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ABSTRACT

This paper presents a system implementation to detect and classify
different DDoS attacks. The system adopts features of inter-arrival time,
entropy, and packet length distribution for a hybrid machine learning
model, which is based on the hierarchical temporal memory (HTM)
with a k-nearest neighbors (KNN) classifier that can mine network
traffic anomalies. Furthermore, it can incrementally learn new traffic
behavior and recognize new types of attacks. Finally, system evaluation
is conducted based on the CICDDoS 2019 dataset. Thus, the proposed
system can successfully identify different attacks with high detection
rate, accuracy, and precision.
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1 Introduction

In this paper, we propose a new DDoS classification method using entropy,
packet length distribution, and inter-arrival time (IAT) related features with
hierarchical temporal memory (HTM) algorithm [5]. This new method can
detect DDoS attacks in real time, and distinguish between different types of
attacks. Moreover, it can update new attack patterns using incremental learn-
ing in a one-pass fashion, identify unknown attacks, and work with imperfect
data. We developed a better DDoS detector that can solve current problems
by detecting and classifying different DDoS attacks. Finding feature sets that
detect as many different types of DDoS attacks as possible is challenging.
Moreover, detectors must work in high-speed networks with a high detection
rate but with low false negatives and positives. Finally, this model should
have continuous learning and update capabilities in real time. The proposed
method uses HT'M and machine learning algorithms to recognize patterns in a
data stream. Combined with the HTM modules in multilayers, this method
can analyze complex data and build more robust models with higher accuracy,
precision, and detection rate. We obtain significant results when classifying
different types of DDoS attacks from regular traffic to detect DDoS attacks in
our experiments.

The main contribution of this study is summarized as follows:

1. We propose features related to entropy, TAT, and packet length dis-
tribution to detect DDoS attacks for each time interval in a real-time
network environment. The proposed features can be extracted with
FPGA accelerators to process data in a high-speed network.

2. We design a machine learning model based on the HTM algorithm,
which is inspired by the human brain, to learn and detect different
types of DDoS attacks. The model can process sequence, trending, and
distribution data.

3. We evaluate the ability of the model to detect new types or variants of
attacks and update the model with incremental learning and one-pass
learning.

This paper is organized as follows: Section 2 provides a general background
of the HTM and entropy methodologies. Section 3 presents related studies.
Section 4 describes the proposed system architecture. Section 5 discusses the
experimental details and evaluation results. Finally, Section 6 presents the
conclusion and future studies.
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2 Background

2.1 Entropy-based Method

Shannon entropy presents the uncertainty or randomness of a distribution. It
can effectively monitor network traffic behavior for abnormal detection [13].
Entropy-based features are used along together with machine learning methods
to achieve significant results for traffic analysis.

The Shannon entropy is defined as H = — Z?Zl pilogap;, where n is the
total number of distinct items and p; is the occurrence rate of item i. In
monitoring network traffic, n can be the number of distinct values of a network
data field, such as TCP port, IP address, and packet length, whereas p; is the
occurrence rate of a value in a time interval of a data field. For example, we
can calculate the entropy of source IP address in a time interval by counting
the occurrence numbers of each distinct source IP address, which can be read
in IP headers of the packet that belongs to the observed time interval. We
then calculate all corresponding occurrence rates (p;) and apply the Shannon
entropy equation.

2.2 Hierarchical Temporal Memory Algorithm

HTM [5] imitates the human brain to learn and recognize patterns. The HTM
model uses the simple Hebbian algorithm in the learning phase, which allows
it to learn each input data record only once. Therefore, HTM is suitable for
processing online data streams. HTM can effectively recognize patterns via an
unsupervised method because unlabeled inputs are encoded to binary arrays,
which can be quickly compared. HTM models are less affected by noise and
can be trained quickly with incremental learning. HTM can map infinite input
patterns to finite numbers of sparse distributed representations (SDR). SDRs
are binary arrays with two essential characteristics: first, those similar to human
memory, can be compared with other SDRs to recognize their similarities,
and second, they are highly noise resistant and can be sampled without losing
much information. An HTM model, as shown in Figure 1, has three most
important parts: semantic encoder, spatial pooler, and temporal memory.
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Figure 1: The basic structure of the HTM model consists of semantic encoder, spatial pooler,
and temporal memory [5].

Semantic Encoder: This part encodes the feature vectors or different
data types to binary vectors on the input space. The minimal element of the
input space is called a cell. One type of this encoder is scalar encoder.
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Spatial Pooler: This part converts binary vectors on the input space to
sparse arrays. The properties of the spatial pooler allow the HTM to maintain
sparsity and overlap of the input space. Thus, similar input data have high
overlap, and different input data have low overlap.

Temporal Memory: This part is responsible for two important processes:
first, it learns from sequences of SDRs created by the spatial pooler over time,
and second, it predicts the next incoming pattern based on the temporal
context of each input. In temporal memory, each mini-column has numerous
cells and each cell represents a different temporal context.

Finally, we can separate HTM applications into two stages [5]. The first
stage is the training phase, where the HTM application learns all patterns in
the dataset and creates invariant representations (SDRs) before saving them in
memory. The second stage is the inference phase, where the HTM application
can use that memory to interpret new input patterns and predict the next
pattern using continuous learning. The HTM can have all the invariant object
representations in its world after full training.

3 Related Studies

3.1 Entropy-based Method

Daneshgadeh et al. [6] proposed a method to detect DDoS attacks and dis-
tinguish between high-rate DDoS attacks, low-rate DDoS attacks, and flash
events. Their study uses Shannon entropy and machine learning algorithms
to detect abnormal events using the Mahalanobis distance metric. Further-
more, they used the KOAD algorithm to classify abnormal and normal traffic
unsupervised without labeled data.

Koay et al. [12] proposed a method that uses entropy-based features
andmulticlassifier to detect abnormal traffic events. They experimented using
two types of entropy: regular and separation. Separation entropy can provide
variation in two distinct entropy-based features. Furthermore, this method can
use the rich information of numerous entropy features to improve detection
rate and reduce false alarm rate. They proposed the E3SML system, which
can utilize rich information of multiple entropy features and three machine
learning algorithms recurrent neural network (RNN), multilayer perceptron
(MLPs), and alternating decision tree (ADTree), to classify abnormal events.

Ma et al. [14] proposed a method to detect DDoS by analyzing the
relationship between source and destination IP addresses using chaos theory.
This technique collects network traffic and calculates normalized entropy of the
source and destination IP addresses. Their model uses the Lyapunov exponent
to calculate the separation rate between two related entropy series and defines
a threshold separation rate to detect DDoS attacks. Their experiment showed
that the separation rate changes significantly when a DDoS attack occurs.



A Real-Time DDoS Attack Detection and Classification System 5

3.2 Machine Learning-based Methods

Machine learning allows computers to learn from data and explore hidden
patterns and relationships to predict new data. Supervised machine learning
algorithms require labeled data, whereas unsupervised machine learning al-
gorithms can describe the data structure using unlabeled data. Input data
for machine learning algorithms are features that should be carefully chosen
to improve accuracy and reduce computation time. Feature selection is a
necessary phase for analyzing high-dimensional and noisy data.

Implementing machine learning in abnormal detection can provide certain
advantages. Machine learning can detect unknown attacks by identifying the
relationships between anomalous data and attack patterns or deviation from
normal patterns. It can also detect variations of attacks correctly with a low
false alarm rate. Furthermore, it can learn all attacks and normal patterns to
detect evolving attacks without regular updates. As a result, it can improve
the detection speed and accuracy more than signature-based methods.

Thaseen et al. [25] used a multi-class support vector machine (SVM)
and chi-square feature selection to decrease training and testing time and
increase the accuracy of each type of classification. The random forest is more
appropriate with a large dataset than an SVM or naive Bayes classifier, which
can also adapt to data size. However, it takes a longer time to train, but less
time to predict. Furthermore, random forest and decision trees can learn from
data features and define rules to separate the dataset into numerous branches.
Jalil et al. [10] compared the performance of a decision tree, an SVM, and
neural network.

Sangkatsanee et al. [21] proposed a real-time IDS using a decision tree.
Nearest neighbor and logistic regression are popular regression algorithms for
finding the most similar training data with the observation. However, they
are memory-intensive and may perform poorly with high-dimension data.

Deep learning neural network model is suitable for modeling complex
nonlinear relationships by learning multiple levels of data representations that
correspond to different levels of abstraction [9]. It can learn complex patterns
using high-dimension data. Meng et al. [16] compared the performance of
LSTM with that of other machine learning algorithms, such as the SVM,
when classifying attacks and regular instances in the NSL-KDD dataset. Their
results show that LSTM outperformed other methods by 99% detection rate
and accuracy.

Singh et al. [24] proposed an online sequential extreme learning machine
(OS-ELM) to classify different types of attacks in NSL-KDD. The OS-ELM is
designed to overcome the high processing time of feed-forward neural networks.
Khuphiran et al. [11] compared the performance of SVM and deep feed-forward
(DFF) networks. They argued that SVM can deliver faster classification time,
whereas DFF is more appropriate for high-accuracy detectors.
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3.3 Survey of Features for DDoS Detection

In our survey, researchers leveraged source information extracted from packet
headers to create new features to describe the nature of attacks. They used
different feature sets to detect DDoS attacks. Some features are easy to extract
from packet headers, whereas others are complicated to calculate in real time.

Khuphiran et al. [11] proposed two feature sets: window-based and packet-
based. These features are used to detect DDoS attacks in the 2009 DARPA
Intrusion Detection dataset. Qin et al. [19] proposed a method using entropy-
based features to model normal patterns using a clustering algorithm. This
technique calculates five entropy-based features, including source IP, desti-
nation IP, destination port, flow duration, and packet size. The entropy of
packet size uses five different size levels for a high-speed network accordingly.

Daneshgadeh et al. [6] proposed a hybrid method to distinguish between
normal traffic, DDoS, and flash event. The authors used two types of feature
vectors. The first vector consists of the time interval, destination IP entropy,
and source IP entropy for the online machine learning-based method. The
second vector consists of the time interval.

Balkanli et al. [2] proposed two feature sets to detect DDoS attacks in
backscatter darknet traffic. The paper proved that their method can detect
DDoS attacks without features related to IP addresses and port numbers.
Koay et al. [12] proposed a method for classifying normal and attack traffic in
a dataset of different DDoS attacks. The method uses fifteen regular entropy-
based features and five entropy variation features. The latter is based on the
variation of two distinct common entropy-based features generated using the
variation of the Lyapunov exponent separation method [14]. They claimed
that their method can effectively detect DDoS attacks across datasets with
different intensities.

In our survey, we noticed that entropy-based features are the most common,
which were used by Qin et al. [19], Daneshgadeh et al. [6], Mao et al. [15],
and Koay et al. [12] to detect different types of DDoS attacks in the DARPA
or CAIDA dataset. Additionally, entropy is a compact form to describe
the distribution of the changing feature, which is very important in network
anomaly detection.

4 System Architecture
4.1 Recognize Pattern with HTM Cortical Column

1. Create SDRs from sequences of input data using the HTM algorithm: Each
input data may have one or combined numerous features. The scalar encoder
is used to convert input data into binary vectors. These binary vectors are sent
to the spatial pooler module to create SP-SDR and then continuously sent to
the temporal memory module to create TM-SDR. TM-SDR are outputs of the
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temporal memory module. They are SDR binary arrays used as patterns to
present a sequence of input data at a time interval. Each pattern represents the
corresponding input data and its context. The final step is using classification
techniques to label prototype patterns in the training and prediction phases.

2. Find prototype patterns from SDRs in the training phase: Here, we will
use a clustering technique to find the prototype patterns from those created
from the training datasets. Prototype patterns are SDR binary arrays that
can affect the result of the KNN classifier, which is used to assign labels for
observed patterns.

Two methods are used to calculate the distance between two SDRs: Ham-
ming and overlap. Ahmad et al. [1] preferred to use the latter over the former.
For Hamming distance method, we count the number of different bits (zero and
one) between two SDRs. The lower the number of different bits, the shorter the
distance and the more similar they are. For the overlap distance method, we
count the number of overlap bits (one) between two binary SDRs, the higher the
number of overlap bit (one), the shorter the distance and more similar they are.

We define the distance threshold as the minimum distance between two
prototype patterns. It is an optimized parameter of the HTM-KNN model.
A lower distance threshold creates more prototype patterns in the training
phase, whereas higher distance threshold creates fewer prototype patterns. An
optimized distance threshold is required to create enough prototype patterns,
and each prototype pattern is present for a variant of a type of attack. When the
HTM calculates a training pattern from input data in the training phase, the
model finds the smallest distance between the new and all existing prototype
patterns. If the smallest distance is higher than the distance threshold, the
training pattern will be assigned as a new prototype pattern. If the smallest
distance is lower than the distance threshold, the new pattern will be assigned
as an absorbed pattern. We will provide labels for all prototype patterns
similar to those in the corresponding input data.

3. KNN assigns labels for observed patterns in the prediction phase: KNN
algorithm is used to assign the label for observed patterns in the prediction
phase. To assign a label for input data, the model must convert the observed
input data to an SDR binary array (observed pattern). Then, the model can
compare the distance between the observed pattern and all existing prototype
patterns specified in the training phase to find k-nearest prototype patterns.
Finally, the observed pattern is assigned a label by major voting between its
k-nearest prototype patterns.

4.2 Two-layered HTM-KNN Model

Using the HTM cortical column described in Section4.1l, we can recognize the
most similar attack signature based on the increasing and decreasing tendency
of the features. We built a two-layered HTM model (Figure 2) to observe
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all network features and recognize attack signatures to assign labels to the
observed patterns in the network traffic.
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Figure 2: Block diagrams of the proposed HTM-KNN model in two layers.

Layer one is responsible for observing and assigning labels for all features.
Each HTM cortical column observes a particular feature using only three types
of labels: (=), (0), and (+). Label (0) indicates that the attack makes the
feature value similar to that of regular traffic. Labels (—) and (+) represent
the decreasing and increasing tendency, respectively, of the feature value. The
input data of layer one are a series of records. Each record represents each
time interval with values of a feature set.

Layer two is responsible for recognizing the matching attack signatures
or most similar attack signatures and then predicting the type of attack. All
output data from layer one are combined to become input data for layer two.
In layer two, the HTM cortical column converts the input data to SDR binary
and compares the observed SDR with the most similar signatures. On the
basis of this , we can predict the type of attack on regular traffic. Furthermore,
the two-layers HTM model can also remember the signatures of different types
of attacks in the training phase and then recognize the attack signatures in
the prediction phase.
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4.8 Features Extraction

We extracted entropy features from DDoS datasets and observed entropy-based
sequences of the network traffic. We noticed that entropy features can be
strongly affected by DDoS attacks, and distinguished between different types of
attacks. For example, when we viewed the entropy of source IP, destination IP,
source port, destination port, and packet length in the CICDDoS 2019 training
dataset, we discovered that entropy values changed as DDoS attacks occurred.
Additionally, other proposed features were discovered using the distribution
of packet size and mean packet size instead of using the entropy of packet size.
Because calculating each distinct packet size in a high-speed network is difficult,
we adopted the packet size in eight different levels. Finally, we proposed a set
of feature vectors as the input data. They consist of eight features: entropy of
TCP source, destination ports, packet length, the average packet length, total
packet count, and the distinct number of TCP source and destination ports.

Another idea is the packet length distribution in a range of TAT. We
extracted features to observe how attack packets affect the packet length
distribution and calculated the IAT for each incoming packet. Next, we filtered
all packets with IAT lower than five microseconds (5 ms IAT packets). Then,
we created the packet length distribution for each time interval with those
filtered 5 ms IAT packets. When DDoS attacks occur, attackers attempt to
send numerous abnormal packets to the network and possibly, thus causing the
number of 5 ms IAT packets to increase. We observed how the distribution of
packet length changes in a time interval to recognize different types of attacks.
We divide the different packet lengths into fifteen groups called Bins, and each
Bin can be used as a feature of the proposed machine learning model. The
feature set includes fifteen features. Each of them observed the number of
packets in the 100 bytes. We recognize that different types of DDoS attacks
affect the distribution of packet length in different ways. Therefore, we believe
that our selected features can be used to discriminate against many DDoS
attacks in the CICDDoS 2019 dataset [22].

4.4 Signature of DDoS Attacks

The proposed method classifies and recognizes the DDoS attack signatures in an
observation time interval of 15s. After extracting and analyzing features from
the CICDDoS 2019 dataset, we observed that different types of DDoS attacks
cause various changes in the distributions of IP, port, and packet size. We
used entropy-based features, numbers of distinct items in distribution, average
packet length, and packet count to record the changes of network characteristics
during an attack. We can identify the signatures of different attacks using this
method by identifying which types of attacks have identical signatures.
Table 1 shows how each feature changes when a DDoS attack occurs in the
CICDDoS 2019 dataset. The (0) symbol means the attack has a feature value
similar to regular traffic. The (—) symbol indicates that the attack causes the
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feature value to decrease. The (4) symbol means that the attack causes the
feature value to increase. Furthermore, the (——) symbol) represents further
decrease than that of (=), and similarly, the (++) symbol means further
increase than that 1 of (+). Thus, as shown in Table 1, we can easily identify
the different types of attacks based on the changing trend of features. For
example, the protocol entropy feature differs when comparing SYN (10) and
TFTP (11) attacks. SYN (10) decreases the feature value, whereas TFPT (11)
increases. We can distinguish between nine types of DDoS attacks using the
feature set. However, we can not distinguish between the attacks of SSDP (6)
and UDP (7). Furthermore, we can not differentiate between UDP-Lag (8)
and WebDDoS (9) from the regular traffic.

For more features, Figure 3 shows the distribution of the packet length
of the CICDDoS 2019 dataset, and all packets have an IAT lower than 5 ms.
The distribution has 15 bins representing packet lengths from 0 to 1,500 bytes,
and each bin represents packet lengths in the 100-byte range. The number
of packets is counted for each bin of each time interval. Figure 3 shows how
DDoS packets change packet length distribution in a time interval of 15 ms.

Figure 3: Fifteen features of packet length distribution with IAT lower than 5ms of the
training dataset.
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Figure 4: Fifteen features of packet length distribution with IAT lower than 5ms in the
training dataset. The packet-count level is calculated by natural logarithm with rounding.

In the figures, the attack codes listed in Table 2, represent the attack type
of each time interval. For example, we observed that Bin 1 packet count,
which counts the number of packets, has packet lengths from 0 to 100 bytes.
Furthermore, we notice that when SYN DDoS (Attack code 10) occurs, the
packet count increases from 240,000 to 270,000 packets in each time interval
of 15s. However, NTP DDoS (Attack code 12) increases to approximately
60,000 packets, LDAP DDoS (Attack code 2) increases from approximately
120,000 to 150,000 packets, and SNMP DDoS (Attack code 5) increases from
approximately 210,000 to 240,000 packets. These types of differences also
occur with other bins. Therefore, a machine learning model can combine and
learn different types of information to distinguish different types of attacks as
much as possible. Because the numbers of packets are big and vary extensively,
we use logarithm and rounding to convert the numbers of packets to packet
count level. Figure 4 shows fifteen features of packet length distribution for
5ms AT packets in packet-count level, which can be used as a feature set for
the proposed machine learning model.
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5 Experiment and Evaluation

5.1 Simulation and Testing Environment

Our experiment uses the merged CICDDoS 2019 and MAWI datasets [8].
CICDDoS 2019 provides PCAP files for benign traffic and the most updated
common DDoS attacks. The attack flows were labeled using a timestamp.
CICDDoS 2019 has one training and one testing dataset. The training dataset
has twelve DDoS attack types including NTP, DNS, LDAP, MSSQL, NetBIOS,
SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN, and TFTP. The testing
dataset has seven DDoS attack types: PortScan, NetBIOS, LDAP, MSSQL,
UDP, UDP-Lag, and SYN. In Figures 5 and 6, we recognized that the packet
count in the normal time intervals is smaller than that of attack patterns.
This indicates that the normal traffic of the CICDDoS 2019 dataset occurs
when the network has almost no traffic, which is unrealistic. Therefore, the
MAWIO070201 dataset was adopted to served as the background traffic. Attack
vectors of the CICDDoS 2019 dataset were added to background traffic to
create DDoS events. The traffic traces of the MAWI dataset were collected

Attack code
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Figure 5: Attack class and volume in the CIC DDoS 2019 training dataset.
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Figure 6: Attack class and volume in the CICDDoS 2019 testing dataset.
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in a real backbone network. We used the 200702011400 trace of the MAWI
dataset, which has a total time of 900s and an average network throughput of
123 Mbps. The background traffic has approximately 276,882 distinct IPv4
addresses and 553,421 distinct flows. The 900 s trace file was merged with each
900s time interval of the CICDDoS 2019 dataset PCAP files.

We obtained the PCAP files of the training and testing datasets to extract
the features. We used two feature sets in the experiment. The first feature set
has eight features: entropy of TCP source and destination port, entropy of
packet length, distinct number of TCP source and destination port, average
packet count, and total packet count. The second feature set has 15 features
representing the packet length distribution for 5 ms IAT packets.

We created feature vectors for each 15s time interval of the two datasets.
Figure 5 shows the time intervals in DDoS attacks and the total packet of
each time interval of the CICDDoS 2019 training dataset. Noticeably, LDAP,
MSSQL, NetBIOS, SNMP, SSDP, and SYN DDoS attacks appeared with high
volume traffic. However, UDP-Lag and Web DDoS appeared with low volume
traffic, UDP attacks appeared with both low and high volume traffic. The
proposed models attempted to detect LDAP, MSSQL, NetBIOS, UDP, UDP
Lag, and SYN DDoS attacks in the testing dataset. Figure 6 shows that the
attack volume of LDAP, MSSQL, NetBIOS, UDP, UDP Lag, and SYN DDoS
attacks in the CICDDoS 2019 testing dataset is similar to that of the same
type of attack in the training dataset. Table 2 shows the attack code used in
Figure 5 and 6. Furthermore, the attack code replaces the name of the DDoS
attack.

In the first phase simulation and experiments, we trained two HTM-KNN
models with the training dataset and evaluated two models using the testing
dataset. In the second phase, we updated two models using the testing dataset
with incremental learning and one-pass learning. We then evaluated the two
models using the testing dataset. The two models were changed to a learning
mode to learn new patterns without retraining the whole model while updating.
The models can still remember patterns they learned previously. New input
patterns were connected to become a data stream, then each input pattern
was then observed and learned once by the HTM models. The spatial pooler
and the temporal memory of HT'M can learn and create the corresponding
SDR represented for each input pattern by reading the input exactly once.

5.2 Results and Evaluation

We used two HTM-KNN models to detect attack time intervals in the datasets.
The HTM-KNN-1 model learns feature trends shown in Table 1. The HTM-
KNN-2 model learns fifteen features of packet length distribution for packets
with TAT lower than 5ms shown in Figure 4. The HTM-KNN-1 model is the
two-layered model shown in Figure 2. The HTM-KNN-2 model is a one-layered
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model with only one cortical column. The models learn all input feature vectors
in the training phase, create corresponding SDRs, choose prototype patterns,
and save all prototype patterns in memory. Prototype patterns represent nor-
mal behavior and all twelve types of DDoS attacks: NTP, DNS, LDAP, MSSQL,
Net-BIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN, and TFTP.

These models convert the input data sequence in each observation time
interval to the corresponding SDRs in the testing phase. Then, the KNN
algorithm assigns labels for each observed SDR by analyzing the distance
between the corresponding SDR and all prototype patterns detected.

Figure 2 shows the HTM-KNN-1 model, there are eight HTM cortical
columns in layer one used to learn the trend of features shown in Table 1.
Therefore, for all observed features, labels of (—), (0), and (+) are assigned
to the eight cortical columns for each time interval. Layer one signals the
observed signature of the current time interval to layer two. Then, layer two
continues to create SDRs representing the attack signatures from layer one and
compares the observed SDR with all learned attack signatures in the training
phase. Finally, the matching or most similar attack signatures can be identified
using distance methods. The most similar means the closest distance, wheres
matching means the zero distance.

The testing dataset comprises seven different types of DDoS attacks. The
HTM-KNN-1 and HTM-KNN-2 models learned six types of attack patterns,
such as NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, and SYN DDoS attacks
in the training phase, and the models attempt to detect those types of attacks
in the testing dataset.

In the first phase, we evaluated the pattern recognition and classification
ability of the HTM models using two types of feature sets such as trend features
(HTM-KNN-1) and distribution features (HTM-KNN-2), and three types of
distance methods such as Hamming-matching, Hamming-most similar, and
overlap. Table 3 presents the performance of HTM-KNN-1 and HTM-KNN-2
by detection rate, accuracy and precision metrics. Additionally, we evaluated
the performance of each model using three types of distance methods, such
as Hamming-matching, Hamming-most similar and overlap, as explained in
Section 4.1.

Table 3 shows that the HTM-KNN-1 model achieves high detection rate,
accuracy, and precision for different types of DDoS attacks. When we used the
Hamming-matching g method as the evaluated result of the model, the results
show that the model can detect LDAP-SNMP, MSSQL, NetBIOS, UDP-SSDP,
and SYN DDoS attacks. Note that the HTM-KNN-1 model can not distinguish
between LDAP and SNMP; this is similar for UDP and SSDP to the selected
features. In our experiment, the true and false-positives of UDP-Lag are zero.
Thus, both detection rate and precision are zero. For the attack signatures in
Table 1, UDP-Lag has the same attack signature as a normal traffic pattern,
so the HTM-KNN-1 model cannot detect any UDP-Lag pattern. To detect
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UDP-Lag DDoS attacks and more types of attacks, we must add new features
to the feature set in future experiments. These new features should show
changes when attacks appear.

Table 4 presents the confusion matrix of the HTM-KNN-1 model using
Hamming-matching distance. Furthermore, there are some false negatives
in the time intervals of LDAP-SNMP, MSSQL, NetBIOS, UDP-SSDP, and
SYN DDoS attacks. The false positives are due to the misses of the matching
signature of observed attack patterns. Thus,, the model labeled as no matching.
Rather than assigning labels to the no-matching patterns, we can adapt the
strategy by referring to the most similar attack signatures, which can be
specified on the basis of the distance between SDRs of the closest attack
signatures and the observed patterns. In the Hamming-matching signature,
if an observed attack pattern matches a prototype pattern (distance is zero),
it will be labeled the same as the prototype pattern. The observed attack
patterns will be marked as “no matching”, if the model cannot find any matching
prototype pattern. Using the Hamming-most similar and overlap methods,
the model will assign the label of the closest prototype pattern to the observed
attack pattern. Table 5 shows the confusion matrix of the testing dataset using
the HTM-KNN-1 model with the Hamming-most similar distance method; the
model always finds a label with the most similar pattern to assign to each
observed pattern.

Table 3 shows that the HTM-KNN-2 model can achieve a better detection
rate of LDAP, MSSQL, and NetBIOS than the HTM-KNN-1 model. However,
when the model uses Hamming-matching signature as the distance method,
the model can not detect any attack. This is because all attack patterns
of the training dataset learned by the HTM-KNN-2 model in the training
phase, do not reappear in the testing dataset. Thus, the HTM-KNN-2 model
still works with the Hamming-most similar and overlap methods to find the
most similar prototype patterns for each observed pattern. We attempted to
distinguish between UDP and SSDP using the HTM-KNN-2 model, which is
impossible using the HTM-KNN-1 model. The result shows that the detection
rate for UDP is 36% for both Hamming-most similar and overlap distance
methods. Table 6 shows the confusion matrix of the HTM-KNN2, where the
HTM-KNN-2 model detected 15 UDP attack time intervals, and misclassified
18 UDP attack time intervals as SSDP attack. It also has 27 normal traffic
time intervals misclassified by the UDP attack. This proves that some UDP
attack prototype patterns in the learning phase of the HTM-KNN-2 model
are similar to normal traffic prototype patterns. However, the HTM-KNN-2
model can not detect UDP-Lag attacks; it misclassified 40 UDP-Lag attack
time intervals as normal traffic. We attempted to keep detecting UDP-Lag
attacks by updating the models in the next phase.

In the second phase, we evaluate the continuous pattern-updating ability
of the HTM models using incremental learning and one-pass learning. We
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continuously updated the HTM-KNN models using new patterns of the testing
dataset without retraining the models. The HTM can support incremental and
one-pass learning, so it can learn new patterns by reading each input exactly
once, and then updating new prototype patterns in memory. One-pass learning
does not require memory to store the previously learned input data and does
not need to learn the same input repeatedly. Thus, it can save numerous
computing resources, and it is suitable for processing data streams. Table 8
shows the performance of the model after an update. The HTM-KNN-2 model
achieves perfect detection rate, accuracy, and precision for the LDAP, MSSQL,
NetBIOS, UDP, and SYN DDoS attacks. This proves that the model learned
all new patterns after updating via incremental learning. Furthermore, the
HTM-KNN-2 model can detect UDP-Lag with a 68% detection rate. Table 7
presents the confusion matrix of the HTM-KNN-2 model after an incremental
learning update. It has thirteen UDP-Lag time intervals misclassified as normal
traffic and four normal time intervals, which are misclassified as UDP-Lag time
intervals. This proves that the UDP-Lag attack and normal traffic are very
similar with HTM-KNN-2 model. However, the HTM-KNN-1 model showed
no significant improvement after the incremental update. This is because the
trend of features observed during the attacking phase in the CICDDoS 2019
dataset (Table 1) is the same for both training and testing datasets. Thus,
there is no new information updated in the HTM-KNN-1 model.

Table 9 shows the comparison between the proposed method and that of the
previous study [17] and other studies that also used the CICDDoS 2019. There
are two types of models: multi-classify and binary-classify. The former can
discriminate between different types of attacks and normal traffic, whereas the
latter one only discriminates between normal traffic and attack. The detected
objects include time window (time interval) and flow. The first three models
classify DDoS attacks for each time window (window-based model), and other
models classify DDoS attacks for each flow (flow-based model). Compared with
the first three models, the proposed model can achieve better detection rate, ac-
curacy, and precision. Furthermore, the proposed model can also distinguish be-
tween different types of attacks and detect UDP-Lag with a 68% detection rate.
The proposed model can support the other flow-based models to improve their
performance by combining their results. First, the DDoS attack flows can be
rechecked to determine whether they occur in DDoS attack time windows, which
is used to reduce false alarms. Second, some flow-based models can not discrim-
inate between several types of attacks; thus, combining the result with window-
based models can conduct deeper classifications. For example, Chartuni et al.
[4] cannot distinguish between some types of DDoS flows including DNS and
LDAP, NetBIOS and Portmap, and SSDP and UDP. We can detect the types
of time windows, to which the flows belong for more detailed distinctions.

The results from all experiments show that the proposed HTM-KNN
models can distinguish between different types of DDoS attacks and normal
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Table 8: The performance of the HTM-KNN model (Overlap) after updating via incremental
learning.

HTM-KNN-1 HTM-KNN-2

Metric Attack types Overlap Overlap
Detection rate (%) LDAP 96 100
MSSQL 86 100
NetBIOS 93 100
UDP 80 100
UDP-Lag 0 68
SYN 93 100
Accuracy (%) LDAP 99 100
MSSQL 99 100
NetBIOS 99 100
UDP 99 100
UDP-Lag 96 98
SYN 99 100
Precision (%) LDAP 100 100
MSSQL 86 100
NetBIOS 100 100
UDP 89 100
UDP-Lag 0 84
SYN 100 100

time intervals. The Hamming-matching signature method can recognize all
prototype patterns learned in the learning phase. The Hamming-most similar
and overlap method attempt to identify the most similar prototype patterns
for observed patterns. In our experiments, the Hamming-matching signature
method has a lower detection rate than the Hamming-most similar method
and overlap method. The Hamming-most similar method and overlap method
achieved high performance. The latter is preferred for finding the most similar
SDR over the former [1]. However, the two distance methods achieved the
same performance in our experiments.

6 Conclusions and Future Works

This study proposed methods for classifying different types of DDoS attacks
using entropy-based features, packet length distribution, and TAT-related
features on selected packet headers. This system was constructed based on the
hierarchical temporal memory (HTM) and k-nearest neighbors algorithm. The
proposed methods adapted the Shannon entropy as an essential indicator to
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detect DDoS attacks in real time. The HTM allowed the model to remember all
prototype patterns of different attack types and assign labels for input patterns
using other machine learning algorithms, such as KNN. The models can also
implement incremental and one-pass learning by updating prototype patterns
only once without retraining the entire model. The experiment was conducted
using the merged CICDDoS 2019 and MAWI dataset. The simulation results
showed that the proposed models achieved high performance when classifying
several types of DDoS attacks in the dataset.

Compared with the previous method [17], we proposed a new HTM-KNN
model with additional feature sets related to the distribution of packet length
and IAT. We compared the performance of different distance methods including
Hamming-matching, Hamming-most similar, and overlap, which were used
to compare sparse distributed representations (SDRs). We also distinguished
between UDP and SSDP attacks, LDAP and SNMP attacks, as well as UDP-
Lag attacks and normal traffic with the new feature set. As a result, we
achieved good performance when implementing the proposed models with
incremental learning and one-pass learning. This is a substantial advantage
obtained from the HTM compared with deep learning algorithms. The proposed
approach is appropriate for machine learning-based real-time applications that
must process data in a streaming fashion and maintain continuous update
capability. In addition, the approach uses fewer computing resources to achieve
multi-classification of objects in different contexts, which is suitable for some
applications such as DDoS and anomaly detection.

For future studies, we plan to update the model by adding more features to
detect more attacks based on various network traffic traces and implement the
model on physical switches to detect DDoS in real time. Additionally, we will
devise a method to combine the results of different HTM models for unified
results achieving higher performance.
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