number of LODs
can be obtained from Equation (12).

5 Experimental Results and Discussions

In this section, we conduct extensive experiments to evaluate the proposed
method on two different LOD generation algorithms separately, which are
distance-based LOD [14] and Morton-based LOD [13]. In the experiment, all
the point clouds in test class A of the Static Objects and Scenes database [6,
7] except those in the analysis dataset have been employed as the test dataset;
these data are widely used to evaluate the compression performance of various
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point clouds [6, 9, 10]. The proposed method is implemented in the G-PCC
reference software TMC13 v9 and v14 [6, 15, 16]. A Hewlett-Packard PC with
AMD Ryzen 5 PRO 2400G, 3.60 GHz CPU, and 16GB of RAM running a
64-bit Win10 Operating system is the hardware used in the experiments.

The experiments include: (1) a comparison between the optimized N_LOD
obtained through actual coding and the optimal N_LOD calculated according
to the proposed method; (2) an analysis of the improvements in the coding
performance and the time complexity of the proposed method induced by the
N_LOD; and (3) a discussion about the different characteristics of point clouds.

5.1 Performance of the Proposed Method

To verify the effectiveness of the proposed method, the optimized N_LOD
(i.e., Nop) is calculated by using Equation (12). Note that the parameters in
f(d1,j) = a1d

b1
1,j and g(d2,i) = a2d

b2
2,i are obtained through fitting, which is

provided by a pre-analysis.
Specifically, some points are collected for pre-analysis purpose to balance

the fitting accuracy and the computational complexity. The points used for
pre-analysis, are obtained by intercepting some points (1/10 of all points,
empirically) according to the Morton-based order. For most point clouds,
these points can represent the characteristics of the point clouds relatively
completely, and the Morton-based decimation is very quick while avoiding the
problem of data sensitivity. Provided with the selected group of points, it is
decomposed into five LODs, and the averaged prediction errors of the detail
levels and refinement levels corresponding to different distances are used for
fitting the parameters a1, b1, a2 and b2.

If ∂Etotal(N)/∂N is always approximately 0 and has nothing to do with
N_LOD, Nop is 1. Otherwise, the concavity or convexity of Etotal(N) should
be judged by calculating the second derivative. If it is less than 0, which means
that Etotal(N) is concave, Nop is 1; if it is greater than 0, i.e., Etotal(N) is
convex, Nop is obtained by Equation (12).

Finally, Nop is rounded to obtain the operable version of the optimized
N_LOD, which is denoted as N̂op and shown in Table 1.

The actual optimized N_LOD (denoted as N∗
op)) which is summarized from

the bitrates obtained by compressing the test dataset with different N_LOD
values, are compared with N̂op. One can see that they are almost identical.
Specifically, for distance-based LOD, N∗

op = N̂op for 14 point clouds in the
test dataset, while |N∗

op − N̂op| = 1 for the other 4 point clouds, and for the
Morton-based LOD, N∗

op = N̂op for 16 point clouds in the test dataset, while
|N∗

op − N̂op| = 1 for the other 2 point clouds. The experimental results show
that this method is applicable to both algorithms.
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Table 1: Optimized values of N_LOD from the proposed method and an actual test.

Distance-based Morton-based
LOD LOD

Dataset NG N̂op N∗
op N̂op N∗

op

basketball_player_vox11 12 6 6 1 1
boxer_viewdep_vox12 12 5 5 1 1
dancer_vox11 12 7 7 1 1
Egyptian_mask_vox12 11 5 5 1 1
Facade_00009_vox12 12 6 6 2 2
Facade_00064_vox11 13 4 3 1 1
Head_00039_vox12 13 1 1 1 1
House_without_roof_vox12 13 1 1 1 1
longdress_vox12 12 5 5 1 2
longdress_vox10 13 6 6 2 2
loot_viewdep_vox12 12 6 7 1 1
loot_vox10_1200 12 6 6 2 2
queen_0200 12 1 2 1 1
redandblack_vox12 12 6 6 1 1
Shiva_00035_vox12 12 5 5 1 1
soldier_vox12 12 5 6 1 2
Thaidancer_viewdep_vox12 12 5 5 2 2
ULB_Unicorn_vox13 12 1 1 1 1

Table 1 also shows the recommended values of N_LOD (denoted as NG)
in G-PCC CTC. For each point cloud, N̂op is much less than NG, reducing
the complexity of both encoding and decoding.

5.2 Coding Performance and Time Complexity

The compared work is the general solution for LOD generation, where N_LOD
is set to a very large value (denoted as NG) so that the LOD generation can
be executed up to the last point or with only a few points left.

In our work, however, we propose a content-adaptive number of LODs for
a given point cloud. To the best of the authors’ knowledge, the proposed work
is the first attempt to determine the optimized numbers of LODs for point
clouds that is both content-adaptive and computationally efficient.

By setting N_LOD to N̂op and NG individually, lossless compression is
performed on the test dataset, and the results in terms of the attribute bitrate
ratio and time complexity are summarized in Table 2.
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The attribute time complexity (TC) in the table refers to the relative ratio
of the encoding and decoding times of the attribute in the two cases above,
and it is calculated as follows:

TCEnc = EncTop/EncTG,

TCDec = DecTop/DecTG,

where EncTop is the attribute encoding time corresponding to N̂op, EncTG

is the attribute encoding time corresponding to NG, DecTop is the attribute
decoding time corresponding to N̂op, and DecTG is the attribute decoding
time corresponding to NG.

The bitrate ratio (BR) is calculated as follows:

BR = Rop/RG.

where RG is the attribute bitrate when N_LOD is NG, and Rop is the attribute
bitrate when N_LOD is N̂op.

The attribute bitrate obtained by using the proposed N_LOD in this
paper is slightly less than that obtained by using the N_LOD provided by
G-PCC configuration scripts on average. Furthermore, the encoding time
and decoding time of the attribute are significantly reduced, i.e., ∼15.2% and
∼17.3% time savings on average for distance-based LOD, and ∼5.4% and
∼5.1% time savings for Morton-based LOD, respectively. The latter saves less
time, for the reason that Morton-based LOD is already a fast implementation
of distance-based LOD. Nevertheless, further reduction in complexity is still
achieved using the proposed method.

This method not only achieves the best lossless compression performance
for the point cloud but also avoids conducting unnecessary LOD decomposition
in advance, thus saving valuable attribute encoding and decoding time.

5.3 Different Characteristics of Point Clouds

From the experiments, the trend of the attribute bitrate versus N_LOD is
summarized into three cases, as shown in Figure 15.

In the first case, which is the most common case, as shown in Figure
15(a), the bitrate decreases obviously after LOD generation and reaches its
minimum when the point cloud is decomposed into a certain number of LODs.
The coding performance is not further improved. Considering that the larger
N_LOD is, the higher the time complexity will be, the value of N_LOD
corresponding to the first iteration that yields the minimum bitrate is selected
as the optimal number.

In very few cases, the bitrate hardly changes after LOD generation, as
shown in Figure 15(b). Another rare possibility is that the bitrate increases
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Figure 15: Attribute bitrates under different numbers of LODs: (a) Thaid-
ancer_viewdep_vox12 ; (b) queen_0200 ; (c) ULB_Unicorn_vox13.

Figure 16: Three typical point clouds. From left to right: Thaidancer_viewdep_vox12,
queen_0200 and ULB_Unicorn_vox13.

along with LOD generation and reaches its maximum after a certain number of
LODs are decomposed, as shown in Figure 15(c). In both cases, the optimized
N_LOD corresponding to the minimum bitrate is 1.

Figure 16 provides the point clouds corresponding to the above three cases.
The most common type of point cloud is Thaidancer_viewdep_vox12.

It is noticed that the implementation of the prediction process in coding
order will be limited to a certain direction if LOD is not used. There are
not only strongly correlated points but also weakly correlated points in the
neighbourhood. When LOD generation is incorporated, however, some of the
points (i.e., the points in the refinement levels) can select reference points from
all directions, making the prediction more accurate and yielding a performance
gain. As a cost, the other points (the points in the topmost detail level) are
still limited by the coding order or directionality when selecting reference
points. Furthermore, LOD increases the distances between adjacent points
in the topmost detail level so that the correlations are reduced, resulting in
a certain performance loss. When the gain yielded by the further generation
of LODs cannot compensate for the induced loss, the generation of LODs is



24 Wei et al.

no longer useful. In other words, the optimal number of LODs is achieved by
then. Overall, the gain and loss determine the optimal number of generated
LODs, and this is a trade-off process.

It is noted that after reaching the optimal number of LODs, for most point
clouds, with further LOD generation, the performance gain and loss are both
very limited. At the same time, the number of remaining points is very small,
declining exponentially with further LOD generation and making the impact
of these points negligible. Therefore, the compression performance remains
almost the same when the number of LODs is optimal and above, i.e., the
BR stays at 100%. However, for a few point clouds, such as longdress_vox10
and dancer_vox11, after reaching the optimal number of LODs, there are still
certain correlations among adjacent points in the topmost detail level. If LOD
generation is further carried out, with the increase in the distances among
adjacent points in the topmost detail level, their correlations decrease greatly,
while the improvement in prediction accuracy for the refinement levels is very
limited, so the overall gain is less than the loss. In other words, for such point
clouds, further LOD decomposition will lead to a very slight performance loss
if the number of LODs is larger than the optimal value. This is the reason
why the BR is 99.99% for longdress_vox10 and dancer_vox11.

Very interestingly, some point clouds, such as queen_0200, have very similar
attribute values within a large range, and the correlations among points are
very strong. It is noted that queen_0200 is a computer-generated point cloud,
the texture of which is relatively simple, so the strong correlations among
points are natural. For such point clouds, the coding result without LOD
generation is already good since the nearest neighbours in the coding order
already serve as good references for prediction purposes. The gain from LOD
is therefore negligible, so the performance is almost the same with or without
LOD.

As an example of the third case, the content of ULB_Unicorn_vox13 is
very complex, where only the very close points have correlations, and LOD
generation has a negative effect on the prediction performance.

Nevertheless, the proposed model adapts to different characteristics of
point clouds through a pre-analysis of the predicted error, and the optimal
number of LODs for different point cloud contents can be found.

6 Conclusion

In this paper, by establishing a mathematical prediction error model for LODs,
an optimized solution for determining the appropriate number of LODs is
proposed, which leads to content-adaptive LOD generation for a given point
cloud. The experimental results show that the optimized number of LODs
calculated by the proposed method is consistent with the optimized number of
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LODs obtained through actual coding. The proposed work is well adapted to
the different contents of various point clouds, achieving optimal performance
while reducing the attribute encoding and decoding complexity by avoiding
unnecessary LODs.

This method is not only suitable for lossless compression but also useful for
point cloud-based scalable coding because it effectively calculates prediction
errors. Future work will include extending the proposed method to lossy
compression and scalable coding.
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