
APSIPA Transactions on Signal and Information Processing, 2022, 11, e41
This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use, 
provided the original work is properly cited.

Original Paper

DefakeHop++: An Enhanced
Lightweight Deepfake Detector
Hong-Shuo Chen1∗, Shuowen Hu2, Suya You2 and C.-C. Jay Kuo1

1University of Southern California, Los Angeles, CA, USA
2DEVCOM Army Research Laboratory, Adelphi, MD, USA

ABSTRACT

On the basis of DefakeHop, an enhanced lightweight Deepfake detector
called DefakeHop++ is proposed in this work. The improvements lie
in two areas. First, DefakeHop examines three facial regions (i.e., two
eyes and mouth) while DefakeHop++ includes eight more landmarks for
broader coverage. Second, for discriminant features selection, DefakeHop
uses an unsupervised approach while DefakeHop++ adopts a more
effective approach with supervision, called the Discriminant Feature
Test (DFT). In DefakeHop++, rich spatial and spectral features are
first derived from facial regions and landmarks automatically. Then,
DFT is used to select a subset of discriminant features for classifier
training. As compared with MobileNet v3 (a lightweight CNN model of
1.5M parameters targeting at mobile applications), DefakeHop++ has a
model of 238K parameters, which is 16% of MobileNet v3. Furthermore,
DefakeHop++ outperforms MobileNet v3 in Deepfake image detection
performance in a weakly-supervised setting.
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1 Introduction

It is common to see fake videos appearing on social media platforms nowadays
due to the popularity of Deepfake techniques. Several mobile apps can help
people create fake content without any special editing skills. Generally speaking,
deepfake programs can change the identity of one person in real videos to
another realistically and easily. The number of Deepfake videos surges rapidly
in recent years. Fake videos may result in serious damage to our society since
people can be fooled by videos on the Internet, and some misinformation may
make the public panic and anxious. To address this emerging threat, it is
essential to develop lightweight Deepfake detectors that can be deployed on
mobile phones.

With the fast growing Generative Adversarial Network (GAN) technology,
image forgery techniques keep evolving in recent years. They are effective
in reducing manipulation traces detectable by human eyes. It becomes very
challenging to distinguish Deepfake images from real ones with human eyes
against new generations of Deepfake technologies. Furthermore, adding dif-
ferent kinds of perturbation (e.g., blur, noise and compression) can hurt the
detection performance of Deepfake detectors since manipulation traces are
mixed with perturbations. A robust Deepfake detector should be able to tell
the difference between real images and fake images generated by the GAN
techniques although both of them experience such modifications.

There have been three generations of fake video datasets created for research
and development purposes. They demonstrate the evolution of Deepfake
techniques. The UADFV dataset [20] belongs to the first generation. It has
only 50 video clips generated by one Deepfake method. Its real and fake videos
can be easily detected by humans. FaceForensics++ [27] and Celeb-DF-v2 [21]
are examples of the second generation. They contain more video clips with
more identities. It is difficult for humans to distinguish real and fake faces for
them. DFDC [9] is the third generation dataset. It contains more than 100 K
fake videos which are generated by 8 Deepfake techniques and perturbed by
19 kinds of distortions as shown in Figure 1. The size of the third generation
dataset is very large. It is designed to test the performance of various Deepfake
detectors in an environment close to real world applications.

State-of-the-art Deepfake detectors usually use the deep neural networks
(DNNs) to solve the Deepfake detection problem. Although they offer high
detection performance, their model sizes are so large that they cannot be
deployed on mobile phones. For example, the winning team of the DFDC
contest [31] used seven pre-trained EfficientNets that contain 432 million
parameters. In this research, our goal is to develop a lightweight model with
its size less than 256K. For a machine learning model with its size less than
256K, it can be run in any terminal device with a limited amount of memory
such as Raspberry Pi.



DefakeHop++: An Enhanced Lightweight Deepfake Detector 3

Figure 1: Visualization of real and fake faces extracted from the third generation DFDC
dataset [9]. The left and right four columns depict real and fake faces, respectively. Eight
Deepfake techniques are used to generate fake videos. Furthermore, 19 perturbations are
added to real and fake videos. Exemplary perturbations include compression, additive noise,
blur, change of brightness, contrast and resolution, and overlay with flower and dog patterns,
random faces and images. A good Deepfake detector should be able to distinguish real and
fake videos with or without perturbation.

It is easy to generate fake video content and disseminate over the Inter-
net and social media nowadays, e.g., video sharing on Facebook, Instagram,
WeChat, YouTube, etc. They are not monitored or censored by cloud servers.
As a result, fake videos can be transmitted among different communities. The
motivation for developing a deepfake detector for mobile development is to
ensure that every mobile device can detect deepfake videos without the help
from cloud servers. One application scenario is to develop an app that can
be installed on a browser to flag detected fake videos generated by Deepfake
algorithms.

A lightweight Deepfake detector called DefakeHop was developed in [2]. An
enhanced version of DefakeHop, called DefakeHop++, is proposed in this work.
The improvements lie in two areas. First, DefakeHop examines three facial
regions (i.e., two eyes and mouth) only. DefakeHop++ includes eight more
landmark regions to offer more information on human faces. Second, DefakeHop
uses an unsupervised energy criterion to select discriminant features. It does
not exploit the correlation between features and labels. DefakeHop++ adopts
a supervised tool, called the Discriminant Feature Test (DFT), in feature
selection. The latter is more effective than the former due to supervision. In
DefakeHop++, spatial and spectral features from multiple facial regions and
landmarks are generated automatically and, then, DFT is used to select a subset
of discriminant features to train a classifier. As compared with MobileNet
v3, which is a lightweight CNN model of 1.5M parameters targeting mobile
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applications, DefakeHop++ has an even smaller model size of 238K parameters
(i.e., 16% of MibileNet v3). In terms of Deepfake image detection performance,
DefakeHop++ outperforms MobileNet v3 without data augmentation and
leverage of pre-trained models.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. DefakeHop++ is described in detail in Section 3. Experimental re-
sults are shown in Section 4. Finally, concluding remarks are given in Section 5.

2 Review of Related Work

2.1 Deepfake Detection

Most state-of-the-art Deepfake detection methods use DNNs to extract features
from faces. Their models are trained with heavy augmentation (e.g., deleting
part of faces) to increase the performance. Despite the high performance
of these models, their model sizes are usually very large. They have to be
pre-trained by other datasets in order to converge. Several examples are given
below. The model of the winning team of the DFDC Kaggle challenges [31]
has 432M parameters. Heo et al. [14] improved this model by concatenating
it with a Vision Transformer(VIT), which has 86M parameters. Zhao et al.
[43] proposed a model that exploits multiple spatial attention heads to learn
various local parts of a face and the textural enhancement block to learn
subtle facial artifacts. To reduce the model size and improve the efficiency,
Sun et al. [32] proposed a robust method based on the change of landmark
positions in a video. These landmarks are calibrated by the neighbor frames.
Afterwards, a two-stream RNN is trained to learn the temporal information
of the landmark position. Since they did not consider the image information
and only consider the position information, the model size is 0.18M which is
relatively small. Tran et al. [35] applied MobileNet to different facial regions
and InceptionV3 to the entire faces. Although this model is smaller, it still
demands 26M parameters.

2.2 DefakeHop

To address the challenge of the need of huge model sizes and training data,
a new machine learning paradigm called green learning has been developed
in the last 6 years [5, 6, 17, 18]. Its main goal is to reduce the model size
and training time while keeping high performance. Green learning has been
applied to different applications, e.g., [15, 22, 24, 28, 29, 39–42]. Based on
green learning, DefakeHop was developed in [2] for the Deepfake detection
task. It first extracts a large number of features from three facial regions
using PixelHop++ [5] and then refines them using feature distillation modules.
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Finally, it feeds distilled features to the XGBboost classifier [4]. The DefakeHop
model has only 42.8 K parameters, yet it outperforms many DNN solutions in
detection accuracy against the first and second generataion Deepfake datasets.
Recently, DefakeHop has been used to detect fake satellite images in [3].

3 DefakeHop++

DefakeHop++ is an improved version of DefakeHop. An overview of the
DefakeHop++ system is shown in Figure 2. Facial blocks of two sizes are first
extracted from frames in a video sequence in the pre-processing step. These
blocks are then passed to DefakeHop++ for processing. DefakeHop++ consists
of four modules: (1) one-stage PixelHop, (2) spatial PCA, (3) discriminant
feature test (DFT), and (4) Classifier. The pre-processing step and the four
modules are elaborated below.

Figure 2: An overview of DefakeHop++.

3.1 Pre-processing Step

Frames are extracted from video sequences. For training videos, we extract
three frames per second. Since the video length is typically around 10 s, we
obtain around 30 frames per video. On the other hand, the length and the
frame number per second (FPS) are not fixed in test videos. We uniformly
sample 100 frames from each test video.

Facial landmarks are obtained by OpenFace2. With 68 facial landmarks,
we crop faces with 30% of margin and resize them to 128 × 128 with zero
padding (if needed). We do not align the face since face alignment may distort
the original face image and the side face is difficult to align. We conduct
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experiments on the discriminant power of each landmark and find that two eyes
and the mouth are the most discriminant regions. Thus, we crop out 8 smaller
blocks that cover 6 representative landmarks from two eyes, one from the nose
and one from the mouth. Furthermore, we crop out three larger blocks to cover
the left eye, right eye and mouth. We make the block size a hyper-parameter
for user to choose. For the experiments reported in Section 4, we adopt smaller
blocks of size 13× 13 centered at landmarks and larger blocks of size 31× 31
for three facial regions (i.e., two eyes and the mouth) since they give the best
results. The extracted small and large blocks are illustrated in Figure 3.

Figure 3: Illustration of the prepossessing step. It first extracts 68 landmarks (in blue) from
the face. Then, it crops out blocks of size 31× 31 from three regions (in yellow) and blocks
of size 13× 13 from eight landmarks (in red). The step can extract consistent blocks despite
different head poses and perturbations.
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3.2 Module 1: One-Stage PixelHop

A PixelHop unit [5, 6] contains a set of filters used to extract features from
training blocks. While the filter weights of traditional filter banks (e.g., the
Gabor or Laws filters) are fixed, those of the PixelHop are data dependent.
Its filter banks are defined by the Saab transform, which decomposes a local
neighborhood (i.e., a patch) into one DC (direct current) and multiple AC
(alternated current) components. The DC component is the mean of each
patch. The AC components are obtained through the principal component
analysis (PCA) of patch residuals.

To give an example, we set the patch size to 3× 3 in the experiment. For
the color face image input, each patch contains (3× 3)× 3 degrees of freedom,
including nine spatial pixel locations and three spectral components. By
collecting a large number of patches, we can conduct PCA to obtain AC filters.
The eigenvectors and the eigenvalues of the covariance matrix correspond to
AC filters and their mean energy values, respectively. Since most natural
images are smooth, the leading AC filters extract low-frequency features of
higher energy. When the frequency index goes higher, the energy of higher
frequency components decays quickly. The Saab filter bank decouples the 27
correlated input dimensions into 27 decorrelated output dimensions. Besides
decorrelating input components, the Saab transform allows to discard some
high frequency channels due to their very small variances (or energy values).

The horizontal output size of a block can be calculated as

horizontal block size − horizontal filter size
s

+ 1, (1)

where s is the stride parameter along the horizontal direction. For example, if
the horizontal block size is 13, the horizontal filter size is 3 and the horizontal
stride is 2, then the horizontal output size is equal to 6. The same computation
applies to the vertical output size.

3.3 Module 2: Spatial PCA

The output of the same frequency component may still have correlations in
the spatial domain. This is especially true for the DC component and low AC
components. The correlation can be removed by spatial PCA. The idea of
spatial PCA is inspired by the eigenface method in [36]. For each channel, we
train a spatial PCA and keep the leading components that have cumulative
energy up to 80% of the total energy. This helps reduce the output feature
dimension.

Modules 1 and 2 describe the feature generation procedure for DefakeHop++.
It is worthwhile to point out the differences in feature generation of DefakeHop
and DefakeHop++.
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• DefakeHop only focuses on two eyes and mouth three regions. Besides
these three regions, DefakeHop++ zooms into the neighborhood of
8 landmarks called a block to gain more detailed information. The
justification of these 8 landmarks is given in the last paragraph of
Section 4.1

• DefakeHop conducts three-stage PixelHop units and applies spatial PCA
to the response output of all three stages. The pipeline is simplfied to a
one-stage PixelHop in DefakeHop++. Yet, the simplification does not
hurt the performance since the spatial PCA applied to each block (or
region) still offer the global information of the corresponding block (or
region). Note that such simplification is needed as DefakeHop++ covers
more spatial patches and regions.

3.4 Module 3: Discriminant Feature Test

DefakeHop selects responses from channels of larger energy as features into
a classifier under the assumption that features of higher variance are more
discriminant. This is an unsupervised feature selection method. Recently,
a supervised feature selection method called the discriminant feature test
(DFT) was proposed in [38]. DFT provides a powerful method in selecting
discriminant features using training labels. The DFT process can be simply
stated below. For each feature dimension, we define an interval using its
minimum and maximum values across all training samples. Then, we partition
the interval into two sub-intervals at all possible split positions which are
equally spaced in the interval. For example, if we may select 31 split positions
uniformly distributed over the interval. For each partitioning, we can use
the maximum likelihood principle to assign a predicted label to each training
sample and compute the cross entropy of all training samples accordingly. The
split position that gives the lowest cross entropy is chosen to be the optimal
split of the feature and the associated cross entropy is used as the cost function
of this feature. The lower the cross entropy, the most discriminant the feature
dimension. We refer to [38] for more details.

We use Figures 4 and 5 to explain the DFT idea. Two features are compared
in Figure 4. The feature in the left subfigure has a lower cross entropy value
than the one in the right subfigure. The left one is more discriminant than the
right one, which is intuitive. Figure 5 is used to describe the feature selection
process for a given landmark block. The feature dimension of one landmark
block is 972. We perform DFT on each feature and obtain 972 cross entropy
values. The y-axis in both subfigures is the cross entropy value while the x-axis
is the channel index. In the left subfigure, a smaller channel index indicates
a lower frequency channel. We see that discriminant channels of lower cross
entropy actually spread out in both low and high frequency channels. In the
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right plot, we sort channels based on their cross entropy values, which have an
elbow point at 350. As a result, we can reduce the feature number from 972
to 350 (35%) by selecting 350 features with the lowest cross entropy.

Figure 4: Illustration of the feature selection idea in the discriminant feature test (DFT).
For the feature dimension associated with the left subfigure, samples of class 0 and class 1
can be easily separated by the blue partition line. Its cross entropy is lower. For the feature
dimension associated with the right subfigure, samples of class 0 and class 1 overlap with
each other significantly. It is more difficult to separate them and its cross entropy is higher.
Thus, the feature dimension in the left subfigure is preferred.

Figure 5: Illustration of the feature selection process for a single landmark, where the y-axis
is the cross entropy of each dimension and the x-axis is the channel index. The left and
right subfigures show unsorted and sorted feature dimensions.

3.5 Module 4: Classification

In DefakeHop, soft decisions from different regions are used to train several
XGBoost classifiers. Then, another ensemble XGBoost classifier is trained to
make the final decision. This is a two-stage decision process. We find that
a lot of detailed information is lost in the first-stage soft decisions and, as a
result, the ensemble classification idea is not effective. To address this issue, we
simply collect all feature vectors from different regions and landmarks, apply
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DFT for discriminant feature selection and train a LightGBM classifier in the
last stage in DefakeHop++. LightGBM and XGBoost play a similar role. The
main difference between DefakeHop and DefakeHop++ is that the former is a
two-stage decision process while the latter is a one-stage decision process. The
one-stage decision process can consider the complicated relations of features
in landmarks and regions across all frequency bands. Once all frame-level
predictions for a video are obtained, we simply use their mean as the final
prediction for the video.

4 Experiments

We compare the detection performance of DefakeHop++, state-of-the-art deep
learning and non-deep learning methods on several datasets as well as their
model sizes and training time in this section to demonstrate the effectiveness
of DefakeHop++.

4.1 Experimental Setup

4.1.1 Datasets

Deepfake video datasets can be categorized into three generations based on
the dataset size and Deepfake methods used for fake image generation. The
first-generation datasets includes UADFV and FF++. The second-generation
datasets include Celeb-DF version 1 and version 2. The third-generation
dataset is the DFDC dataset. The datasets of later generations have more
identities of different races, utilize more deepfake algorithms to generate fake
videos, and add more perturbation types to test videos. Apparently, the later
generation is more challenging than the earlier generation. The datasets used
in our experiments are described below.

• UADFV [20]
UADFV is the first Deepfake detection dataset. It consists of 49 real
videos and 49 fake videos. Real videos are collected from YouTube while
fake ones are generated by the FakeApp mobile App [11].

• FaceForensics++ (FF++) [27]
It contains 1000 real videos collected from YouTube. Two popular meth-
ods, FaceSwap [10] and Deepfakes [8], are used in fake video generation.
Each of them generated 1000 fake videos of different quality levels, e.g.,
RAW, HQ (high quality) and LQ (low quality). In the experiment, we
focus on HQ compressed videos since they are more challenging to detect
by Deepfake detection algorithms.
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• Celeb-DF [21]
Celeb-DF has two versions. Celeb-DF v1 contains 408 real videos from
YouTube and 795 fake videos. Celeb-DF v2 consists of 890 real and
5639 fake videos. Fake videos are created by an advanced version of
DeepFake. These videos contain subjects of different ages, ethnicities
and sex. Celeb-DF v2 is a superset of Celeb-DF v1. Celeb-DF v1 and
v2 have been widely tested on many Deepfake detection methods.

• DFDC [9]
DFDC is the third generation dataset. It contains more than 100K
videos generated by 8 different Deepfake algorithms. The test videos are
perturbed by 19 distractors and augmenters such as change of bright-
ness/contrast, logo overlay, dog filter, dots overlay, faces overlay, flower
crown filter, grayscale, horizontal flip, noise, images overlay, shapes
overlay, change of coding quality level, rotation, text overlay, etc. The
dataset was generated to mimic the real-world application scenario. It is
the most challenging one among the four benchmark datasets.

4.1.2 Evaluation Metrics

Each Deepfake detector assigns a probability score of being a fake one to all
test images. Then, these scores can be used to plot the Receiver Operating
Characteristic (ROC) curve. Then, the area under curve (AUC) score can be
used to compare the performance of different detectors. We report the AUC
scores at the frame level as well as the video level.

4.1.3 Discriminability Analysis of Landmarks

As mentioned in Section 3.1, there are 68 landmarks. We use the AUC scores
to analyze the discriminability of the 68 landmark regions in Figure 6. We
see from the figure that the performance of different landmarks varies a lot.
Landmarks in two eye regions are most discriminant. This is attributed to the
fact that eyes have rich details and complex movement and, as a result, they
cannot be well synthesized by any Deepfake algorithms. The mouth region is
the next discriminant one because it is difficult to synthesize lip motion and
teeth. It is worthwhile to point out that the cheek and nose regions are not
very useful in separating real and fake images. This could be explained that
the cheek or nose regions do not contain complex texture information and
Deepfake algorithms can reproduce them realistically. This justifies our choice
of six landmarks from eyes, one landmark from the nose and one landmark
from the mouth as described in Section 3.1.
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Figure 6: Analysis of landmark discriminability, where the x-axis is the landmark index
anad the y-axis is the AUC score. Landmarks in the two eye regions are most discriminant
in both training and test datasets.

4.2 Detection Performance Comparison

4.2.1 First Generation Datasets

The performance of a few Deepfake detectors on two first generation datasets,
UADFV and FF++, is compared in Table 1. Both DefakeHop and DefakeHop++
achieve a perfect AUC score of 100% against UADFV. DSP-FWA and FWA
are two closer ones with AUC scores of 97.7% and 97.4%, respectively. Actually,
UADFV is an easy dataset where the visual artifacts are visible to human
eyes. It is interesting to see that the extremely large models do not reach
perfect detection results. This could be explained by the small size of UADFV
(i.e., 49 real videos and 49 fake videos). The model sizes of DefakeHop and
DefakeHop++ can be sufficiently trained by a small dataset size. For FF++,
Multi-attentional achieves the best AUC score (i.e., 99.8%) while Xception-
raw and Xception-c23 achieves the second best (i.e., 99.7%). DefakeHop++
with its AUC computation at the video level has the next highest AUC score
(i.e., 99.3%). The performance gap among them is small. Furthermore, the
performance of Xception-raw and Xception-c23 is boosted by a larger dataset
size of FF++, which has 1000 real videos of different quality levels.
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Table 1: Comparison of detection performance of several methods on the first genreation
datasets with AUC as the performance metric. The AUC results of DefakeHop++ in both
frame-level and video-level are given. The best and the second-best results are shown in
boldface and underbared, respectively. The AUC results of benchmarking methods are taken
from [21] and the number of parameters are from https://keras.io/api/applications. Also,
we use a to denote deep learning methods and b to denote non-deep-learning methods.

1st Generation

Method Model UADFV FF++ #param

Two-stream [44] InceptionV3a[33] 85.1% 70.1% 23.9M
Meso4 [1] Designed CNNa 84.3% 84.7% 28.0K
MesoInception4 [1] Designed CNNa 82.1% 83.0% 28.6K
HeadPose [37] SVMb 89.0% 47.3% –
FWA [20] ResNet-50a[12] 97.4% 80.1% 25.6M
VA-MLP [23] Designed CNNa 70.2% 66.4% –
VA-LogReg [23] Logistic Regressionb 54.0% 78.0% –
Xception-raw [27] XceptionNeta[7] 80.4% 99.7% 22.9M
Xception-c23 [27] XceptionNeta[7] 91.2% 99.7% 22.9M
Xception-c40 [27] XceptionNeta[7] 83.6% 95.5% 22.9M
Multi-task [25] Designed CNNa 65.8% 76.3% –
Capsule [26] CapsuleNeta[30] 61.3% 96.6% 3.9M
DSP-FWA [19] SPPNeta[13] 97.7% 93.0% –
Multi-attentional [43] Efficient-B4a[34] – 99.8% 19.5M
DefakeHop [2] DefakeHopb 100% 96.0% 42.8K
Ours (Frame Level) DefakeHop++b 100% 98.4% 238K
Ours (Video Level) DefakeHop++b 100% 99.3% 238K

4.2.2 Second Generation Datasets with Cross-Domain Training

The performance of several Deepfake detectors, which are trained on the FF++
dataset, against two second generation datasets is compared in Table 2. We
see that video-level DefakeHop++ gives the best AUC score while frame-
level DefakeHop++ gives the second best AUC score for Celeb-DF-v1. As
to Celeb-DF-v2, Multi-attentional yield the best AUC score while Xception-
raw and Xception-c23 offer the second best scores. DefakeHop++ is slightly
inferior to them. Furthermore, we show the performance of DefakeHop and
DefakeHop++ under the same domain training in the last four rows of Table 2.
Their performance has improved significantly. Video-level DefakeHop++
outperforms video-level DefakeHop by 2.5% in Celeb-DF v1 and 6.1% in
Celeb-DF v2.

https://keras.io/api/applications
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Table 2: Comparison of detection performance of several Deepfake detectors on the second
genreation datasets under cross-domain training and with AUC as the performance metric.
The AUC results of DefakeHop anad DefakeHop++ in both frame-level and video-level
are given. The best and the second-best results are shown in boldface and underbared,
respectively. Furthermore, we include results of DefakeHop and DefakeHop++ under the
same-domain training in the last 4 rows. The AUC results of benchmarking methods are
taken from [21] and the number of parameters are from https://keras.io/api/applications.
Also, we use a to denote deep learning methods and b to denote non-deep-learning methods.

2nd Generation

Method Model Celeb-DF v1 Celeb-DF v2 #param

Two-stream [44] InceptionV3a 55.7% 53.8% 23.9M
Meso4 [1] Designed CNNa 53.6% 54.8% 28.0K
MesoInception4 [1] Designed CNNa 49.6% 53.6% 28.6K
HeadPose [37] SVMb 54.8% 54.6% –
FWA [20] ResNet-50a 53.8% 56.9% 25.6M
VA-MLP [23] Designed CNNa 48.8% 55.0% –
VA-LogReg [23] Logistic Regressionb 46.9% 55.1% –
Xception-raw [27] XceptionNeta 38.7% 48.2% 22.9M
Xception-c23 [27] XceptionNeta – 65.3% 22.9M
Xception-c40 [27] XceptionNeta – 65.5% 22.9M
Multi-task [25] Designed CNNa 36.5% 54.3% –
Capsule [26] CapsuleNeta – 57.5% 3.9M
DSP-FWA [19] SPPNeta – 64.6% -
Multi-attentional
[43]

Efficient-B4a – 67.4% 19.5M

Ours (Frame Level) DefakeHop++b 56.30% 60.5% 238K
Ours (Video Level) DefakeHop++b 58.15% 62.4% 238K

Ours (Trained on
Celeb-DF, Frame
Level)

DefakeHopb 93.1% 87.7% 42.8K

Ours (Trained on
Celeb-DF, Video
Level)

DefakeHopb 95.0% 90.6% 42.8K

Ours (Trained on
Celeb-DF, Frame
Level)

DefakeHop++b 95.4% 94.3% 238K

Ours (Trained on
Celeb-DF, Video
Level)

DefakeHop++b 97.5% 96.7% 238K

https://keras.io/api/applications
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Figure 7: Detection performance comparison of DefakeHop++, MobileNet v3 with pre-
training by ImageNet and MobileNet v3 without pre-training as a function of training data
percentages of the DFDC dataset.

4.2.3 Third Generation Dataset

The size of the third generation dataset, DFDC, is huge. It demands a lot of
computational resources (including training hardware, time and large models)
to achieve high performance. Since our main interest is on lightweight detection
algorithms, we focus on the comparison of DefakeHop++ and MobileNet v3,
which has 1.5M parameters and targets at mobile applications. We train
both models with parts and/or all of DFDC training data and report the
detection performance on the test dataset in Figure 7. We have the following
three observations from the figure. First, pre-trained MobileNet v3 gives the
best result, DefakeHop++ the second, and MobileNet v3 without pre-training
the worst. It shows that, if there are sufficient training data in training,
the detection performance of a larger model can be boosted. For the same
reason, the detection performance of all three models decreases as the training
data of DFDC becomes less. Second, with 1–8% of DFDC training data,
the performance of DefakeHop++ and pre-trained MobileNet v3 is actually
very close. The performance gap between DefakeHop++ and MobileNet v3
without pre-training is significant in all training data ranges. For example,
with only 1% of the DFDC training data, the AUC score of DefakeHop++
reaches 68% while that of MobileNet V3 can only reach 54%. Third, with 100%
of the DFDC training data but without any data augmentation, DefakeHop++
still can achieve an AUC score of 86%, which is 5% lower than pre-trained
MobileNet v3.
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Figure 8: Training time comparison of DefakeHop++, MobileNet v3 with pre-training by
ImageNet and MobileNet v3 without pre-training as a function of training data percentages
of the DFDC dataset, where the training time is in the unit of seconds. The training time
does not include that used in the pre-processing step.

Furthermore, we compare the training time on the three models as a
function of the training data percentage in Figure 8. The model is trained on
AMD Ryzen 9 5950X with Nvidia GPU 3090 24G. If a CNN is not pre-trained,
it generally needs more time to converge. The training time of DefakeHop++
is lowest for 64% and 100% of the total training data. Its training time is
about the same as the pre-trained MobileNet v3 for the cases of 1-32% training
data.

4.3 Model Size of DefakeHop++

DefakeHop++ consists of one-stage PixelHop, Spatial PCA, DFT and Classifier
modules. The size of each component can be computed as follows.

• PixelHop. The parameters are the filter weights. Each filter has a
size of (3× 3)× 3 = 27. Since there are 27 filters, the total number of
parameters of PixelHop is 27× 27 = 729 parmaeters.

• Spatial PCA. For each channel, we flatten 2D spatial responses to
a 1D vector and train a PCA. We conduct spatial PCA on channels
of higher energy (i.e. those with cumulative energy up to 80% total
energy). Furthermore, we set an upper limit of 10 channels to avoid a
large number of filters for a particular channel. Based on this design
guideline, the averaged channel numbers for a landmark and a spatial
region are 35 and 40, respectively.
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• DFT. DFT is used to select a subset of discriminant features. Its
parameters are indices of selected channels. For 8 landmark blocks, we
keep features in top 35%. For 3 spatial regions, we keep features in top
15%. Then, the number of parameters of DFT is (8× 340) + (3× 911) =
5, 453 as shown in Table 3.

• Classifier. We use LightGBM [16] as the classifier and set the maximum
number of leaves to 64. As a result, the maximum intermediate node
number of a tree is bounded by 63. We store two parameters (i.e., the
selected dimension and its threshold) at each intermediate node and
one parameter (i.e., the predicted soft decision score) at each leaf node.
The number of parameters for one tree is bounded by 190. Furthermore,
we set the maximum number of tree to 1000. Thus, the number of
parameters for LightGBM is bounded by 190K.

Table 3: The number of parameters for various parts.

Subsystem Number Parameters Total

Pixelhop Landmarks 8 3× 3× 3 = 729 5832
Regions 3 3× 3× 3 = 729 2187

Spatial PCA Landmarks 8 6× 6× 35 = 1, 260 10,080
Regions 3 15× 15× 40 = 9, 000 27,000

DFT Landmarks 8 6× 6× 27× 0.35 = 340 2720
Regions 3 15× 15× 27× 0.15 = 911 2733

LightGBM – 1 190,000 190,000
Total 237,832

4.4 Inference time of DefakeHop and DefakeHop++

Since the data preprocessing step of DefakeHop++ and DefakeHop as described
in Section 3.1 is essentially the same, we focus on the comparison of the
inference time in Modules 1–4 as stated in Sections 3.2–3.5 and report the
results in Table 4. As shown in the table, the average inference time per video
for DefakeHop++ and DefakeHop is 46.5 msec and 92.2 msec, respectively.

Table 4: Comparison of inference time of DefakeHop and DefakeHop++.

Method Inference time per video (ms) Speed up

DefakeHop 92.2 1×
DefakeHop++ 46.5 2×
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The inference time of DefakeHop++ is significantly less because it uses only
one PixelHop stage while DefakeHop uses three PixelHop stages.

5 Conclusion and Future Work

A lightweight Deepfake detection method, called DefakeHop++, was proposed
in this work. It is an enhanced version of our previous solution called DefakeHop.
Its model size is significantly smaller than that of state-of-the-art DNN-based
solutions, including MobileNet v3, while keeping reasonably high detection
performance. It is most suitable for Deepfake detection in mobile/edge devices.

Fake image/video detection is an important topic. The fake content is
not restricted to talking head videos. There are many other application
scenarios. Examples include fake satellite images, image splicing, image
forgery in publications, etc. Heavyweight fake image detection solutions are
not practical. Furthermore, fake images can appear in many forms. On one
hand, it is unrealistic to include all possible perturbations in the training
dataset under the setting of heavy supervision. On the other hand, the
performance could be quite poor with little supervision. It is essential to
find a midground and look for a lightweight weakly-supervised solution with
reasonable performance. This paper shows our research effort along this
direction. We will continue to explore and generalize the methodology to other
challenging Deepfake problems.
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